共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The majority of Kaposi's sarcoma-associated herpesvirus (KSHV)-infected cells identified in vivo contain latent KSHV, with lytic replication in only a few percent of cells, as is the case for the cells of Kaposi's sarcoma (KS) lesions. Factors that influence KSHV latent or lytic replication are not well defined. Because persons with KS are often immunosuppressed and susceptible to many infectious agents, including human cytomegalovirus (HCMV), we have investigated the potential for HCMV to influence the replication of KSHV. Important to this work was the construction of a recombinant KSHV, rKSHV.152, expressing the green fluorescent protein (GFP) and neo (conferring resistance to G418). The expression of GFP was a marker of KSHV infection in cells of both epithelial and endothelial origin. The rKSHV.152 virus was used to establish cells, including human fibroblasts (HF), containing only latent KSHV, as demonstrated by latency-associated nuclear antigen expression and Gardella gel analysis. HCMV infection of KSHV latently infected HF activated KSHV lytic replication with the production of infectious KSHV. Dual-color immunofluorescence detected both the KSHV lytic open reading frame 59 protein and the HCMV glycoprotein B in coinfected cells, and UV-inactivated HCMV did not activate the production of infectious KSHV-GFP. In addition, HCMV coinfection increased the production of KSHV from endothelial cells and activated lytic cycle gene expression in keratinocytes. These data demonstrate that HCMV can activate KSHV lytic replication and suggest that HCMV could influence KSHV pathogenesis. 相似文献
3.
4.
5.
Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 (KSHV/HHV-8) RTA is an important protein involved in the induction of KSHV lytic replication from latency through activation of the lytic cascade. A number of cellular and viral proteins, including K-RBP, have been found to repress RTA-mediated transactivation and KSHV lytic replication. However, it is unclear as to how RTA overcomes the suppression during lytic reactivation. In this study, we found that RTA can induce K-RBP degradation through the ubiquitin-proteasome pathway and that two regions in RTA are responsible. Moreover, we found that RTA can promote the degradation of several other RTA repressors. RTA mutants that are defective in inducing K-RBP degradation cannot activate RTA responsive promoter as efficiently as wild-type RTA. Interference of the ubiquitin-proteasome pathway affected RTA-mediated transactivation and KSHV reactivation from latency. Our results suggest that KSHV RTA can stimulate the turnover of repressors to modulate viral reactivation. Since herpes simplex virus type 1 transactivator ICP0 and human cytomegalovirus transactivator pp71 also stimulate the degradation of cellular silencers, it is possible that the promotion of silencer degradation by viral transactivators may be a common mechanism for regulating the lytic replication of herpesviruses. 相似文献
6.
7.
8.
9.
Transcriptional downregulation of ORF50/Rta by methotrexate inhibits the switch of Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 from latency to lytic replication
下载免费PDF全文

Curreli F Cerimele F Muralidhar S Rosenthal LJ Cesarman E Friedman-Kien AE Flore O 《Journal of virology》2002,76(10):5208-5219
10.
A Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 ORF50 deletion mutant is defective for reactivation of latent virus and DNA replication 总被引:1,自引:0,他引:1
下载免费PDF全文

Kaposi's sarcoma-associated herpesvirus (also called human herpesvirus type 8 [HHV8]) latently infects a number of cell types. Reactivation of latent virus can occur by treatment with the phorbol ester tetradecanoyl phorbol acetate (TPA) or with the transfection of plasmids expressing the lytic switch activator protein K-Rta, the gene product of ORF50. K-Rta expression is sufficient for the activation of the entire lytic cycle and the transactivation of viral genes necessary for DNA replication. In addition, recent evidence has suggested that K-Rta may participate directly in the initiation of lytic DNA synthesis. We have now generated a recombinant HHV8 bacterial artificial chromosome (BAC) with a large deletion within the ORF50 locus. This BAC, BAC36Delta50, failed to produce infectious virus upon treatment with TPA and was defective for DNA synthesis. Expression of K-Rta in trans in BAC36Delta50-containing cells was able to abolish both defects. Real-time PCR revealed that K-bZIP, ORF40/41, and K8.1 were not expressed when BAC36Delta50-containing cells were induced with TPA. However, the mRNA levels of ORF57 were over fivefold higher in TPA-treated BAC36Delta50-containing cells than those observed in similarly treated wild-type BAC-containing cells. In addition, immunohistochemical analysis showed that while the latency-associated nuclear antigen (LANA) was expressed in the mutant BAC-containing cells, ORF59 and K8.1 expression was not detected in TPA-induced BAC36Delta50-containing cells. These results showed that K-Rta is essential for lytic viral reactivation and transactivation of viral genes contributing to DNA replication. 相似文献
11.
12.
13.
14.
Immunoreceptor tyrosine-based activation motif-dependent signaling by Kaposi's sarcoma-associated herpesvirus K1 protein: effects on lytic viral replication
下载免费PDF全文

The Kaposi's sarcoma-associated herpesvirus (KSHV) K1 gene encodes a polypeptide bearing an immunoreceptor tyrosine-based activation motif (ITAM) that is constitutively active for ITAM-based signal transduction. Although ectopic overexpression of K1 in cultured fibroblasts can lead to growth transformation, in vivo this gene is primarily expressed in lymphoid cells undergoing lytic infection. Here we have examined function of K1 in the setting of lytic replication, through the study of K1 mutants lacking functional ITAMs. Expression of such mutants in BJAB cells cotransfected with wild-type K1 results in dramatic inhibition of K1 signal transduction, as judged by impaired activation of Syk kinase and phospholipase C-gamma2 as well as by diminished expression of a luciferase reporter gene dependent upon K1-induced calcium and Ras signaling. Thus, the mutants behave as dominantly acting inhibitors of K1 function. To assess the role of K1 in lytic replication, we introduced these K1 mutants into BCBL-1 cells, a B-cell lymphoma line latently infected with KSHV, and induced lytic replication by ectopic expression of the KSHV ORF50 transactivator. Expression of lytic cycle genes was diminished up to 80% in the presence of a K1 dominant negative mutant. These inhibitory effects could be overridden by tetradecanoyl phorbol acetate treatment, indicating that inhibition was not due to irreversible cell injury and suggesting that other signaling events could bypass the block. We conclude that ITAM-dependent signaling by K1 is not absolutely required for lytic reactivation but functions to modestly augment lytic replication in B cells, the natural reservoir of KSHV. 相似文献
15.
16.
17.
Productive lytic replication of a recombinant Kaposi's sarcoma-associated herpesvirus in efficient primary infection of primary human endothelial cells
下载免费PDF全文

Kaposi's sarcoma-associated herpesvirus (KSHV) is linked to the development of Kaposi's sarcoma (KS), a vascular spindle cell tumor primarily consisting of proliferating endothelial cells. Although KSHV has been shown to infect primary human endothelial cells and convert them into spindle shapes, KSHV infection is largely latent, and efforts to establish a highly efficient and sustainable infection system have been unsuccessful. A recombinant KSHV, BAC36, that has high primary-infection efficiency in 293 cells has been obtained (F. C. Zhou, Y. J. Zhang, J. H. Deng, X. P. Wang, H. Y. Pan, E. Hettler, and S. J. Gao, J. Virol. 76:6185-6196, 2002). BAC36 contains a green fluorescent protein cassette which can be used to conveniently monitor viral infection. Here, we describe the establishment of a KSHV lytic-replication-permissive infection cell model using BAC36 virions to infect primary human umbilical vein endothelial cell (HUVEC) cultures. BAC36 infection of HUVEC cultures has as high as 90% primary-infection efficiency and consists of two phases: a permissive phase, in which the cultures undergo active viral lytic replication, producing a large number of virions and concomitantly resulting in large-scale cell death, and a latent phase, in which the surviving cells from the permissive phase switch into latent infection, with a small number of cells undergoing spontaneous viral lytic replication, and proliferate into bundles of spindle cells with KS slit-like spaces. An assay for determining the KSHV titer in a virus preparation has also been developed. The cell model should be useful for examining KSHV infection and replication, as well as for understanding the development of KS. 相似文献
18.
Rickabaugh TM Brown HJ Wu TT Song MJ Hwang S Deng H Mitsouras K Sun R 《Journal of virology》2005,79(5):3217-3222
Murine gammaherpesvirus 68 (MHV-68), Kaposi's sarcoma-associated herpesvirus (HHV-8), and Epstein-Barr virus (EBV) are all members of the gammaherpesvirus family, characterized by their ability to establish latency in lymphocytes. The RTA protein, conserved in all gammaherpesviruses, is known to play a critical role in reactivation from latency. Here we report that HHV-8 RTA, not EBV RTA, was able to induce MHV-68 lytic viral proteins and DNA replication and processing and produce viable MHV-68 virions from latently infected cells at levels similar to those for MHV-68 RTA. HHV-8 RTA was also able to activate two MHV-68 lytic promoters, whereas EBV RTA was not. In order to define the domains of RTA responsible for their functional differences in viral promoter activation and initiation of the MHV-68 lytic cycle, chimeric RTA proteins were constructed by exchanging the N-terminal and C-terminal domains of the RTA proteins. Our data suggest that the species specificity of MHV-68 RTA resides in the N-terminal DNA binding domain. 相似文献
19.