首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Cytotoxic immune elimination of transduced hepatocytes may limit gene therapy for inherited liver diseases. Using beta-galactosidase as a marker gene, we studied whether creation of mixed beta-galactosidase molecular hematopoietic chimerism could induce tolerance to beta-galactosidase-transduced hepatocytes. METHODS: Molecular hematopoietic chimerism was established in irradiated recipient mice by transplantation of either a mixture of wild-type and beta-galactosidase-transgenic bone marrow or autologous bone marrow stem cells that were transduced with beta-galactosidase lentiviral vectors. After transplantation, mice were hepatectomized and injected with beta-galactosidase recombinant retroviruses to transduce regenerating hepatocytes. We monitored the presence of beta-galactosidase-expressing hepatocytes as well as the appearance of anti-beta-galactosidase antibodies during the time. RESULTS: In control animals, anti-beta-galactosidase antibodies and cytotoxic T-lymphocyte (CTL) response developed as early as 3 weeks after gene transfer. Transduced hepatocytes disappeared concomitantly. In bone marrow transplanted mice, tolerance could be observed in a significant proportion of animals. Tolerance resulted in permanent liver transgene expression and was absent unless a chimerism above 1% was achieved, demonstrating a threshold effect. CONCLUSIONS: Creation of a molecular hematopoietic chimerism can result in transgene tolerance and evade immune rejection of retrovirally transduced hepatocytes. This strategy may be useful for hepatic inherited diseases in which the transgene product behaves as a non-self protein.  相似文献   

2.
Bile formation and its canalicular secretion are essential functions of the mammalian liver. The sister-of-p-glycoprotein (spgp) gene was shown to encode the canalicular bile salt export protein, and mutations in spgp gene were identified as the cause of progressive familial intrahepatic cholestasis type 2. However, target inactivation of spgp gene in mice results in nonprogressive but persistent cholestasis and causes the secretion of unexpectedly large amounts of unknown tetrahydroxylated bile acid in the bile. The present study confirms the identity of this tetrahydroxylated bile acid as 3 alpha,6 beta,7 beta,12 alpha-tetrahydroxy-5 beta-cholan-24-oic acid. The data further show that in serum, liver, and urine of the spgp knockout mice, there is a significant increase in the concentration of total bile salts containing a large amount of tetrahydroxy-5 beta-cholan-24-oic acid. The increase in total bile acids was associated with up-regulation of the mRNA of cholesterol 7 alpha-hydroxylase in male mice only. It is suggested that the lower severity of the cholestasis in the spgp knockout mice may be due to the synthesis of 3 alpha,6 beta,7 beta,12 alpha-tetrahydroxy-5 beta-cholan-24-oic acid, which neutralizes in part the toxic effect of bile acids accumulated in the liver.  相似文献   

3.
Bile acid transport in sister of P-glycoprotein (ABCB11) knockout mice   总被引:3,自引:0,他引:3  
Lam P  Wang R  Ling V 《Biochemistry》2005,44(37):12598-12605
In vertebrates, bile flow is essential for movement of water and solutes across liver canalicular membranes. In recent years, the molecular motor of canalicular bile acid secretion has been identified as a member of the ATP binding cassette transporter (ABC) superfamily, known as sister of P-glycoprotein (Spgp) or bile salt export pump (Bsep, ABCB11). In humans, mutations in the BSEP gene are associated with a very low level of bile acid secretion and severe cholestasis. However, as reported previously, because the spgp(-)(/)(-) knockout mice do not express severe cholestasis and have substantial bile acid secretion, we investigated the "alternative transport system" that allows these mice to be physiologically relatively normal. We examined the expression levels of several ABC transporters in spgp(-)(/)(-) mice and found that the level of multidrug resistance Mdr1 (P-glycoprotein) was strikingly increased while those of Mdr2, Mrp2, and Mrp3 were increased to only a moderate extent. We hypothesize that an elevated level of Mdr1 in the spgp(-)(/)(-) knockout mice functions as an alternative pathway to transport bile acids and protects hepatocytes from bile acid-induced cholestasis. In support of this hypothesis, we showed that plasma membrane vesicles isolated from a drug resistant cell line expressing high levels of P-glycoprotein were capable of transporting bile acids, albeit with a 5-fold lower affinity compared to Spgp. This finding is the first direct evidence that P-glycoprotein (Mdr1) is capable of transporting bile acids.  相似文献   

4.
目的:微小RNA(microRNAs,miRNAs)在胆固醇的合成,代谢和转运中起着重要作用,而mi RNAs在胆固醇代谢物胆酸的代谢和转运中的作用尚不清楚。Dicer基因是miRNAs生成过程的关键酶。本课题使用肝脏特异的Dicer1基因敲除小鼠,考察肝脏Dicer1基因敲除对C57BL/6小鼠肝脏胆酸代谢和转运的影响。方法:使用白蛋白启动子驱动的Cre重组酶和Loxp系统(Alb-Cre/Loxp)在小鼠肝脏中特异的敲除Dicer1基因;分别收集3~12周龄的小鼠血液和肝脏组织,使用Cobas生化仪检测小鼠血液和肝脏中总胆酸含量;利用实时定量PCR的方法分析肝脏中胆汁酸代谢转运相关基因的表达。结果:实验发现,肝脏Dicer基因敲除后,胆酸在血液和肝脏中明显蓄积,弥漫性肝细胞轻微空泡化,偶见单个肝细胞坏死。检测胆酸代谢和转运相关基因的表达发现,胆酸合成相关基因的表达有轻度升高,但缺乏统计学差异;在肝脏细胞血管侧的胆酸摄取转运体中,Oatp1a1在Dicer1敲除小鼠肝脏中明显下调,Ntcp和Oatp1b2则无明显改变;而肝细胞血管侧胆酸外排转运体的表达均有显著升高,胆管侧的外排转运体中Abcb11表达有明显增加。结论:Dicer基因敲除后,胆酸在血液和肝脏中明显蓄积,肝脏和血液中胆酸总量显著增加。血液中胆酸的蓄积可能与肝脏细胞血管侧摄取转运体的低表达和血管侧外排转运体的高表达有关;而肝脏中胆酸的蓄积可能部分来自于轻度升高的胆酸合成酶,胆酸在肝细胞内运输途径的紊乱可能与肝脏和血液中胆酸总量的显著增加相关。  相似文献   

5.
肝硬化是一种临床常见的肝病良性终末期表现。目前临床上尚缺乏有效的治疗措施。肝脏移植是最理想的治疗方法,但受供体肝脏来源限制,且费用昂贵。近年来开展的自体骨髓干细胞(BMSCs)移植治疗,为肝硬化的治疗带来了新的希望。BMSCs主要包括造型血干细胞和间充质干细胞,其具有可塑性,体外通过生长因子,体内利用特定微环境均可诱导BMSCs分化为肝前体细胞和成熟肝细胞,并明显改善肝功能。从动物实验到临床研究亦表明,BMSCs具有来源丰富、费用低廉、损伤小、自体移植不栓塞、无排斥反应等优点,为治疗肝病带来了新思路,有望成为生物人工肝的细胞来源。本文就BMSCs移植治疗肝硬化的研究现状,尤其是移植途径以及在肝脏内定居、迁移和分化机制的示踪观察方法和存在的问题作一综述,以期为从事肝病研究的同仁提供参考依据。通过对BMSCs移植从基础研究及临床应用的最新进展的描述,展示BMSCs在肝硬化治疗方面良好的治疗前景。  相似文献   

6.
The scavenger receptor class B type I (SR-BI), which is expressed in the liver and intestine, plays a critical role in cholesterol metabolism in rodents. While hepatic SR-BI expression controls high density lipoprotein (HDL) cholesterol metabolism, intestinal SR-BI has been proposed to facilitate cholesterol absorption. To evaluate further the relevance of SR-BI in the enterohepatic circulation of cholesterol and bile salts, we studied biliary lipid secretion, hepatic sterol content and synthesis, bile acid metabolism, fecal neutral sterol excretion, and intestinal cholesterol absorption in SR-BI knockout mice. SR-BI deficiency selectively impaired biliary cholesterol secretion, without concomitant changes in either biliary bile acid or phospholipid secretion. Hepatic total and unesterified cholesterol contents were slightly increased in SR-BI-deficient mice, while sterol synthesis was not significantly changed. Bile acid pool size and composition, as well as fecal bile acid excretion, were not altered in SR-BI knockout mice. Intestinal cholesterol absorption was somewhat increased and fecal sterol excretion was slightly decreased in SR-BI knockout mice relative to controls. These findings establish the critical role of hepatic SR-BI expression in selectively controlling the utilization of HDL cholesterol for biliary secretion. In contrast, SR-BI expression is not essential for intestinal cholesterol absorption.  相似文献   

7.
Although embryonic stem (ES) cell-derived hepatocytes have the capacity for liver engraftment and repopulation, their in vivo hepatic function has not been analyzed yet. We aimed to determine the metabolic function and therapeutic action of ES cell-derived hepatocytes after serial liver repopulations in fumaryl acetoacetate hydrolase knockout (Fah(-/-)) mice. Albumin expressing (Alb(+)) cells were obtained by hepatic differentiation of ES cells using two frequently reported methods. After transplantation, variable levels of liver repopulation were found in Fah(-/-) mice recipients. FAH expressing (FAH(+)) hepatocytes were found either as single cells or as nodules with multiple hepatocytes. After serial transplantation, the proportion of the liver that was repopulated by the re-transplanted FAH(+) hepatocytes increased significantly. ES cell-derived FAH(+) hepatocytes were found in homogenous nodules and corrected the liver metabolic disorder of Fah(-/-) recipients and rescued them from death. ES cell-derived hepatocytes had normal karyotype, hepatocytic morphology and metabolic function both in vitro and in vivo. In conclusion, ES cell-derived hepatocytes were capable of liver repopulation and correction of metabolic defects after serial transplantation. Our results are an important piece of evidence to support future clinical applications of ES cell-derived hepatocytes in treating liver diseases.  相似文献   

8.
Human hereditary hemochromatosis is a disorder of iron homeostasis characterized by increased absorption of iron and its deposition in parenchymal organs. The maintenance of iron homeostasis is regulated by molecules involved in the absorption, transport, storage and redox of iron. The potential of hematopoietic stem cell therapy for liver diseases has been studied in some experimental animal models. Our objective was to evaluate the effect of bone marrow transplantation from wild type mice on the status of iron overload in Hfe knockout hemochromatotic mice (Hfe(-/-)). The transplanted cells were detected in the liver (11% of the total cells) and characterized as hepatocytes and myofibroblasts. They were also detected in the duodenum and characterized as myofibroblasts. The iron content in the Hfe(-/-) mice descended 2.9-fold in the liver and 2.4-fold in the duodenum 6 months after transplantation. Non-significant changes of relative mRNA abundance of genes of iron metabolism were observed in the liver and duodenum of Hfe(-/-) transplanted mice. At 6 months after transplantation the proportion of Hfe mRNA in Hfe(-/-) mice reached 3.8% of the levels in wild type mice in the liver and 1.6% in the duodenum. In conclusion, adult stem cells from bone marrow transplant were able to differentiate into hepatocytes and myofibroblasts in hemochromatotic mice. Bone marrow transplantation assisted in reducing the iron overload in this murine model of hemochromatosis. These findings might contribute to the knowledge of pathways involved in the regulatory system of iron homeostasis.  相似文献   

9.
The synthesis of apoE by adipocytes has profound effects on adipose tissue lipid flux and gene expression. Using adipose tissue transplantation from wild-type (WT) to apoE knockout (EKO) mice, we show that adipose tissue also contributes to circulating apoE. Different from circulating apoE produced by bone marrow transplantation (BMT), however, adipose tissue-derived apoE does not correct hyperlipidemia or suppress atherosclerosis. ApoE secreted by macrophages has a more acidic isoform distribution, and it increases binding of reconstituted VLDL particles to hepatocytes and fibroblasts more effectively than apoE secreted by adipocytes. The incremental binding can be entirely accounted for by binding to the LDL receptor. After BMT into EKO hosts, plasma cholesterol and macrophage-derived apoE are largely within IDL/LDL- and HDL-sized particles. After adipose tissue transplantation, most cholesterol and adipocyte apoE remain in VLDL. After BMT, circulating apoE no longer demonstrates predominance of acidic isoforms compared with that circulating after fat transplantation. In conclusion, fat transplantation provides circulating apoE levels similar to those provided by bone marrow transplantation, but it does not suppress hyperlipidemia or atherosclerosis. A potential mechanism contributing to this difference is differential binding to cell surface lipoprotein receptors.  相似文献   

10.
Although it is clear that bile acid accumulation is the major initiator of fibrosis caused by cholestatic liver disease, endotoxemia is a common side effect. However, the depletion of hepatic macrophages with gadolinium chloride blunts hepatic fibrosis. Because endotoxin is a key activator of hepatic macrophages, this study was designed to test the hypothesis that LPS signaling through CD14 contributes to hepatic fibrosis caused by experimental cholestasis. Wild-type mice and CD14 knockout mice (CD14(-/-)) underwent sham operation or bile duct ligation and were killed 3 wk later. Measures of liver injury, such as focal necrosis, biliary cell proliferation, and inflammatory cell influx, were not significantly different among the strains 3 wk after bile duct ligation. Markers of liver fibrosis such as Sirius red staining, liver hydroxyproline, and alpha-smooth muscle actin expression were blunted in CD14(-/-) mice compared with wild-type mice after bile duct ligation. Despite no difference in lymphocyte infiltration, the macrophage/monocyte activation marker OX42 (CD11b) and the oxidative stress/lipid peroxidation marker 4-hydroxynonenal were significantly upregulated in wild-type mice after bile duct ligation but not in CD14(-/-) mice. Increased profibrogenic cytokine mRNA expression in the liver after bile duct ligation was significantly blunted in CD14(-/-) mice compared with the wild type. The hypothesis that LPS was involved in experimental cholestatic liver fibrosis was tested using mice deficient in LPS-binding protein (LBP(-/-)). LBP(-/-) mice had less liver injury and fibrosis (Siruis red staining and hydroxyproline content) compared with wild-type mice after bile duct ligation. In conclusion, these data demonstrate that endotoxin in a CD14-dependent manner exacerbates hepatic fibrogenesis and macrophage activation to produce oxidants and cytokines after bile duct ligation.  相似文献   

11.
Whether hepatocytes can convert into biliary epithelial cells (BECs) during biliary injury is much debated. To test this concept, we traced the fate of genetically labeled [dipeptidyl peptidase IV (DPPIV)-positive] hepatocytes in hepatocyte transplantation model following acute hepato-biliary injury induced by 4,4’-methylene-dianiline (DAPM) and D-galactosamine (DAPM+D-gal) and in DPPIV-chimeric liver model subjected to acute (DAPM+D-gal) or chronic biliary injury caused by DAPM and bile duct ligation (DAPM+BDL). In both models before biliary injury, BECs are uniformly DPPIV-deficient and proliferation of DPPIV-deficient hepatocytes is restricted by retrorsine. We found that mature hepatocytes underwent a stepwise conversion into BECs after biliary injury. In the hepatocyte transplantation model, DPPIV-positive hepatocytes entrapped periportally proliferated, and formed two-layered plates along portal veins. Within the two-layered plates, the hepatocytes gradually lost their hepatocytic identity, proceeded through an intermediate state, acquired a biliary phenotype, and subsequently formed bile ducts along the hilum-to-periphery axis. In DPPIV-chimeric liver model, periportal hepatocytes expressing hepatocyte nuclear factor-1β (HNF-1β) were exclusively DPPIV-positive and were in continuity to DPPIV-positives bile ducts. Inhibition of hepatocyte proliferation by additional doses of retrorsine in DPPIV-chimeric livers prevented the appearance of DPPIV-positive BECs after biliary injury. Moreover, enriched DPPIV-positive BEC/hepatic oval cell transplantation produced DPPIV-positive BECs or bile ducts in unexpectedly low frequency and in mid-lobular regions. These results together suggest that mature hepatocytes but not contaminating BECs/hepatic oval cells are the sources of periportal DPPIV-positive BECs. We conclude that mature hepatocytes contribute to biliary regeneration in the environment of acute and chronic biliary injury through a ductal plate configuration without the need of exogenously genetic or epigenetic manipulation.  相似文献   

12.
Gap junction intercellular communication capacity and connexin expression are reportedly involved in cell proliferation. To understand the participation of connexins in biliary duct hyperplasia, a cholestasis model was applied to mice with heterologous deletion of Gja 1, the connexin 43 (Cx43) gene. Heterozygous (Cx43+/-) knockout (KO) and wild-type mice (Cx43+/+) (WT) were submitted to bile duct ligation and euthanized at different time points (48 h, 7 days, and 14 days) after surgery. After euthanasia, the macroscopic and microscopic liver alterations were examined. A histomorphometric study of the livers was performed. For this purpose, a grid containing 100 points was applied to each liver section. The volumetric fraction of bile ducts, hepatocytes, arterioles, and terminal hepatic vein were quantified. Cell proliferation was also quantified by western blot PCNA. High mortality was observed in both genotypes. The heterologous deletion of Cx43 did not affect the biliary duct hyperplasia or most of the other parameters analyzed; however, the Cx43-deficient mice showed decrease in hepatic vein angiogenesis in comparison with the wild-type mice 48 h after surgery. In conclusion, our results indicate that the Cx43 gene heterologous deletion does not affect the biliary duct hyperplasia; on the other hand, connexin 43 deficiencies do affect the hepatic vein angiogenesis, although other studies to understand the details of this influence will be necessary.  相似文献   

13.
14.
We previously reported that fibroblast growth factor 2 (FGF2) facilitated the differentiation of transplanted bone marrow cells (BMCs) into hepatocytes. Our earlier study also demonstrated that administration of FGF2 in combination with bone marrow transplantation (BMT) synergistically activated tumor necrosis factor-alpha signaling and significantly improved liver function and prognosis more than BMT alone. However, the way that it affected the extracellular matrix remained unclear. Here, we investigated the effect of FGF2 treatment together with BMT on liver fibrosis in mice treated with carbon tetrachloride (CCl4). Transplantation of BMCs and concurrent treatment with FGF2 caused a statistically significant reduction in CCl4-induced liver fibrosis that was accompanied by strong expression of matrix metalloproteinase 9 as compared with FGF2-only treatment or BMT alone. Moreover, in this process, the proliferation of bone-marrow-derived cells was accelerated without causing apoptosis. Thus, the administration of FGF2 in combination with BMT synergistically improves CCl4-induced liver fibrosis in mice. This treatment has the potential of being an effective therapy for patients with liver cirrhosis. This study was supported by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (nos. 16390211 and 16590597) and for translational research from the Ministry of Health, Labor and Welfare (H-trans-5 and H17-Special-015).  相似文献   

15.
Hepatic up-regulation of sterol carrier protein 2 (Scp2) in mice promotes hypersecretion of cholesterol into bile and gallstone formation in response to a lithogenic diet. We hypothesized that Scp2 deficiency may alter biliary lipid secretion and hepatic cholesterol metabolism. Male gallstone-susceptible C57BL/6 and C57BL/6(Scp2(-/-)) knockout mice were fed a standard chow or lithogenic diet. Hepatic biles were collected to determine biliary lipid secretion rates, bile flow, and bile salt pool size. Plasma lipoprotein distribution was investigated, and gene expression of cytosolic lipid-binding proteins, lipoprotein receptors, hepatic regulatory enzymes, and intestinal cholesterol absorption was measured. Compared with chow-fed wild-type animals, C57BL/6(Scp2(-/-)) mice had higher bile flow and lower bile salt secretion rates, decreased hepatic apolipoprotein expression, increased hepatic cholesterol synthesis, and up-regulation of liver fatty acid-binding protein. In addition, the bile salt pool size was reduced and intestinal cholesterol absorption was unaltered in C57BL/6(Scp2(-/-)) mice. When C57BL/6(Scp2(-/-)) mice were challenged with a lithogenic diet, a smaller increase of hepatic free cholesterol failed to suppress cholesterol synthesis and biliary cholesterol secretion increased to a much smaller extent than phospholipid and bile salt secretion. Scp2 deficiency did not prevent gallstone formation and may be compensated in part by hepatic up-regulation of liver fatty acid-binding protein. These results support a role of Scp2 in hepatic cholesterol metabolism, biliary lipid secretion, and intracellular cholesterol distribution.  相似文献   

16.
Creation of stable hemopoietic chimerism has been considered to be a prerequisite for allograft tolerance after bone marrow transplantation (BMT). In this study, we demonstrated that allogeneic BMT with bone marrow cells (BMC) prepared from either knockout mice deficient in both CD4 and CD8 T cells or CD3E-transgenic mice lacking both T cells and NK cells maintained a high degree of chimerism, but failed to induce tolerance to donor-specific wild-type skin grafts. Lymphocytes from mice reconstituted with T cell-deficient BMC proliferated when they were injected into irradiated donor strain mice, whereas lymphocytes from mice reconstituted with wild-type BMC were unresponsive to donor alloantigens. Donor-specific allograft tolerance was restored when donor-type T cells were adoptively transferred to recipient mice given T cell-deficient BMC. These results show that donor T cell engraftment is required for induction of allograft tolerance, but not for creation of continuous hemopoietic chimerism after allogeneic BMT, and that a high degree of chimerism is not necessarily associated with specific allograft tolerance.  相似文献   

17.
Biliary obstruction in the setting of hepatic bacterial infection has great morbidity and mortality. We developed a novel murine model to examine the effect of biliary obstruction on the clearance of hepatic Escherichia coli infection. This model may allow us to test the hypothesis that biliary obstruction itself adversely affects clearance of hepatic infections even if the bacteria are introduced into the liver by a nonbiliary route. We ligated the bile ducts of C57BL/6 mice on days -1, 0, or +1, relative to a day 0 portal venous injection of E. coli. We monitored survival, hepatic bacterial growth, pathology, and IL-10 protein levels. The role of IL-10 in this model was further examined using IL-10 knockout mice. Mice with bile duct ligation at day +1 or 0, relative to portal venous infection at day 0, had decreased survival compared with mice with only portal venous infection. The impaired survival was associated with greater hepatic bacterial growth, hepatic necrosis, and increased production of IL-10. Interestingly, the transgenic knockout of IL-10 resulted in impaired survival in mice with bile duct ligation and portal venous infection. Biliary obstruction had a dramatic detrimental effect on hepatic clearance of portal venous E. coli infection. This impaired clearance is associated with increased IL-10 production. However, transgenic knockout of IL-10 increased mortality after hepatic infection.  相似文献   

18.
Prostaglandin E receptor subtype 4 (EP4) knockout mice develops spontaneous hypercholesterolemia but the detailed mechanisms by which EP4 affects cholesterol homeostasis remains unexplored. We sought to determine the cause of hypercholesterolemia in EP4 knockout mice, focusing on the role of EP4 in regulating the synthesis and elimination of cholesterol. Deficiency of EP4 significantly decreased total bile acid levels in the liver by 26.2% and the fecal bile acid content by 27.6% as compared to wild type littermates, indicating that the absence of EP4 decreased hepatic bile acid synthesis and their subsequent excretion in stools. EP4 deficiency negatively regulate bile acid synthesis through repression of phosphorylated extracellular signal-regulated kinase 1/2 (ERK)-mediated cholesterol 7α-hydroxylase (CYP7A1) expression and that the hypercholesterolemia in EP4 knockout mice is due to a defect in cholesterol conversion into bile acids. Deficiency of EP4 also increased de novo cholesterol synthesis and altered cholesterol fluxes in and out of the liver. Treating high fat diet-challenged mice with the pharmacological EP4 agonist, CAY10580 (200?μg/kg body weight/day i.p) for three weeks effectively prevented diet-induced hypercholesterolemia, enhanced endogenous bile acid synthesis and their fecal excretion. In summary, EP4 plays a critical role in maintaining cholesterol homeostasis by regulating the synthesis and elimination of bile acids. Activation of EP4 serves as an effective novel strategy to promote cholesterol disposal in the forms of bile acids in order to lower plasma cholesterol levels.  相似文献   

19.
Liver immunopathologic mechanisms during hepatotropic infection, malignant transformation, and autoimmunity are still unclear. Establishing a chimeric mouse with a reconstituted liver and immune system derived from a single donor across species is critical to study regional donor immune responses in recipient liver. Using a strain of mice deficient in tyrosine catabolic enzyme fumarylacetoacetate hydrolase (fah -/-) and bone marrow transplantation (BMT), we reconstituted the donor''s hepatocytes and immune cells across host species barrier. Syngeneic, allogeneic or even xenogeneic rat BMT rescued most recipient fah-/- mice against liver failure by donor BM-derived FAH+ hepatocytes. Importantly, immune system developed normally in chimeras, and the immune cells together with organ architecture were intact and functional. Thus, donor BM can across host species barrier and concurrently reconstitutes MHC-identical response between immune cells and hepatocytes, giving rise to a new simple and convenient small animal model to study donor''s liver immune response in mice.  相似文献   

20.
In murine models of allogeneic bone marrow transplantation (BMT), MHC-mismatched recipients given a delayed infusion of donor leukocytes (DLI) at 21 days posttransplant develop significant GVHD whereas MHC-matched recipients do not. The current study was initially designed to test the hypothesis that small numbers of T cells in the MHC-mismatched donor bone marrow (BM) graft exacerbated graft-vs-host disease (GVHD) when DLI was administered at 21 days after BMT. Ex vivo depletion of Thy1+ cells from the donor BM had no impact on the severity of GVHD after DLI. However, depletion of donor T cells in vivo with a Thy1 allele-specific mAb given after BMT resulted in significantly more severe GVHD after DLI. Similar results were obtained in a MHC-matched model of allogeneic BMT, indicating that this was a general phenomenon and not model dependent. These results indicated that a population of donor-derived Thy1+ cells suppressed graft-vs-host reactivity after DLI. Results of experiments with thymectomized recipients demonstrated that an intact thymus was required for generation of the immunoregulatory donor cells. Experiments using TCR beta-chain knockout mice as BM donors indicated that the immunosuppressive Thy1+ cells coexpressed alphabetaTCR heterodimers. Similar experiments with CD4 and CD8 knockout donor BM suggested that the immunoregulatory Thy1+alphabetaTCR+ cells consisted of two subpopulations: a CD4+CD8- subpopulation and a CD4-CD8- subpopulation. Together, these results show that thymus-derived, Thy1+alphabetaTCR+ donor cells generated early after allogeneic BMT suppress the graft-vs-host reactivity of T cells given as DLI. These cells may mediate dominant peripheral tolerance after allogeneic BMT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号