首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acetic acid formation in Escherichia coli fermentation   总被引:2,自引:0,他引:2  
Theoretical analysis of cellulase product inhibition (by cellobiose and glucose) has been performed in terms of the mathematical model for enzymatic cellulose hydrolysis. The analysis showed that even in those cases when consideration of multienzyme cellulase system as one enzyme (cellulase) or two enzymes (cellulase and beta-glucosidase) is valid, double-reciprocal plots, usually used in a product inhibition study, may be nonlinear, and different inhibition patterns (noncompetitive, competitive, or mixed type) may be observed. Inhibition pattern depends on the cellulase binding constant, enzyme concentration, maximum adsorption of the enzyme (cellulose surface area accessible to the enzyme), the range in which substrate concentration is varied, and beta-glucosidase activity. A limitation of cellulase adsorption by cellulose surface area that may occur at high enzyme/substrate ratio is the main reason for nonlinearity of double-reciprocal plots. Also, the results of calculations showed that material balance by substrate, which is usually neglected by researchers studying cellulase product inhibition, must be taken into account in kinetic analysis even in those cases when the enzyme concentration is rather low. (c) 1992 John Wiley & Sons, Inc.  相似文献   

2.
Cloning and over-expression of human glucose 6-phosphate dehydrogenase (Glc6P dehydrogenase) has for the first time allowed a detailed kinetic study of a preparation that is genetically homogeneous and in which all the protein molecules are of identical age. The steady-state kinetics of the recombinant enzyme, studied by fluorimetric initial-rate measurements, gave converging linear Lineweaver-Burk plots as expected for a ternary-complex mechanism. Patterns of product and dead-end inhibition indicated that the enzyme can bind NADP+ and Glc6P separately to form binary complexes, suggesting a random-order mechanism. The Kd value for the binding of NADP+ measured by titration of protein fluorescence is 8.0 microm, close to the value of 6.8 microm calculated from the kinetic data on the assumption of a rapid-equilibrium random-order mechanism. Strong evidence for this mechanism and against either of the compulsory-order possibilities is provided by repeating the kinetic analysis with each of the natural substrates replaced in turn by structural analogues. A full kinetic analysis was carried out with deaminoNADP+ and with deoxyglucose 6-phosphate as the alternative substrates. In each case the calculated dissociation constant upon switching a substrate in a random-order mechanism (e.g. that for NADP+ upon changing the sugar phosphate) was indeed constant within experimental error as expected. The calculated rate constants for binding of the leading substrate in a compulsory-order mechanism, however, did not remain constant when the putative second substrate was changed. Previous workers, using enzyme from pooled blood, have variously proposed either compulsory-order or random-order mechanisms. Our study appears to provide unambiguous evidence for the latter pattern of substrate binding.  相似文献   

3.
Enzymes which catalyze energetically unfavorable reactions in the physiological direction are likely to be strongly inhibited by the reaction products. (Some energetically favorable reactions may also display strong "product inhibition" when assayed in the reverse direction.) In some cases, the inhibition caused by an accumulating product is so potent that true initial velocities cannot be directly determined using conventional assay methods. Continuous removal of the inhibitory product may be mitigated against by the nature of the assay or the unavailability of the appropriate coupling enzyme. It can be shown that if (a) only one inhibitory product is allowed to accumulate and (b) the substrate concentrations remain essentially constant over the assay period (i.e. Kproduct less than or equal to 10(-2)Ksubstrate, so that the decreasing reaction rate stems only from progressive product inhibition), then plots of reciprocal average (apparent) velocity (i.e. 1/v = t/[P]) versus [P] are linear and extrapolate to 1/v0, the reciprocal of the initial uninhibited velocity at the fixed substrate concentrations. Intercept replots give the usual initial velocity reciprocal plot patterns and permit Vmax and the substrate Km's to be determined. Slope replots are diagnostic of the type of inhibition exerted by the accumulating product and permit the inhibition constants to be determined. If all the appropriate coupling enzymes are available, some kinetic mechanisms can be diagnosed using data derived from the reaction progress curves in the presence of one accumulating product at a time.  相似文献   

4.
The kinetic reaction mechanism of the type II calmodulin-dependent protein kinase was studied by using its constitutively active kinase domain. Lacking regulatory features, the catalytic domain simplified data collection, analysis, and interpretation. To further facilitate this study, a synthetic peptide was used as the kinase substrate. Initial velocity measurements of the forward reaction were consistent with a sequential mechanism. The patterns of product and dead-end inhibition studies best fit an ordered Bi Bi kinetic mechanism with ATP binding first to the enzyme, followed by binding of the peptide substrate. Initial-rate patterns of the reverse reaction of the kinase suggested a rapid-equilibrium mechanism with obligatory ordered binding of ADP prior to the phosphopeptide substrate; however, this apparent rapid-equilibrium ordered mechanism was contrary to the observed inhibition by the phosphopeptide which is not supposed to bind to the kinase in the absence of ADP. Inspection of product inhibition patterns of the phosphopeptide with both ATP and peptide revealed that an ordered Bi Bi mechanism can show initial-rate patterns of a rapid-equilibrium ordered system when a Michaelis constant for phosphopeptide, Kip, is large relative to the concentration of phosphopeptide used. Thus, the results of this study show an ordered Bi Bi mechanism with nucleotide binding first in both directions of the kinase reaction. All the kinetic constants in the forward and reverse directions and the Keq of the kinase reaction are reported herein. To provide theoretical bases and diagnostic aid for mechanisms that can give rise to typical rapid-equilibrium ordered kinetic patterns, a discussion on various sequential cases is presented in the Appendix.  相似文献   

5.
Metal (Me) and MeATP interactions with adenylate cyclases associated with rabbit ventricular particles and with a detergent-dispersed preparation from rat cerebellum have been studied. data were simulated to fit kinetic models in which an inhibitor (HATP or ATP) is added in constant proportion to the variable substrate (MeATP). The specific models considered were that the enzyme binds (a) MeATP as the substrate; (b) MeATP as the substrate and HATP or ATP as an inhibitor; (c) MeATP as the substrate and free Me as an activator; and (d) MeATP as the substrate, free Me as an activator, and HATP or ATP as an inhibitor. Both equilibrium-ordered and random (rapid equilibrium assumption) types of sequential kinetic models were considered. The various models were tested using cardiac particulate adenylate cyclase in the presence of either a phosphoenolpyruvate-pyruvate kinase or a creatine phosphate-creatine kinase ATP-regeneration system. Although the enzyme with either system appeared to bind Mg2+ as an activator, one or both ATP-regeneration systems also seemed to interact directly with adenylate cyclase, making clear interpretations difficult. With the phosphoenolpyruvate-pyruvate kinase system, kinetic patterns on double reciprocal plots were linear as a function of MgATP, but with creatine phosphate-creatine kinase, kinetic patterns were concave downward. The kinetic models were further tested using the detergent-dispersed cerebellar enzyme, a preparation with low adenosine triphosphatase activity and not requiring the addition of an ATP-regeneration system. Reciprocal plots were linear and intersecting as a function of either MeATP or Me (Me = Mg2+ or Mn2+), and secondary replots of slopes and intersecting as function of either MeATP or Me (Me = Mg2+ or Mn2+), and secondary replots of slopes and intercepts also were linear. These data indicate that the brain detergent-dispersed enzyme conforms to a bireactant, sequential mechanism where free cation is a required activator and free ATP is not a potent inhibitor.  相似文献   

6.
E Holme 《Biochemistry》1975,14(22):4999-5003
The steady-state kinetics of thymine 7-hydroxylase (thymine, 2-oxoglutarate dioxygenase, EC 1.14.11.6) has been investigated. Initial velocity plots were all found to be linear and intersecting. Variation in concentration of two of the substrates, when the third substrate was at a constant high or low concentration, gave initial velocity plots that conform to an ordered sequential mechanism, where thymine is the second substrate to add. With 5-carboxyuracil, which is the end product in the sequential oxygenation of thymine, a competitive inhibition pattern was observed when 2-ketoglutarate was the variable substrate. When either thymine or oxygen was the variable substrate a noncompetitive inhibition pattern was obtained. When either 2-ketoglutarate or thymine was the variable substrate the inhibition patterns observed with bicarbonate were noncompetitive. With succinate noncompetitive inhibition patterns with hyperbolic intercept replots were obtained. These results are consistent with an ordered sequential kinetic mechanism, where 2-ketoglutarate is added first, followed by thymine and oxygen, and the products are released in the order: bicarbonate, succinate, and 5-hydroxymethyluracil. The order of the two last mentioned products, however, is changed in the presence of succinate.  相似文献   

7.
The E. coli protein WrbA is an FMN-dependent NAD(P)H:quinone oxidoreductase that has been implicated in oxidative defense. Three subunits of the tetrameric enzyme contribute to each of four identical, cavernous active sites that appear to accommodate NAD(P)H or various quinones, but not simultaneously, suggesting an obligate tetramer with a ping-pong mechanism in which NAD departs before oxidized quinone binds. The present work was undertaken to evaluate these suggestions and to characterize the kinetic behavior of WrbA. Steady-state kinetics results reveal that WrbA conforms to a ping-pong mechanism with respect to the constancy of the apparent Vmax to Km ratio with substrate concentration. However, the competitive/non-competitive patterns of product inhibition, though consistent with the general class of bi-substrate reactions, do not exclude a minor contribution from additional forms of the enzyme. NMR results support the presence of additional enzyme forms. Docking and energy calculations find that electron-transfer-competent binding sites for NADH and benzoquinone present severe steric overlap, consistent with the ping-pong mechanism. Unexpectedly, plots of initial velocity as a function of either NADH or benzoquinone concentration present one or two Michaelis-Menten phases depending on the temperature at which the enzyme is held prior to assay. The effect of temperature is reversible, suggesting an intramolecular conformational process. WrbA shares these and other details of its kinetic behavior with mammalian DT-diaphorase, an FAD-dependent NAD(P)H:quinone oxidoreductase. An extensive literature review reveals several other enzymes with two-plateau kinetic plots, but in no case has a molecular explanation been elucidated. Preliminary sedimentation velocity analysis of WrbA indicates a large shift in size of the multimer with temperature, suggesting that subunit assembly coupled to substrate binding may underlie the two-plateau behavior. An additional aim of this report is to bring under wider attention the apparently widespread phenomenon of two-plateau Michaelis-Menten plots.  相似文献   

8.
Steady-state kinetic equations for isotope exchange are derived for a number of one substrate-one product enzymic mechanisms in which two molecules of substrate or product can be combined with an enzyme molecule at the one time (e.g. allosteric mechanisms). The usual assumption, that the radioactive material is distributed among the substrate and product components according to a first-order law, is not valid. One can recognize whether isotope-exchange kinetics of an enzyme reaction follows first-order behaviour by using various initial concentrations of the labelled substance added to a mixture.  相似文献   

9.
The kinetic mechanisms of the reactions catalyzed by the two catalytic domains of aspartokinase-homoserine dehydrogenase I from Escherichia coli have been determined. Initial velocity, product inhibition, and dead-end inhibition studies of homoserine dehydrogenase are consistent with an ordered addition of NADPH and aspartate beta-semialdehyde followed by an ordered release of homoserine and NADP+. Aspartokinase I catalyzes the phosphorylation of a number of L-aspartic acid analogues and, moreover, can utilize MgdATP as a phosphoryl donor. Because of this broad substrate specificity, alternative substrate diagnostics was used to probe the kinetic mechanism of this enzyme. The kinetic patterns showed two sets of intersecting lines that are indicative of a random mechanism. Incorporation of these results with the data obtained from initial velocity, product inhibition, and dead-end inhibition studies at pH 8.0 are consistent with a random addition of L-aspartic acid and MgATP and an ordered release of MgADP and beta-aspartyl phosphate.  相似文献   

10.
The steady-state kinetic mechanism for the reaction of n-alkylamines and phenazine ethosulfate (PES) or phenazine methosulfate (PMS) with methylamine dehydrogenase from bacterium W3A1 is found to be of the ping-pong type. This conclusion is based on the observations that 1/v versus 1/[methylamine] or 1/[butylamine] plots, at various constant concentrations of an oxidizing substrate, and 1/v versus 1/[PES] or 1/[PMS] plots, at various constant concentrations of a reducing substrate, are parallel. Additionally, the values of kcat/Km for four n-alkylamines are identical when PES is the oxidizing substrate, as were the kcat/Km values for four reoxidizing substrates when methylamine was the reducing substrate. Last, analysis of steady-state kinetic data obtained when methylamine and propylamine are presented to the enzyme simultaneously and PES and PMS are used simultaneously also supports the involvement of a ping-pong mechanism. The enzymic reaction with either methylamine or PES is dependent on the ionic strength, and the data indicate that each interacts with an anionic site on methylamine dehydrogenase. The presence of ammonium ion at low concentration activates the enzyme, but at high concentration this ion is a competitive inhibitor in the reaction involving methylamine and the enzyme. A complete steady-state mechanism describing these ammonia effects is presented and is discussed in light of the nature of the pyrroloquinoline quinone cofactor covalently bound to the enzyme.  相似文献   

11.
Suicide substrates are widely used in enzymology for studying enzyme mechanisms and designing potential drugs. The presence of a reversible modifier decreases or increases the rate of substrate-induced inactivation, with evident physiological and experimental consequences. To date, only the action of a competitive or uncompetitive inhibitor of an enzyme system involving suicide substrate has been reported. In this paper, we analyse the kinetics of enzyme-catalysed reactions which evolve in accordance with the general modifier mechanisms of Botts and Morales in which enzyme inactivation is induced by suicide substrate. Rapid equilibrium of all of the reversible reaction steps involved is assumed and the time course equations for the residual enzyme activity, the inactive enzyme forms and the reaction product are derived. Partition ratios giving the relative weight of the product and inactive enzyme concentrations, and the relative contribution to the product formation of each of the unmodified and modified catalytic routes, are studied. New indices pointing to the conditions under which the modifier acts as inhibitor or as activator are suggested. The goodness of the analytical solutions is tested by comparison with the simulated curves obtained by numerical integration. An experimental design and kinetic data analysis to evaluate the kinetic parameters from the time progress curves of the product are proposed. From these results, those corresponding to several reaction mechanisms involving both a suicide substrate and a modifier, and which can be regarded as particular cases of the general case analysed here, can be directly and easily derived.  相似文献   

12.
In this work, the full rate equations for 17 completely reversible bisubstrate enzyme kinetic mechanisms, with two substrates in the forward and two in the reverse direction, have been presented; among these are rapid equilibrium, steady-state, and mixed steady-state and rapid equilibrium mechanisms. From each rate equation eight product inhibition equations were derived, four for the forward and four for the reverse direction. All the corresponding product inhibition equations were derived in full; thus a total of 17 × 8 = 136 equations, were presented. From these equations a list of product inhibition patterns were constructed and presented in a tabular form, both for the primary plots (intercept effects) and the secondary plots (slope effects).

The purpose of this work is to help investigators in practical work, especially biologists working with enzymes, to choose quickly an appropriate product inhibition pattern for the identification of the kinetic mechanism. The practical application of above product inhibition analysis was illustrated with three examples of yeast alcohol dehydrogenase-catalyzed reactions.  相似文献   

13.
本文提出了一个利用过程曲线确定酶催化反应动力学参数的新方法.利用这一方法,仅仅根据两条实验曲线就可以确定单底物酶催化反应的全部动力学参数,并且所有的图形都是(?)  相似文献   

14.
A generalized reaction scheme for the kinetic interaction of two reactants in a metabolic pathway has been examined in order to establish what minimal mechanistic patterns are required to support a damped oscillatory transient-state kinetic behaviour of such a two-component system when operating near a steady state. All potentially oscillating sub-systems inherent in this scheme are listed and briefly characterized. The list includes several mechanistic patterns that may be frequently encountered in biological system (e.g. involving feedback inhibition, feed-forward activation, substrate inhibition or product activation), but also draw attention to some hitherto unforeseen mechanisms by which the kinetic interaction of two metabolites may trigger damped oscillations. The results can be used to identify possible sources of oscillations in metabolic pathways without detailed knowledge about the explicit rate equations that apply.  相似文献   

15.
In this work, the full rate equations for 17 completely reversible bisubstrate enzyme kinetic mechanisms, with two substrates in the forward and two in the reverse direction, have been presented; among these are rapid equilibrium, steady-state, and mixed steady-state and rapid equilibrium mechanisms. From each rate equation eight product inhibition equations were derived, four for the forward and four for the reverse direction. All the corresponding product inhibition equations were derived in full; thus a total of 17 x 8 = 136 equations, were presented. From these equations a list of product inhibition patterns were constructed and presented in a tabular form, both for the primary plots (intercept effects) and the secondary plots (slope effects). The purpose of this work is to help investigators in practical work, especially biologists working with enzymes, to choose quickly an appropriate product inhibition pattern for the identification of the kinetic mechanism. The practical application of above product inhibition analysis was illustrated with three examples of yeast alcohol dehydrogenase-catalyzed reactions.  相似文献   

16.
Most enzymes react in vivo under reversible conditions where the substrate and product concentrations are not far removed from equilibrium values. Under these conditions when the concentration of substrate is increased, in addition to the usual unsaturated and saturated behaviour we find a third type of kinetic regime at high substrate concentration-oversaturation. In this regime the rate limiting transition state involves interconversion of free enzyme forms. For a one substrate/one product enzyme, case diagrams can be constructed which depict the kinetic behaviour as a function of substrate and product concentrations. Six different cases are found and are discussed with the relevant free energy profiles. A systematic procedure is described for the investigation and construction of the case diagram.  相似文献   

17.
The kinetic mechanism of glycogen synthase [UDP-glucose: glycogen 4-alpha-glucosyltransferase, EC 2.4.1.11], glucose-6-P-dependent form, from Neurospora crassa has been investigated by initial velocity experiments and studies with inhibitors in the presence of sufficient levels of glucose-6-P. The rate equation was different from those of common two-substrate systems because one of the substrates, glycogen, is also a product. The reaction rates were determined by varying the concentration of one of the substrates while keeping that of the other constant. Double-reciprocal plots of initial velocity measurements were linear and showed converging line patterns. UDP was found to act competitively when the substrate UDP-glucose was varied, but noncompetitively when glycogen was varied. On the basis of these results, it is concluded that glycogen synthase, glucose-6-P-dependent form, from N. crassa has a rapid equilibrium random Bi-Bi mechanism. Rate constant and dissociation constants for each step of this mechanism were estimated.  相似文献   

18.
A convenient, personal-computer-based program has been developed that allows simulation of isotopic exchange kinetics at chemical equilibrium catalyzed by a three reactant-three product (TerTer) enzyme system: A + B + C integral of P + Q + R. This program, ISOTER, utilizes a rapid algebraic method to calculate the exchange rate between any reactant-product pair as a function of the substrate concentration and avoids altogether the necessity of deriving an explicit (but cumbersome and impractical) equation for exchange rate. ISOTER was used to generate model saturation patterns for 16 different TerTer kinetic mechanisms, varying different combinations of reactant-product pairs in constant ratio at equilibrium: [all substrates], [A, P], [B, Q], and [C, R], while holding the nonvaried components constant. These model studies indicate that virtually every one of these mechanisms can be distinguished from the others. In addition, ISOTER has been used to fit multiple sets of experimental data for Escherichia coli glutamine synthetase, which produced a set of rate constants consistent with the previously proposed "preferred order random" kinetic mechanism.  相似文献   

19.
Ornithine and putrescine carbamoyltransferases from Streptococcus faecalis ATCC11700 have been purified and their structural properties compared. The molecular weight of native ornithine carbamoyltransferase, measured by molecular sieving, is 250 000. It is composed of six apparently identical subunits with a molecular weight of 39 000, as determined by cross-linking with the bifunctional reagent glutaraldehyde followed by polyacrylamide gel electrophoresis in the presence of sodium dodecylsulfate. Using the same method, putrescine carbamoyltransferase is a trimer of 140 000 consisting of three identical subunits with a molecular weight of 40 000. Ornithine carbamoyltransferase displays a narrow specificity towards its substrate, ornithine. In contrast, putrescine carbamoyltransferase carbamoylates ornithine and several diamines (diaminopropane, diaminohexane, spermine, spermidine, cadaverine) in addition to its preferred substrate, putrescine, but with a considerable lower efficiency than for putrescine. The kinetic mechanism of putrescine carbamoyltransferase has been investigated. Initial velocity studies yield intersecting plots using either putrescine or ornithine as substrate, indicating a sequential mechanism. The patterns of protection of the enzyme by the reactants during heat inactivation as well as the results of product and dead-end inhibition studies provide evidence for a random addition of the substrates. The putrescine inhibition that is induced by phosphate does, however, suggest that a preferred pathway exists in which carbamoylphosphate is the leading substrate. The different kinetic constants have been established. The properties of putrescine carbamoyltransferase are compared to the known properties of other carbamoyltransferases. The evolutionary implications of this comparison are discussed.  相似文献   

20.
Formiminotransferase (EC 2.1.2.5) and cyclodeaminase (EC 4.3.1.4) constitute an enzyme complex that catalyses two sequential metabolic reactions. The activity of native formiminotransferase can be measured without interference from cyclodeaminase, and its kinetic mechanism has been investigated. Although initial velocity plots yield families of parallel lines suggesting that the transferase utilizes a ping-pong mechanism, product inhibition and alternate substrate studies with tetrahydropteroic acid clearly show the mechanism to be sequential. Of the possible mechanisms compatible with these observations, several could be ruled out through the effects of various dead-end inhibitors. The data indicate that the transferase mechanism is rapid equilibrium random with formation of a dead-end complex enzyme-tetrahydrofolate-glutamate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号