首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
1. Regulation of the cytoplasmic pH(pHi) was studied in quiescent and activated human neutrophils. Acid-loaded unstimulated cells regulate pHi by activating an electroneutral Na+/H+ exchange. 2. When activated, neutrophils undergo a biphasic change in pHi: an acidification followed by an alkalinization. The latter is due to stimulation of the Na+/H+ antiport. 3. The acidification, which is magnified in Na+-free or amiloride-containing media, is associated with net H+ efflux from the cells. 4. A good correlation exists between cytoplasmic acidification and superoxide generation: inhibition of the latter by adenosine, deoxyglucose or pertussis toxin also inhibits the pHi changes. 5. Moreover, acidification is absent in chronic granulomatous disease patients, which cannot generate superoxide. 6. Regulation of pHi is essential for neutrophil function. The oxygen dependent bactericidal activity is inhibited upon cytoplasmic acidification. This can result from impairment of Na+/H+ exchange, or from influx of exogenous acid equivalents. 7. The latter mechanism may account for the inability of neutrophils to resolve bacterial infections in abscesses, which are generally made acidic by accumulation of organic acids that are by-products of bacterial anaerobic metabolism.  相似文献   

2.
This study investigated fluctuations of cytosolic pH (pHi) of cultured rat vascular smooth muscle cells (VSMCs) in reaction to metabolic alterations induced by angiotensin II (AII). Serially passed VSMCs from Wistar rat aortae were grown on coverslips and loaded with the pH-sensitive fluorescent indicator 2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein. A biphasic reaction was seen after exposure of these cells to AII (1 nM to 1 microM); an initial and relatively brief phase of acidification was followed by sustained alkalinization. The rate of acidification and magnitude of alkalinization were dose-dependent. This biphasic effect of AII was also demonstrated in Ca2+-free medium and was mimicked by subjecting VSMCs to the calcium ionophore A23187 (5 microM) in Ca2+-containing medium but not in Ca2+-free medium. Verapamil (10 microM) almost entirely eliminated the AII-induced acidification, whereas amiloride analogues 5-(N-methyl-N-isobutyl)amiloride and 5-(N-ethyl-N-isopropyl)amiloride (100 microM) as well as Na+-deficient medium abolished the subsequent (alkalinization) phase produced by the hormone. Activation of the Na+/H+ antiport by subjecting VSMCs to phorbol 12-myristate 13-acetate (100 nM) prevented a subsequent effect of AII on the pHi profile. This resistance to a further action of the hormone was not mediated via cytoplasmic alkalinization. AII produced a dramatic redistribution in the cellular compartments of 45Ca2+ associated with accelerated 45Ca2+ washout. These findings suggest that the AII-induced acidification phase may relate to activation of the Ca2+ pump (Ca2+/H+ exchange) and that this process can take place in the presence and absence of extracellular Ca2+. The alkalinization phase is the consequence of stimulation of the Na+/H+ antiport, which in cultured VSMCs can be activated by a rise in cytosolic free Ca2+ as well as other mechanisms.  相似文献   

3.
The effect of elevating cytoplasmic Ca2+ [( Ca2+]i) on the intracellular pH (pHi) of thymic lymphocytes was investigated. In Na+-containing media, treatment of the cells with ionomycin, a divalent cation ionophore, induced a moderate cytoplasmic alkalinization. In the presence of amiloride or in Na+-free media, an acidification was observed. This acidification is at least partly due to H+ (equivalent) uptake in response to membrane hyperpolarization since: it was enhanced by pretreatment with conductive protonophores, it could be mimicked by valinomycin, and it was decreased by depolarization with K+ or gramicidin. In addition, activation of metabolic H+ production also contributes to the acidification. The alkalinization is due to Na+/H+ exchange inasmuch as it is Na+ dependent, amiloride sensitive, and accompanied by H+ efflux and net Na+ gain. A shift in the pHi dependence underlies the activation of the antiport. The effect of [Ca2+]i on Na+/H+ exchange was not associated with redistribution of protein kinase C and was also observed in cells previously depleted of this enzyme. Treatment with ionomycin induced significant cell shrinking. Prevention of shrinking largely eliminated the activation of the antiport. Moreover, a comparable shrinking produced by hypertonic media also activated the antiport. It is concluded that stimulation of Na+/H+ exchange by elevation of [Ca2+]i is due, at least in part, to cell shrinking and does not require stimulation of protein kinase C.  相似文献   

4.
The effects of a phorol ester and a mitogenic lectin on the intracellular pH (pHi) of human T lymphocytes was investigated. In contrast to the cytoplasmic alkalinization induced by 12-0-tetradecanoylphorbol-13-acetate, an acidification was recorded in cells treated with phytohemagglutinin. This decrease in pHi was magnified in Na+-free medium or in the presence of amiloride analogues, suggesting that activation of Na+/H+ exchange partially counteracts the phytohemagglutinin-induced acidification. The decrease in pHi was dependent on a sustained increase in cytosolic free Ca2+ and could be mimicked by addition of the divalent cation ionophore, ionomycin. The elevation of cytosolic free Ca2+ leads to metabolic H+ (equivalent) generation with consequent cytoplasmic acidification, which in human T cells predominates over the concurrent activation of the Na+/H+ antiport. These findings argue against the notion that activation of Na+/H+ exchange is a signal for the initiation of proliferation.  相似文献   

5.
The effects of extracellular ATP and/or the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) on the intracellular pH of Ehrlich ascites tumor cells were measured using both distribution of [14C]5,5-dimethyloxazolidine-2,4-dione, and the fluorescent indicator 5(6)-carboxyfluorescein. Micromolar concentrations of extracellular ATP induce a biphasic change in the intracellular pH characterized by a rapid acidification of 0.04 pH units followed by an alkalinization of 0.11 pH units. Concurrently with the alkalinization, an increase in the total cellular [Na+] from 37.5 to 45.0 mM is observed. The pH change is half-maximally activated by 0.5-2.5 microM extracellular ATP. The intracellular alkalinization, but not the initial acidification, phase requires extracellular Na+, with half-maximal alkalinization in the presence of 24-32 mM Na+, and is inhibited by amiloride. Exposure of Ehrlich ascites tumor cells to TPA alone produces a slight alkalinization of approximately 0.04 pH units. Conversely, preincubation of the cells with TPA partially inhibits the ATP-induced changes in intracellular pH. Under identical conditions TPA also inhibits the ATP-induced increase in the cytosolic [Ca2+]. The half-maximal dose for both effects is produced by 3-10 nM TPA. These data indicate that extracellular ATP triggers the activation of Na+/H+ exchange. Furthermore, activation of protein kinase C mediates at least part of the Na+/H+ exchange, although a second mechanism may also exist.  相似文献   

6.
Inhibition of activation has been reported when neutrophils are suspended in Na+-free media. We considered the possibility that impairment of cellular pH (pHi) regulation due to elimination of Na+/H+ exchange underlies this effect. In the absence of Na+, the phorbol ester-induced respiratory burst was partially inhibited and a concomitant cytoplasmic acidification recorded. Using nigericin/K+ to clamp pHi we demonstrated that the acidification accounts for the inhibition of O2 uptake. Moreover, in Na+-free media, relieving the acidification by means of ionophores restored maximal O2 consumption. It was concluded that Na+ is not directly involved in signal transduction during stimulation. Instead, omission of Na+ affects neutrophils activation indirectly, by impairing pHi regulation.  相似文献   

7.
Activated neutrophils undergo a large burst of metabolic acid generation, yet maintain their cytosolic pH (pHi) within physiological limits. To analyze the underlying regulatory mechanisms, pHi was measured fluorimetrically in suspensions of human neutrophils. In acid loaded but otherwise unstimulated cells, pHi recovered rapidly via Na+/H+ exchange. Upon Na+ removal, recovery from an imposed acid load was negligible. Phorbol ester activation of acidified cells induced a rapid recovery of pHi partly due to a Zn(2+)-sensitive H(+)-conductive pathway. A third component of the regulatory response was apparent in Na(+)-free media containing Zn2+. Acid extrusion through this alternate pathway was voltage sensitive and capable of translocating H+ equivalents against their electrochemical gradient. This active H+ transport was inhibited by N-ethylmaleimide, by N,N'-dicyclohexylcarbodiimide and by nanomolar doses of bafilomycins A1 or B1, suggesting the involvement of vacuolar (V)-type H+ pumps. Cytosolic alkalinization was accompanied by extracellular acidification, indicative of translocation of H+ equivalents across the surface membrane and consistent with the sensitivity of the alkalinization to changes in plasma membrane potential. The activity of the V-type H+ pumps was virtually undetectable in resting cells, becoming apparent only after treatment with phorbol esters or other, chemically unrelated agonists of protein kinase C. These H+ pumps are likely to play a role in pHi homeostasis during the metabolic burst that accompanies neutrophil activation during infection and inflammation.  相似文献   

8.
The mechanisms underlying cytoplasmic pH (pHi) regulation in elicited rat peritoneal macrophages were investigated by electronic sizing and fluorescence determinations. Acid-loaded cells rapidly regained normal pHi by means of an amiloride-sensitive Na+/H+ exchange. When stimulated by 12-O-tetradecanoyl phorbol 13-acetate, macrophages displayed a biphasic pHi change: a marginal acidification followed by an alkalinization. The latter results from activation of Na+/H+ exchange, since it is Na+-dependent and prevented by amiloride. When the antiport is inhibited, the full magnitude of the initial acidification can be appreciated. This acidification is independent of the nature of the ionic composition of the medium and probably reflects accumulation of protons generated during the metabolic burst. Under physiological conditions, these protons are rapidly extruded by the Na+/H+ antiport.  相似文献   

9.
Activation of neutrophils by most soluble stimuli is associated with a marked increase in intracellular free Ca2+ ([Ca2+]i). However, under physiological conditions (Na+-rich media), the potent activator 12-O-tetradecanoylphorbol-13-acetate (TPA) causes no change or a decrease in [Ca2+]i. We report here that the [Ca2+]i response to phorbol esters varies depending on the ionic composition of the medium. A marked increase in [Ca2+]i was detected in Na+-free solutions. Maximal effects were observed when N-methyl-D-glucammonium+ or choline+ were substituted for Na+, whereas an intermediate response was recorded in K+ medium. The increase in [Ca2+]i was substantially (approximately 65%) inhibited by removal of external Ca2+. A [Ca2+]i increase was also elicited by other beta-phorbol diesters and by diacylglycerol, but not by unesterified phorbol or by alpha-phorbol diesters, indicating involvement of protein kinase C. The increase in [Ca2+]i observed in Na+-free media is not due to inhibition of Na+/Ca2+ exchange, since no change in [Ca2+]i in response to TPA was observed in: 1) cells suspended in Li+, which is not countertransported for Ca2+; 2) cells preloaded with Na+ to eliminate the driving force for Na+/Ca2+ exchange; and 3) cells treated with 3',4'-dichlorobenzamyl, an inhibitor of Na+/Ca2+ exchange. Similarly, the [Ca2+]i increase in Na+-free media is not linked to the absence of Na+/H+ exchange and the associated cytoplasmic acidification since: 1) it was not observed in Na+ media in the presence of inhibitors of the Na+/H+ antiport and 2) it was not mimicked by inducing acidification with nigericin. Pretreatment with pertussis toxin largely inhibited the phorbol ester-induced change in [Ca2+]i, while activation of protein kinase C under these conditions was unaffected. It is concluded that in the absence of extracellular Na+ (or Li+), activation of protein kinase C leads to a net Ca2+ influx into the cytoplasm through a process mediated by a GTP-binding or G protein. Opening of a Na+-sensitive Ca2+ channel could partially explain these observations. Alternatively, the nature of the monovalent cation could conceivably affect the conformation of a G protein or of an associated receptor, inducing the appearance of a site susceptible to an activating phosphorylation by protein kinase C.  相似文献   

10.
Regulation of cytoplasmic pH (pHi) of the human monoblastic U-937 and erythroleukemic K-562 cell lines was investigated. The apparent resting pHi, as assessed by the fluorescent pH probe quenel, were 6.61 and 6.75 for the U-937 and K-562 cells, respectively. When extracellular Na+ was substituted by equimolar choline+, pHi decreased by about 0.2 units. The protein kinase C activating beta-form of the phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate (TPA; 10(-10) and 10(-7) M) induced a dose-dependent alkalinization in both cell types of 0.03-0.12 units, whereas the alpha-form was inactive. The response was detectable after about 2 min and reached steady-state 10-15 min later. In the K-562 cells the alkalinization was mediated by Na+/H+ exchange as it was accompanied by stimulation of H+ extrusion and abolished by Na+ removal. The TPA response in the U-937 cells, however, was unaffected by Na+ removal, not accompanied by H+-efflux, and thus unrelated to Na+/H+ exchange. Since electron microscopy indicated development of multivesicular bodies with an acidic interior, the alkalinization can probably be accounted for by an intracellular mechanism. Ionomycin (10(-5) M) induced a rapid increase in the cytoplasmic Ca2+ concentration of both cell types and this response was accompanied by acidification followed by a Na+-dependent recovery. In the U-937, but not in the K-562, cells this recovery was followed by a net alkalinization. It is concluded that both cell types possess a Na+/H+ exchange of importance for pHi but that this mechanism is regulated differently in the U-937 and K-562 cells.  相似文献   

11.
P Dieter 《FEBS letters》1992,298(1):17-20
Activation of the superoxide-generating NADPH oxidase by phorbol ester or zymosan induced a cytoplasmic acidification when liver macrophages were incubated in sodium-free media or in the presence of amiloride. Staurosporine or desensitization of protein kinase C inhibited phorbol ester- and zymosan-induced pH changes and generation of superoxide. The intracellular pH remained unchanged in cells incubated in physiological sodium media. Ionomycin and arachidonic acid did not induce a change in intracellular pH or a generation of superoxide. Fluoride, which has been shown to induce a translocation of protein kinase C in these cells, did not elicit superoxide generation but induced a decrease in intracellular pH. These experiments support (1) a role of the Na+/H+ antiporter in macrophages as a metabolic regulator of intracellular pH upon stimulation of the superoxide-generating NADPH oxidase, and (2) suggest an involvement of protein kinase C in this process.  相似文献   

12.
The human cell line U937 differentiates to monocyte macrophage-like cells in response to tumour-promoting phorbol esters. This effect is attributed to activation of protein kinase C. We show here that U937 cell differentiation induced by 12-O-tetradecanoylphorbol 13-acetate (TPA) is associated with cytoplasmic alkalinization. Ethyl-isopropyl-amiloride (EIPA), a potent inhibitor of Na+/H+ exchange, blocked both cytoplasmic alkalinization and cell differentiation. Cell acidification by addition of 2-4 mM sodium propionate also blocked TPA-induced U937 cell differentiation. These results suggest that a sustained cell alkalinization mediated by activation of Na+/H+ exchange is essential for TPA-induced differentiation in U937 cells. The increase of cytoplasmic free calcium concentration ([Ca2+]i) by addition of the calcium ionophore ionomycin enhanced TPA-induced alkalinization by increasing the apparent affinity of the Na+/H+ antiporter for intracellular H+. Treatment with ionomycin also potentiated differentiation of U937 cells induced by TPA. This synergism suggests that [Ca2+]i either potentiates the activation of protein kinase C or triggers additional transducing mechanisms. The key events of this interaction occur during the first 30 min of treatment, even though cell differentiation manifests much later.  相似文献   

13.
The effect of the tumor-promoting phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) on cytoplasmic pH (pHi) and H+ extrusion was studied in the human monoblastic cell line U-937. About 2 min after addition of TPA, pHi started to increase and reached a steady state 10-15 min later. The resulting alkalinization corresponded to 0.03 and 0.09 pH units at 10(-10) and 10(-7) M TPA, respectively. The TPA-induced increase in pHi was independent of the presence of extracellular Na+. Moreover, TPA did not affect the H+ extrusion from the U-937 cells. Together these observations indicate the presence of a novel mechanism for TPA-induced cytoplasmic alkalinization. This mechanism is independent of Na+/H+ exchange across the plasma membrane, but may involve organelle sequestration of H+.  相似文献   

14.
The tumor promoter 12-0-tetradecanoyl phorbol-13-acetate (TPA) stimulates hexose uptake into rat thymocytes. This study explores two possible messengers of this stimulation: changes in cytosolic [Ca2+], and activation of the Na+/H+ antiport. The cytosolic level of Ca2+, determined by the fluorescence of quin-2, was elevated by TPA, and this rise required extracellular Ca2+. In contrast, stimulation of hexose uptake was still observed in Ca2+ -free media even when cytoplasmic [Ca2+] was buffered with quin-2. TPA also raised the cytoplasmic pH, presumably through activation of the Na+/H+ exchange. However, replacement of extracellular Na+ by N-methylglucamine+ or choline+ which prevents the cytoplasmic alkanization did not prevent stimulation of hexose uptake by TPA. Moreover, amiloride, at concentrations that inhibit Na+/H+ exchange in these cells, did not interfere with stimulation of hexose uptake by TPA. In conclusion, stimulation of hexose uptake by phorbol ester in rat thymocytes does not appear to be mediated by changes in cytosolic free Ca2+ or in the activity of the Na+/H+ antiport.  相似文献   

15.
Intracellular pH regulation during spreading of human neutrophils   总被引:4,自引:0,他引:4       下载免费PDF全文
《The Journal of cell biology》1996,133(6):1391-1402
The regulation of the intracelluar pH (pHi) during spreading of human neutrophils was studied by a combination of fluorescence imaging and video microscopy. Spreading on adhesive substrates caused a rapid and sustained cytosolic alkalinization. This pHi increase was prevented by the omission of external Na+, suggesting that it results from the activation of Na+/H+ exchange. Spreading-induced alkalinization was also precluded by the compound HOE 694 at concentrations that selectively block the NHE-1 isoform of the Na+H+ antiporter. Inhibition of Na+/H+ exchange by either procedure unmasked a sizable cytosolic acidification upon spreading, indicative of intracellular acid production. The excess acid generation was caused, at least in part, by the activation of the respiratory burst, since the acidification closely correlated with superoxide production, measured in single spreading neutrophils with dihydrorhodamine-123, and little acid production was observed in the presence of diphenylene iodonium, a blocker of the NADPH oxidase. Moreover, neutrophils from chronic granulomatous disease patients, which do not produce superoxide, failed to acidify. Comparable pHi changes were observed when beta 2 integrins were selectively activated during spreading on surfaces coated with anti-CD18 antibodies. When integrin engagement was precluded by pretreatment with soluble anti-CD18 antibody, the pHi changes associated with spreading on fibrinogen were markedly reduced. Inhibition of microfilament assembly with cytochalasin D precluded spreading and concomitantly abolished superoxide production and the associated pHi changes, indicating that cytoskeletal reorganization and/or an increase in the number of adherence receptors engaged are required for the responses. Neutrophils spread normally when the oxidase was blocked or when pHi was clamped near physiological values with nigericin. Spreading, however, was strongly inhibited when pHi was clamped at acidic values. Our results indicate that neutrophils release superoxide upon spreading, generating a burst of intracellular acid production. The concomitant activation of the Na+/H+ antiport not only prevents the deleterious effects of the acid released by the NADPH oxidase, but induces a net cytosolic alkalinization. Since several functions of neutrophils are inhibited at an acidic pHi, the coordinated activation of pHi regulatory mechanisms along with the oxidase is essential for sustained microbicidal activity.  相似文献   

16.
Angiotensin II, a potent vasoconstrictor, is known to stimulate Ca2+ mobilization and Na+ influx in vascular smooth muscle cells (VSMC). The fact that the Na+/H+ exchange inhibitor, amiloride, blocks angiotensin II-stimulated Na+ influx and is itself a vasodilator suggests that Na+/H+ exchange may play a role in the angiotensin II-mediated effects on VSMC. We have used a pH-sensitive fluorescent dye to study Na+/H+ exchange in cultured rat aortic VSMC. Basal intracellular pH was 7.08 in physiological saline buffer. Angiotensin II stimulation caused an initial transient acidification, followed by a Na+-dependent alkalinization. Angiotensin II increased the rate of alkalinization with apparent threshold, half-maximal, and maximal effect of 0.01, 3, and 100 nM, respectively. Angiotensin II stimulation appeared to be mediated by a shift in the Km of the Na+/H+ exchanger for extracellular Na+. Since angiotensin II activates phospholipase C in VSMC, we tested the possibility that angiotensin II increased Na+/H+ exchange by activation of protein kinase C via stimulation of diacylglycerol formation. The phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), stimulated Na+/H+ exchange in VSMC cultured for 24 h in serum-free medium, and the subsequent angiotensin II response was inhibited. However, VSMC grown in serum and treated for 24 h with TPA to decrease protein kinase C activity showed no inhibition of angiotensin II-stimulated Na+/H+ exchange. TPA caused no intracellular alkalinization of VSMC grown in serum, while the angiotensin II response was actually enhanced compared to VSMC deprived of serum for 24 h. We conclude that angiotensin II stimulates an amiloride-sensitive Na+/H+ exchange system in cultured VSMC which is mediated by protein kinase C-dependent and -independent mechanisms. Angiotensin II-mediated Na+ influx and intracellular alkalinization may play a role in excitation-response coupling in vascular smooth muscle.  相似文献   

17.
Sodium and proton transport in Mycoplasma gallisepticum.   总被引:8,自引:6,他引:2       下载免费PDF全文
When washed cells of Mycoplasma gallisepticum were incubated at 37 degrees C in 250 mM 22NaCl, the intracellular Na+ increased, and the K+ decreased. The addition of glucose to these Na+-loaded cells caused Na+ efflux and K+ uptake (both ions moving against concentration gradients). This effect of glucose was blocked by the ATPase inhibitor dicyclohexylcarbodiimide, which prevents the generation of a proton motive force in these cells. In additional experiments, Na+ extrusion was studied by diluting the 22Na+-loaded cells into Na+-free media and following the loss of 22Na+ from the cells. Glucose stimulated 22Na+ extrusion in such cells by a dicyclohexylcarbodiimide-sensitive mechanism. Proton movement was studied by measuring the pH gradient across the cell membrane with the 9-aminoacridine fluorescence technique. Glucose addition to cells preincubated with cations other than Na+ resulted in cell alkalinization (which was prevented by dicyclohexylcarbodiimide). This observation is consistent with the operation of a proton-extruding ATPase. When glucose was added to Na+-loaded cells and diluted into Na+-free media, intracellular acidification was observed, followed several minutes later by a dicyclohexylcarbodiimide-sensitive alkalinization process. The initial acidification was probably due to the operation of an Na+-H+ antiport, since Na+ exit was occurring simultaneously with H+ entry. When Na+-loaded cells were diluted into Na+-containing media, the subsequent addition of glucose resulted in a weak acidification, presumably due to H+ entry in exchange for Na+ (driven by the ATPase) plus a continuous passive influx of Na+. All of the data presented are consistent with the combined operation of an ATP-driven proton pump and an Na+ -H+ exchange reaction.  相似文献   

18.
Adjustment of amino-acid-induced cytoplasmic pH decrease by the Na+/H+ exchange system in human lymphocytes has been studied using a fluorometric technique to monitor the intracellular pH change. When the interior of lymphocytes is acidified by addition of nigericin to medium, cytoplasmic pH is immediately corrected toward its resting value. This recovery of the cytoplasmic pH depends on extracellular Na+ and is inhibited by amiloride. A temporary (less than 2 min) decrease in the cytoplasmic pH, followed by a slow recovery phase, was observed in incubation with 1.0 mM leucine in Na+-containing medium. This leucine-dependent decrease of cytoplasmic pH persisted longer when amiloride was added to the medium. Cytoplasmic pH recovery from the leucine-induced acidification depends on external Na+ concentration. Amiloride-sensitive Na+/H+ exchanger was stimulated by 12-O-tetradecanoylphorbol 13-acetate (TPA) in the lymphocytes and preincubation of the cells with TPA partially prevented the leucine-induced cytoplasmic acidification. We conclude that human peripheral lymphocytes are provided with an amino acid-H+ cotransport system, which is cooperatively coupled to the amiloride-sensitive Na+/H+ exchanger to correct the cytoplasmic pH anomaly.  相似文献   

19.
The Na+/H+ antiport is stimulated by 12-O-tetradecanoylphorbol-13, acetate (TPA) and other phorbol esters in rat thymic lymphocytes. Mediation by protein kinase C is suggested by three findings: (a) 1-oleoyl-2-acetylglycerol also activated the antiport; (b) trifluoperazine, an inhibitor of protein kinase C, blocked the stimulation of Na+/H+ exchange; and (c) activation of countertransport was accompanied by increased phosphorylation of specific membrane proteins. The Na+/H+ antiport is also activated by osmotic cell shrinking. The time course, extent, and reversibility of the osmotically induced and phorbol ester-induced responses are similar. Moreover, the responses are not additive and they are equally susceptible to inhibition by trifluoperazine, N-ethylmaleimide, and ATP depletion. The extensive analogies between the TPA and osmotically induced effects suggested a common underlying mechanism, possibly activation of a protein kinase. It is conceivable that osmotic shrinkage initiates the following sequence of events: stimulation of protein kinase(s) followed by activation of the Na+/H+ antiport, resulting in cytoplasmic alkalinization. The Na+ taken up through the antiport, together with the HCO3- and Cl- accumulated in the cells as a result of the cytoplasmic alkalinization, would be followed by osmotically obliged water. This series of events could underlie the phenomenon of regulatory volume increase.  相似文献   

20.
Preincubation of rabbit neutrophils for 5 min with the protein kinase C inhibitor H7 causes inhibition of the rise in intracellular pH but not the increase in Na+ influx or stimulated oxidative burst produced by the chemotactic factor formyl-methionyl-leucyl-phenylalanine. On the other hand, the stimulated superoxide production, but not the increase in Na+ influx produced by phorbol 12-myristate 13-acetate, is inhibited by H7. The effect is more pronounced on the rate than the extent of the stimulated superoxide release. Furthermore, cell acidification produced by the phorbol ester but not by the chemotactic factor is decreased in the presence of H7. These results suggest that most of the stimulated Na+ influx is not coupled to H+ efflux, in the case of the chemoattractant, the rise in intracellular pH is not necessary for stimulated superoxide production, the increase in Na+ influx, in the case of the phorbol ester, is not sufficient for the stimulation of the oxidative burst, and the sources of the H+ responsible for the stimulated pH drop are the various metabolic activities of the cell, including NADPH oxidation and activation of the hexose monophosphate shunt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号