首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic engineering offers the opportunity to generate plants with useful new traits conferred by genes originating from a variety of organisms. The objectives of this study were to establish methods for investigating persistence of recombinant plant marker DNA after introduction into soil and to collect data from controlled laboratory test systems. As a model system, we studied the stability of DNA encoding recombinant neomycin phosphotransferase II (rNPT-II), a neomycin/kanamycin resistance marker, used in plant genetic engineering. The recombinant nature of the target (i.e. fusion of nopaline synthase promoter and NPT-II coding region) allowed us to design a rNPT-II-specific PCR primer pair. DNA preparation and quantitative PCR protocols were established. Effects of temperature and moisture, on DNA persistence in soil were determined in two laboratory test systems. In the first system, purified plasmid DNA was added to soil and incubated under controlled conditions. Up to 0.08% of the rNPT-II target sequences were detectable after 40 days. In the second system, fresh leaf tissue of transgenic tobacco was ground, added to soil, and incubated under controlled conditions. After 120 days, up to 0.14% of leaf tissue-derived genomic rNPT-II sequences were detectable. Under most experimental conditions, leaf tissue-derived and plasmid DNA were initially degraded at a high rate. A small proportion of the added DNA resisted degradation and was detectable for several months. We hypothesize that this DNA may have been adsorbed to soil particles and was protected from complete degradation.  相似文献   

2.
Periodontal disease caused by the gram-negative oral anaerobic bacterium Porphyromonas gingivalis is thought to be initiated by the binding of P. gingivalis fimbrial protein to saliva-coated oral surfaces. To assess whether biologically active fimbrial antigen can be synthesized in edible plants, a cDNA fragment encoding the C-terminal binding portion of P. gingivalis fimbrial protein, fimA (amino acids 266–337), was cloned behind the mannopine synthase promoter in plant expression vector pPCV701. The plasmid was transferred into potato (Solanum tuberosum) leaf cells by Agrobacterium tumefaciens in vivo transformation methods. The fimA cDNA fragment was detected in transformed potato leaf genomic DNA by PCR amplification methods. Further, a novel immunoreactive protein band of ~6.5 kDa was detected in boiled transformed potato tuber extracts by acrylamide gel electrophoresis and immunoblot analysis methods using primary antibodies to fimbrillin, a monomeric P. gingivalis fimbrial subunit. Antibodies generated against native P. gingivalis fimbriae detected a dimeric form of bacterial-synthesized recombinant FimA(266–337) protein. Further, a protein band of ~160 kDa was recognized by anti-FimA antibodies in undenatured transformed tuber extracts, suggesting that oligomeric assembly of plant-synthesized FimA may occur in transformed plant cells. Based on immunoblot analysis, the maximum amount of FimA protein synthesized in transformed potato tuber tissues was approximately 0.03% of total soluble tuber protein. Biosynthesis of immunologically detectable FimA protein and assembly of fimbrial antigen subunits into oligomers in transformed potato tuber tissues demonstrate the feasibility of producing native FimA protein in edible plant cells for construction of plant-based oral subunit vaccines against periodontal disease caused by P. gingivalis.  相似文献   

3.
SIVmac Gag p27 capsid protein gene expression in potato   总被引:3,自引:0,他引:3  
A cDNA encoding the Simian immunodeficiency virus type (SIV(mac)) Gag capsid protein was introduced into Solanum tuberosum cells by Agrobacterium tumefaciens-mediated transformation methods. The gag gene was detected in the genomic DNA of transformed leaf tissues by PCR DNA amplification. Immunoblot analysis of transformed potato plant extracts with anti-Gag monoclonal antibody showed that biologically active Gag protein was synthesized in transformed tuber tissues. Based on ELISA results, recombinant Gag protein made up 0.006-0.014% of total soluble tuber protein. The synthesis of SIV Gag in transformed potato tubers opens the way for development of Gag-based edible plant vaccines for protection against SIV and potentially HIV-1 infection.  相似文献   

4.
To mutagenize two conserved CCCT and PTK motifs in the central domain of Chinese strain of potato Y potyvirus (PVY-C) helper component proteinase (HC-Pro), four mutants of HC-Pro gene were obtained by PCR and site-directed mutagenesis, and then were inserted into the constitutive expression vector pBin438. Leaves from tobacco ( Nicotiana tabacum L. cv. K326) were transformed with these four plant expression plasmids by Agrobacterium -mediated transformation, respectively. Southern and Western blotting analyses showed that these four mutants were integrated into tobacco genomic DNA and could express the corresponding proteins in most of the transgenic plants. The challenge of transgenic plants with potato X potexvirus (PVX) revealed that the expression products of PVY-C HC-Pro mutants in transgenic plants greatly abolished functions of HC-Pro in enhancing the accumulation and pathogenicity of PVX, indicating that CCCT and PTK motifs of HC-Pro were required for PVX/PVY synergism. Meanwhile, the results demonstrated that PVY-C HC-Pro had a function in accelerating the long-distance movement of PVX in these transgenic plants for the first time.  相似文献   

5.
马铃薯Y病毒蚜传辅助因子促进马铃薯X病毒长距离运输   总被引:2,自引:0,他引:2  
采用PCR和定点突变法,对马铃薯Y病毒中国株系(Chyinese strain of potato Ypotyvirus,PVY-C)蚜传辅助成分(helper component proteinase,HC-Pro)基因中心区域的CCCT基序和PTK基序进行定点改造,获得了4种突变体。然后将突变体砍降到植物表达载体pBin438中,所得到的重组体通过根癌土壤杆菌(Agrobacterium tumefaciens(Smith et Townsend)Conn)介导法转了烟草(Nicotiana tabacum L.cv.K326).Southern blotting和Western blotting分析表明4种突变体已经成功整合到烟草的基因组中,并在蛋白水平上得到了表达。马铃薯X病毒(potato X potexvirus,PVX)对转基因烟草的攻毒实验表明,4种突变体均使PVY-C HYC-Prog严重丧失了促进PVX病毒粒子在寄主体内积累和提高PVX致病性的功能,说明CCCT、PTK基序为PVY-C HYC-Pro介导PVX/PVY协生作用所必需。同时证明了HC-Pro具有增强PVX在寄主体内长距离运输的功能。  相似文献   

6.
The polymerase chain reaction (PCR) revolutionized molecular biology to a similar extent as the discovery of plasmids and restriction endonucleases. However, there are some limitations to the use of PCR. Transgenic plants containing potato spindle tuber viroid (PSTVd) cDNA constructs, demonstrated to become de novo methylated upon PSTVd infection, represent a good example to illustrate the advantages of PCR. PSTVd is a 359 nt long autonomously replicating plant pathogenic RNA where all of its enzymatic requirements are entirely provided by the host cell. In addition, viroids that propagate without a DNA intermediate barely tolerate nucleotide substitutions of their RNA genome without losing infectivity. PCR is the method of choice to characterize the sequence context of genome-integrated viroid cDNA or of reverse transcribed PSTVd RNA, and can hardly be replaced by any alternative procedure. Furthermore, the precise examination of DNA methylation patterns (genomic sequencing) is entirely dependent on PCR. In contrast, the use of PCR is critical for the determination of copy number and arrangement of transgene constructs. Here, the advantages and disadvantages of PCR are discussed and protocols for PCR amplification of cDNA, genomic DNA, and bisulfite-treated DNA from transgenic plants are presented.  相似文献   

7.
The gram-negative anaerobic oral bacterium Porphyromonas gingivalis initiates periodontal disease by binding to saliva-coated oral surfaces. To assess whether edible plants can synthesize biologically active P. gingivalis fimbrial antigen, for application as an oral vaccine, a cDNA fragment encoding the C-terminal binding portion of P. gingivalis fimbrial protein (FimA), was cloned into a plant expression vector immediately downstream of a cDNA fragment encoding the cholera toxin B subunit (CTB). The chimeric plasmid was transferred into potato (Solanum tuberosum) cells and the ctb-fimA cDNA fragment detected in transformed leaf genomic DNA by PCR amplification methods. A novel protein band of 21 kDa was detected in transformed potato tuber extracts by immunoblot analysis. Oligomeric CTB-FimA (266-337) fusion protein was identified in the extracts through the binding of anti-CTX and anti-native fimbriae antibodies. The pentameric structure of CTB-FimA fusion protein was confirmed by ELISA measurements of GM1 ganglioside receptor binding. Quantification of the CTB-FimA fusion protein by ELISA indicated that the chimeric protein made up about 0.33% of total soluble tuber protein. The biosynthesis of immunologically detectable CTB-FimA fusion proteins and the assembly of fusion protein monomers into biologically active pentamers in transformed potato tuber tissues demonstrate the feasibility of synthesizing adjuvanted fimbrial protein in edible plants for development of adjuvanted mucosal vaccines against P. gingivalis generated periodontal disease.  相似文献   

8.
A rat P450 monooxygenase gene (CYP1A1) was introduced into potato plants to enhance the metabolism of the environmental contaminants in subterranean organs. The CYP1A1 gene was kept under the control of the potato patatin promoter to enhance tuber-specific expression. A total of 106 transgenic plants (PAT1A1 plants) were obtained following selection by a resistance test to kanamycin and PCR analysis. PAT1A1 plants treated with 10% exogenous sucrose showed a higher activity of monooxgenase in the leaves than the non-transgenic plants. This indicated that the activity enhanced by 10% sucrose was due to the patatin promoter containing the sucrose-inducted elements. One representative transgenic plant, Ag2197, was selected on the basis of monooxgenase activity in the leaves and Western blot analysis. Ag2197 was found to accumulate a large amount of CYP1A1 mRNA and protein in the developing tuber but not in the mature tuber. The residual herbicides, atrazine and chlortoluron, were analyzed in the micro-tubers of Ag2197 and non-transgenic plants. The amount of residual herbicides in Ag2197 was much lower than that in the non-transgenic plant, indicating that the transgenic plant metabolized the herbicides to a detoxified form. The transgenic plants produced in this study might be useful for the phytoremediation of chemical pollution in the soil.  相似文献   

9.
It has been previously shown that expression of a high-molecular-weight glutenin (HMW-GS) in transgenic wheat seeds resulted in the improvement of flour functional properties. In this study, potato flour viscosity was improved through a specific expression of a low-molecular-weight glutenin (LMW-GS-MB1) gene in tuber. The resulting construct was introduced into potato leaf explants (Solanum tuberosum cv Kennebec) through Agrobacterium tumefaciens-mediated gene transfer. Southern and Northern analysis of transgenic potato confirmed that the integration of LMW-GS-MB1 in genomic DNA was stable and its mRNA was abundant in transgenic line 16 tubers. Western blot analysis of line 16 extract shows a LMW-GS subunit accumulation in tuber. To demonstrate the capacity of transgenic lines to produce tubers with improved flour functional properties, transgenic lines 9 and 16 exhibiting, respectively, moderate and high expression of LMW-GS-MB1 mRNA and nontransgenic plants were transferred to field plots. The mean viscosity value of flour obtained from the field-grown tubers of transgenic line 16 exhibited a 3-fold increase in viscosity at 23 degrees C when compared to flour from nontransgenic tubers.  相似文献   

10.
A marker rescue system based on the repair of the kanamycin resistance gene nptII was constructed for use in Gram-positive bacteria and established in Bacillus subtilis 168. Marker rescue was detected in vitro using different types of donor DNA containing intact nptII. The efficiency of marker rescue using chromosomal DNA of E. coli Sure as well as plasmids pMR2 or pSR8-30 ranged from 3.8 x 10(-8) to 1.5 x 10(-9) transformants per nptII gene. Low efficiencies of ca. 10(-12) were obtained with PCR fragments of 792 bp obtained from chromosomal DNA of E. coli Sure or DNA from a transgenic potato. B. subtilis developed competence during growth in milk and chocolate milk, and marker rescue transformation was detected with frequencies of ca. 10(-6) and 10(-8), respectively, using chromosomal DNA of E. coli Sure as donor DNA. Although the copy number of nptII genes of the plant DNA exceeded that of chromosomal E. coli DNA in the marker rescue experiments, a transfer of DNA from the transgenic plant to B. subtilis was detectable neither in vitro nor in situ.  相似文献   

11.
Screening of transgenic plants by multiplex PCR   总被引:3,自引:0,他引:3  
A protocol is described, for the rapid screening of a large number of putative transgenic shoots. Genomic DNA is isolated and screened by PCR. To validate the purity of the DNA, PCR amplification is done with primers homologous to an endogenous gene. Multiplex PCR is used to screen for the transgenic shoots with two sets of primers, one set against the endogenous gene (internal control) and the other set against the gene used in transformation. This protocol has been successfully used on maize, melon, oil-seed rape, pepper, petunia, potato, squash, sugar beet and tobacco.  相似文献   

12.
13.
A DNA encoding the 27-kDa domain I of anthrax lethal factor protein (LF), was linked to the carboxyl terminus of the cholera toxin B-subunit (CTB-LF). The CTB-LF fusion gene was transferred into Solanum tuberosum cells by Agrobacterium tumefaciens-mediated in vivo transformation methods and antibiotic-resistant plants were regenerated. The CTB-LF fusion gene was detected in transformed potato leaf genomic DNA by polymerase chain reaction (PCR)-mediated DNA amplification. Immunoblot analysis with anti-CTB and anti-LF primary antibodies verified the synthesis and assembly of biologically active CTB-LF fusion protein oligomers in transformed plant tuber tissues. Furthermore, the binding of CTB-LF fusion protein pentamers to intestinal epithelial cell membrane receptors measured by GM1-ganglioside enzyme-linked immunosorbent assay (GM1-ELISA) indicated that the CTB-LF fusion protein made up approx 0.002% of the total soluble tuber protein. Synthesis of CTB-LF monomers and their assembly into biologically active CTB-LF fusion protein pentamers in potato tuber tissues demonstrates the feasibility of using edible plants for production and delivery of adjuvanted LF protein for CTB-mediated immunostimulation of mucosal immune responses against anthrax toxin.  相似文献   

14.
Transgenic potato plants with the nptII gene coding for neomycin phosphotransferase (kanamycin resistance) as a selection marker were examined for the spread of recombinant DNA into the environment. We used the recombinant fusion of nptII with the tg4 terminator for a novel biomonitoring technique. This depended on natural transformation of Acinetobacter sp. strain BD413 cells having in their genomes a terminally truncated nptII gene (nptII'; kanamycin sensitivity) followed by the tg4 terminator. Integration of the recombinant fusion DNA by homologous recombination in nptII' and tg4 restored nptII, leading to kanamycin-resistant transformants. DNA of the transgenic potato was detectable with high sensitivity, while no transformants were obtained with the DNA of other transgenic plants harboring nptII in different genetic contexts. The recombinant DNA was frequently found in rhizosphere extracts of transgenic potato plants from field plots. In a series of field plot and greenhouse experiments we identified two sources of this DNA: spread by roots during plant growth and by pollen during flowering. Both sources also contributed to the spread of the transgene into the rhizospheres of nontransgenic plants in the vicinity. The longest persistence of transforming DNA in field soil was observed with soil from a potato field in 1997 sampled in the following year in April and then stored moist at 4 degrees C in the dark for 4 years prior to extract preparation and transformation. In this study natural transformation is used as a reliable laboratory technique to detect recombinant DNA but is not used for monitoring horizontal gene transfer in the environment.  相似文献   

15.
Potato virus Y (PVY) infection may cause a severe yield depression up to 80%. To develop the potato (Solanum tuberosum L. ) cultivars that resist PVY infection is very crucial in potato production. The authors have been cloned the coat protein gene of PVY from its Chinese isolate. A chimaeric gene containing the cauliflower mosaic virus 35S promoter and PVY coat protein coding region was introduced into the potato cultivars “Favorita”, “Tiger head” and “K4” via Agrobacterium tumefaciens. Results from PCR and Southern blot analysis confirmed that the foreign gene has integrated into the potato chromosomes. These transgenic potato plants were mechanically inoculated with PVY virus (20 mg/L). The presence of the virus in the potato plants was determined by ELISA and method of back inoculation into tobacco. The authors observed a drastic reduction in the accumulation of virus in some transgenic potato lines. Furthermore, some transgenic potato lines produced more tubers per plant than the untransformed potato did, and the average weight of these transgenic plant tubers was also increased. In the field test, the morphology and development of these transgenic potato plants were normal, 3 transgenic lines of “Favorita” exhibited a higher yield than the untrasformed virus-free potato with an increase ranged from 20% to 30%. From these transgenic lines, it will be very hopeful to develop a potato cultivar which not only has a significant resistance to PVY infection, but also a good harvest in potato production.  相似文献   

16.
Murine rotavirus gene six encoding the 41 kDa group specific capsid structural protein VP6 was stably inserted into the Solanum tuberosum genome by Agrobacterium tumefaciens mediated transformation. The molecular mass of plant synthesized VP6 capsid protein determined by immunoblot was similar to the size of both purified virus VP6 monomeric peptides and partially assembled virus-like particles. The amount of VP6 protein synthesized in transgenic potato leaf and tuber was determined by enzyme-linked immunosorbent assay to be approximately 0.01% of total soluble protein. Oral immunization of CD-1 mice with transformed potato tuber tissues containing VP6 capsid protein generated measurable titers of both anti-VP6 serum IgG and intestinal IgA antibodies. The presence of detectable humoral and intestinal antibody responses against the rotavirus capsid protein following mucosal immunization provides an optimistic basis for the development of edible plant vaccines against enteric viral pathogens.  相似文献   

17.
Transgenic plants expressing recombinant proteins from pathogenic microorganisms provide an inexpensive edible vaccine for induction of local immunity. A neutralizing epitope of porcine epidemic diarrhea virus (PEDV) gene containing SEKDEL was expressed in potato using Agrobacterium-mediated transformation system. Putative transgenic plants were regenerated, and genomic PCR confirmed the presence of PEDV epitope gene in the potato plants. Based on the ELISA results, epitope of PEDV protein made up approximately 0.1% of the total soluble tuber protein.  相似文献   

18.
Identification of molecular markers defining the end of tuber dormancy prior to visible sprouting is of agronomic interest for potato growers and the potato processing industry. In potato tubers, breakage of dormancy is associated with the reactivation of meristem function. In dormant meristems, cells are arrested in the G1/G0 phase of the cell cycle and re-entry into the G1 phase followed by DNA replication during the S phase enables bud outgrowth. Deoxyuridine triphosphatase (dUTPase) is essential for DNA replication and was therefore tested as a potential marker for meristem reactivation in tuber buds. The corresponding cDNA clone was isolated from potato by PCR. The deduced amino acid sequence showed 94% similarity to the tomato homologue. By employing different potato cultivars, a positive correlation between dUTPase expression and onset of tuber sprouting could be confirmed. Moreover, gene expression analysis of tuber buds during storage time revealed an up-regulation of the dUTPase 1 week before visible sprouting occurred. Further analysis using an in vitro sprout assay supported the assumption that dUTPase is a good molecular marker to define the transition from dormant to active potato tuber meristems.  相似文献   

19.
To investigate the various integration patterns of T-DNA generated by infection withAgrobacterium, we developed a vector (pRCV2) for the effective T-DNA tagging and applied it to tobacco (Nicotiana tabacum cv. Havana SR1). pRCV2 was constructed for isolating not only intact T-DNA inserts containing both side borders of T-DNA, but also for partial T-DNA inserts that comprise only the right or left side. We also designed PCR confirmation primer sets that can amplify in several important regions within pRCV2 to detect various unpredictable integration patterns. These can also be used for the direct inverse PCR. Leaf disks of tobacco were transformed withAgrobacterium tumefaciens LBA4404 harboring pRCV2. PCR and Southern analysis revealed the expected 584 bp product for thehpt gene as well as one of 600 bp for thegus gene in all transformants; one or two copies were identified for these integrated genes. Flanking plant genomic DNA sequences from the transgenic tobacco were obtained via plasmid rescue and then sequenced. Abnormal integration patterns in the tobacco genome were found in many transgenic lines. Of the 17 lines examined, 11 contained intact vector backbone; a somewhat larger deletion of the left T-DNA portion was encountered in 4 lines. Because nicking sites at the right border showed irregular patterns when the T-DNA was integrated, it was difficult to predict the junction regions between the vector and the flanking plant DNA.  相似文献   

20.
Expression of cholera toxin B subunit oligomers in transgenic potato plants   总被引:36,自引:0,他引:36  
A gene encoding the cholera toxin B subunit protein (CTB), fused to an endoplasmic reticulum (ER) retention signal (SEKDEL) was inserted adjacent to the bi-directional mannopine synthase P2 promoter in a plant expression vector containing a bacterial luciferase AB fusion gene (luxF) linked to the P1 promoter. Potato leaf explants were transformed by Agrobacterium tumefaciens carrying the vector and kanamycin-resistant plants were regenerated. The CTB-SEKDEL fusion gene was identified in the genomic DNA of bioluminescent plants by polymerase chain reaction amplification. Immunoblot analysis indicated that plant-derived CTB protein was antigenically indistinguishable from bacterial CTB protein, and that oligomeric CTB molecules (Mr 50 kDa) were the dominant molecular species isolated from transgenic potato leaf and tuber tissues. Similar to bacterial CTB, plant-synthesized CTB dissociated into monomers (Mr 15 kDa) during heat or acid treatment. The maximum amount of CTB protein detected in auxin-induced transgenic potato leaf and tuber tissues was approximately 0.3% of total soluble plant protein. Enzyme-linked immunosorbent assay methods indicated that plant-synthesized CTB protein bound specifically to GM1-ganglioside, the natural membrane receptor of cholera toxin. In the presence of the SEKDEL signal, CTB protein accumulates in potato tissues and is assembled into an oligomeric form that retains native biochemical and immunological properties. The expression of oligomeric CTB protein with immunological and biochemical properties identical to native CTB protein in edible plants opens the way for preparation of inexpensive food plant-based oral vaccines for protection against cholera and other pathogens in endemic areas throughout the world  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号