首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wrinkly spreader (WS) genotypes evolve repeatedly in model Pseudomonas populations undergoing adaptive radiation. Previous work identified genes contributing to the evolutionary success of WS. Here we scrutinize the GGDEF response regulator protein WspR and show that it is both necessary and sufficient for WS. Activation of WspR occurs by phosphorylation and different levels of activation generate phenotypic differences among WS genotypes. Five alleles of wspR, each encoding a protein with a single amino acid substitution, were generated by mutagenesis. Two alleles are constitutively active and cause the ancestral genotype to develop a WS phenotype; the phenotypic effects are allele specific and independent of phosphorylation. Three alleles contain changes in the GGDEF domain and when overexpressed in WS cause reversion to the ancestral phenotype. Ability to mimic this effect by overexpression of a liberated N-terminal domain shows that in WS, regulatory components upstream of WspR are overactive. To connect changes at the nucleotide level with fitness, the effects of variant alleles were examined in both structured and unstructured environments: alleles had adaptive and deleterious effects with trade-offs evident across environments. Despite the proclivity of mutations within wspR to generate WS, sequence analysis of wspR from 53 independently obtained WS showed no evidence of sequence change in this gene.  相似文献   

2.
3.
The Pseudomonas aeruginosa Wsp signal transduction system produces cyclic-di-GMP (c-di-GMP), an intracellular messenger that stimulates biofilm formation and suppresses motility. The Wsp system is homologous to chemotaxis systems and includes a membrane-bound receptor protein, WspA, and a response regulator GGDEF protein, WspR, that catalyses c-di-GMP synthesis when phosphorylated. We found that the subcellular distributions of fluorescent protein-tagged WspA and WspR differed markedly from their chemotaxis counterparts. WspA-YFP formed patches in cells whereas WspR-YFP was dispersed when unphosphorylated and formed bright cytoplasmic clusters when phosphorylated. WspR formed clusters in cells of a DeltawspF mutant, a genetic background that causes constitutive phosphorylation of WspR, but was dispersed in cells of a wspA mutant, a genetic background necessary for WspR phosphorylation. In addition, WspR mutated at Asp70, its predicted site of phosphorylation, did not form clusters. C-di-GMP synthesis was not required for cluster formation. WspR-YFP was dispersed in liquid-grown wild-type cells, but formed clusters that sometimes appeared and disappeared over the course of a few minutes in cells grown on an agar surface. Our results suggest that the compartmentalized production of c-di-GMP in response to a stimulus associated with growth on a surface is an important functional characteristic of the Wsp system.  相似文献   

4.
In RNA fitness landscapes with interconnected networks of neutral mutations, neutral precursor mutations can play an important role in facilitating the accessibility of epistatic adaptive mutant combinations. I use an exhaustively surveyed fitness landscape model based on short sequence RNA genotypes (and their secondary structure phenotypes) to calculate the minimum rate at which mutants initially appearing as neutral are incorporated into an adaptive evolutionary walk. I show first, that incorporating neutral mutations significantly increases the number of point mutations in a given evolutionary walk when compared to estimates from previous adaptive walk models. Second, that incorporating neutral mutants into such a walk significantly increases the final fitness encountered on that walk - indeed evolutionary walks including neutral steps often reach the global optimum in this model. Third, and perhaps most importantly, evolutionary paths of this kind are often extremely winding in their nature and have the potential to undergo multiple mutations at a given sequence position within a single walk; the potential of these winding paths to mislead phylogenetic reconstruction is briefly considered.  相似文献   

5.
Pseudomonas fluorescens is a model for the study of adaptive radiation. When propagated in a spatially structured environment, the bacterium rapidly diversifies into a range of niche specialist genotypes. Here we present a genetic dissection and phenotypic characterization of the fuzzy spreader (FS) morphotype—a type that arises repeatedly during the course of the P. fluorescens radiation and appears to colonize the bottom of static broth microcosms. The causal mutation is located within gene fuzY (pflu0478)—the fourth gene of the five-gene fuzVWXYZ operon. fuzY encodes a β-glycosyltransferase that is predicted to modify lipopolysaccharide (LPS) O antigens. The effect of the mutation is to cause cell flocculation. Analysis of 92 independent FS genotypes showed each to have arisen as the result of a loss-of-function mutation in fuzY, although different mutations have subtly different phenotypic and fitness effects. Mutations within fuzY were previously shown to suppress the phenotype of mat-forming wrinkly spreader (WS) types. This prompted a reinvestigation of FS niche preference. Time-lapse photography showed that FS colonizes the meniscus of broth microcosms, forming cellular rafts that, being too flimsy to form a mat, collapse to the vial bottom and then repeatably reform only to collapse. This led to a reassessment of the ecology of the P. fluorescens radiation. Finally, we show that ecological interactions between the three dominant emergent types (smooth, WS, and FS), combined with the interdependence of FS and WS on fuzY, can, at least in part, underpin an evolutionary arms race with bacteriophage SBW25Φ2, to which mutation in fuzY confers resistance.  相似文献   

6.
The wrinkly spreader (WS) genotype of Pseudomonas fluorescens SBW25 colonizes the air-liquid interface of spatially structured microcosms resulting in formation of a thick biofilm. Its ability to colonize this niche is largely due to overproduction of a cellulosic polymer, the product of the wss operon. Chemical analysis of the biofilm matrix shows that the cellulosic polymer is partially acetylated cellulose, which is consistent with predictions of gene function based on in silico analysis of wss. Both polar and non-polar mutations in the sixth gene of the wss operon (wssF ) or adjacent downstream genes (wssGHIJ ) generated mutants that overproduce non-acetylated cellulose, thus implicating WssFGHIJ in acetylation of cellulose. WssGHI are homologues of AlgFIJ from P. aeruginosa, which together are necessary and sufficient to acetylate alginate polymer. WssF belongs to a newly established Pfam family and is predicted to provide acyl groups to WssGHI. The role of WssJ is unclear, but its similarity to MinD-like proteins suggests a role in polar localization of the acetylation complex. Fluorescent microscopy of Calcofluor-stained biofilms revealed a matrix structure composed of networks of cellulose fibres, sheets and clumped material. Quantitative analyses of biofilm structure showed that acetylation of cellulose is important for effective colonization of the air-liquid interface: mutants identical to WS, but defective in enzymes required for acetylation produced biofilms with altered physical properties. In addition, mutants producing non-acetylated cellulose were unable to spread rapidly across solid surfaces. Inclusion in these assays of a WS mutant with a defect in the GGDEF regulator (WspR) confirmed the requirement for this protein in expression of both acetylated cellulose polymer and bacterial attachment. These results suggest a model in which WspR regulation of cellulose expression and attachment plays a role in the co-ordination of surface colonization.  相似文献   

7.
Understanding the impact of spontaneous mutations on fitness has many theoretical and practical applications in biology. Although mutational effects on individual morphological or life‐history characters have been measured in several classic genetic model systems, there are few estimates of the rate of decline due to mutation for complex fitness traits. Here, we estimate the effects of mutation on competitive ability, an important complex fitness trait, in a model system for ecological and evolutionary genomics, Daphnia. Competition assays were performed to compare fitness between mutation‐accumulation (MA) lines and control lines from eight different genotypes from two populations of Daphnia pulicaria after 30 and 65 generations of mutation accumulation. Our results show a fitness decline among MA lines relative to controls as expected, but highlight the influence of genomic background on this effect. In addition, in some assays, MA lines outperform controls providing insight into the frequency of beneficial mutations.  相似文献   

8.
The bacterial second messenger bis-(3′-5′)-cyclic dimeric guanosine monophosphate (c-di-GMP) controls secretion, cell adhesion, and motility, leading to biofilm formation and increased cytotoxicity. Diguanylate cyclases containing GGDEF and phosphodiesterases containing EAL or HD-GYP domains have been identified as the enzymes controlling cellular c-di-GMP levels, yet less is known regarding the molecular mechanisms governing regulation and signaling specificity. We recently determined a product-inhibition pathway for the diguanylate cyclase response regulator WspR from Pseudomonas, a potent molecular switch that controls biofilm formation. In WspR, catalytic activity is modulated by a helical stalk motif that connects its phospho-receiver and GGDEF domains. The stalks facilitate the formation of distinct oligomeric states that contribute to both activation and autoinhibition. Here, we provide novel insights into the regulation of diguanylate cyclase activity in WspR based on the crystal structures of full-length WspR, the isolated GGDEF domain, and an artificially dimerized catalytic domain. The structures highlight that inhibition is achieved by restricting the mobility of rigid GGDEF domains, mediated by c-di-GMP binding to an inhibitory site at the GGDEF domain. Kinetic measurements and biochemical characterization corroborate a model in which the activation of WspR requires the formation of a tetrameric species. Tetramerization occurs spontaneously at high protein concentration or upon addition of the phosphomimetic compound beryllium fluoride. Our analyses elucidate common and WspR-specific mechanisms for the fine-tuning of diguanylate cyclase activity.  相似文献   

9.
Functional effects of different mutations are known to combine to the total effect in highly nontrivial ways. For the trait under evolutionary selection ('fitness'), measured values over all possible combinations of a set of mutations yield a fitness landscape that determines which mutational states can be reached from a given initial genotype. Understanding the accessibility properties of fitness landscapes is conceptually important in answering questions about the predictability and repeatability of evolutionary adaptation. Here we theoretically investigate accessibility of the globally optimal state on a wide variety of model landscapes, including landscapes with tunable ruggedness as well as neutral 'holey' landscapes. We define a mutational pathway to be accessible if it contains the minimal number of mutations required to reach the target genotype, and if fitness increases in each mutational step. Under this definition accessibility is high, in the sense that at least one accessible pathway exists with a substantial probability that approaches unity as the dimensionality of the fitness landscape (set by the number of mutational loci) becomes large. At the same time the number of alternative accessible pathways grows without bounds. We test the model predictions against an empirical 8-locus fitness landscape obtained for the filamentous fungus Aspergillus niger. By analyzing subgraphs of the full landscape containing different subsets of mutations, we are able to probe the mutational distance scale in the empirical data. The predicted effect of high accessibility is supported by the empirical data and is very robust, which we argue reflects the generic topology of sequence spaces. Together with the restrictive assumptions that lie in our definition of accessibility, this implies that the globally optimal configuration should be accessible to genome wide evolution, but the repeatability of evolutionary trajectories is limited owing to the presence of a large number of alternative mutational pathways.  相似文献   

10.
Deleterious mutation accumulation plays a central role in evolutionary genetics, conservation biology, human health, and evolutionary medicine (e.g., methods of viral attenuation for live vaccines). It is therefore important to understand whether and how quickly populations with accumulated deleterious mutational loads can recover fitness through adaptive evolution. We used laboratory experimental evolution with four long-term mutation-accumulation (MA) lines of Caenorhabditis elegans nematodes to study the dynamics of such fitness evolution. We previously showed that when homozygous mutant populations are evolved in large population sizes, they can rapidly achieve wild-type fitness through the accumulation of new beneficial or compensatory epistatic mutations. Here, we expand this approach to demonstrate that when replicate lineages are initiated from the same mutant genotype, phenotypic evolution is only sometimes repeatable. MA genotypes that recovered ancestral fitness in the previous experiment did not always do so here. Further, the pattern of adaptive evolution in independently evolved replicates was contingent upon the MA genotype and varied among fitness-related traits. Our findings suggest that new beneficial mutations can drive rapid fitness evolution, but that the adaptive process is rendered somewhat unpredictable by its susceptibility to chance events and sensitivity to the evolutionary history of the starting population.  相似文献   

11.
12.
In spatially heterogeneous environments, natural selection for maintenance of adaptation to habitats that contribute little to the population's reproduction is weak. In this paper we model a mechanism that can result in loss of fitness in such marginal habitats, and thus lead to specialisation on the main habitat. It involves accumulation of mutations that are deleterious in the marginal habitat but neutral or nearly so in the main habitat (mutations deleterious in the main habitat and neutral in the marginal habitat have a negligible influence). If the contribution of the marginal habitat to total reproduction in the absence of the mutations is less than a threshold value, selection is too weak to counter accumulation of such mutations. A positive feedback then results in loss of fitness in the marginal habitat. This mechanism does not require antagonistic pleiotropy in adaptation to different habitats, although antagonistic pleiotropy facilitates the mutational collapse of fitness in the marginal habitat. We suggest that deleterious mutations with habitat-specific expression may play a role in the evolution of ecological specialisation and promote evolutionary conservatism of ecological niches.  相似文献   

13.
Fitness interactions between loci in the genome, or epistasis, can result in mutations that are individually deleterious but jointly beneficial. Such epistasis gives rise to multiple peaks on the genotypic fitness landscape. The problem of evolutionary escape from such local peaks has been a central problem of evolutionary genetics for at least 75 years. Much attention has focused on models of small populations, in which the sequential fixation of valley genotypes carrying individually deleterious mutations operates most quickly owing to genetic drift. However, valley genotypes can also be subject to mutation while transiently segregating, giving rise to copies of the high fitness escape genotype carrying the jointly beneficial mutations. In the absence of genetic recombination, these mutations may then fix simultaneously. The time for this process declines sharply with increasing population size, and it eventually comes to dominate evolutionary behavior. Here we develop an analytic expression for N(crit), the critical population size that defines the boundary between these regimes, which shows that both are likely to operate in nature. Frequent recombination may disrupt high-fitness escape genotypes produced in populations larger than N(crit) before they reach fixation, defining a third regime whose rate again slows with increasing population size. We develop a novel expression for this critical recombination rate, which shows that in large populations the simultaneous fixation of mutations that are beneficial only jointly is unlikely to be disrupted by genetic recombination if their map distance is on the order of the size of single genes. Thus, counterintuitively, mass selection alone offers a biologically realistic resolution to the problem of evolutionary escape from local fitness peaks in natural populations.  相似文献   

14.
A central feature of all adaptive radiations is morphological divergence, but the phenotypic innovations that are responsible are rarely known. When selected in a spatially structured environment, populations of the bacterium Pseudomonas fluorescens rapidly diverge. Among the divergent morphs is a mutant type termed "wrinkly spreader" (WS) that colonizes a new niche through the formation of self-supporting biofilms. Loci contributing to the primary phenotypic innovation were sought by screening a WS transposon library for niche-defective (WS(-)) mutants. Detailed analysis of one group of mutants revealed an operon of 10 genes encoding enzymes necessary to produce a cellulose-like polymer (CLP). WS genotypes overproduce CLP and overproduction of the polymer is necessary for the distinctive morphology of WS colonies; it is also required for biofilm formation and to maximize fitness in spatially structured microcosms, but overproduction of CLP alone is not sufficient to cause WS. A working model predicts that modification of cell cycle control of CLP production is an important determinant of the phenotypic innovation. Analysis of >30 kb of DNA encoding traits required for expression of the WS phenotype, including a regulatory locus, has not revealed the mutational causes, indicating a complex genotype-phenotype map.  相似文献   

15.
We examine the behavior of sexual and asexual populations in modular multipeaked fitness landscapes and show that sexuals can systematically reach different, higher fitness adaptive peaks than asexuals. Whereas asexuals must move against selection to escape local optima, sexuals reach higher fitness peaks reliably because they create specific genetic variants that "skip over" fitness valleys, moving from peak to peak in the fitness landscape. This occurs because recombination can supply combinations of mutations in functional composites or "modules," that may include individually deleterious mutations. Thus when a beneficial module is substituted for another less-fit module by sexual recombination it provides a genetic variant that would require either several specific simultaneous mutations in an asexual population or a sequence of individual mutations some of which would be selected against. This effect requires modular genomes, such that subsets of strongly epistatic mutations are tightly physically linked. We argue that such a structure is provided simply by virtue of the fact that genomes contain many genes each containing many strongly epistatic nucleotides. We briefly discuss the connections with "building blocks" in the evolutionary computation literature. We conclude that there are conditions in which sexuals can systematically evolve high-fitness genotypes that are essentially unevolvable for asexuals.  相似文献   

16.
Social selection and indirect genetic effects (IGEs) are established concepts in both behavioural ecology and evolutionary genetics. While IGEs describe effects of an individual’s genotype on phenotypes of social partners (and may thus affect their fitness indirectly), the concept of social selection assumes that a given phenotype in one individual affects the fitness of other individuals directly. Although different frameworks, both have been used to investigate the evolution of social traits, such as cooperative behaviour. Despite their similarities (both concepts consider interactions among individuals), they differ in the type of interaction. It remains unclear whether the two concepts make the same predictions about evolutionary trajectories or not. To address this question, we investigate four possible scenarios of social interactions and compare the effects of IGEs and social selection for trait evolution in a multi-trait multi-member model. We show that the two mechanisms can yield similar evolutionary outcomes and that both can create selection pressure at the group level. However, the effect of IGEs can be stronger due to the possibility of feedback loops. Finally, we demonstrate that IGEs, but not social selection gradients, may lead to differences in the direction of evolutionary response between genotypes and phenotypes.  相似文献   

17.
Sanjuán R  Cuevas JM  Moya A  Elena SF 《Genetics》2005,170(3):1001-1008
We have explored the patterns of fitness recovery in the vesicular stomatitis RNA virus. We show that, in our experimental setting, reversions to the wild-type genotype were rare and fitness recovery was at least partially driven by compensatory mutations. We compared compensatory adaptation for genotypes carrying (1) mutations with varying deleterious fitness effects, (2) one or two deleterious mutations, and (3) pairs of mutations showing differences in the strength and sign of epistasis. In all cases, we found that the rate of fitness recovery and the proportion of reversions were positively affected by population size. Additionally, we observed that mutations with large fitness effect were always compensated faster than mutations with small fitness effect. Similarly, compensatory evolution was faster for genotypes carrying a single deleterious mutation than for those carrying pairs of mutations. Finally, for genotypes carrying two deleterious mutations, we found evidence of a negative correlation between the epistastic effect and the rate of compensatory evolution.  相似文献   

18.
PETER MEDAWAR proposed that senescence arises from an age-related decline in the force of selection, which allows late-acting deleterious mutations to accumulate. Subsequent workers have suggested that mutation accumulation could produce an age-related increase in additive genetic variance (V(A)) for fitness traits, as recently found in Drosophila melanogaster. Here we report results from a genetic analysis of mortality in 65,134 D. melanogaster. Additive genetic variance for female mortality rates increases from 0.007 in the first week of life to 0.325 by the third week, and then declines to 0.002 by the seventh week. Males show a similar pattern, though total variance is lower than in females. In contrast to a predicted divergence in mortality curves, mortality curves of different genotypes are roughly parallel. Using a three-parameter model, we find significant V(A) for the slope and constant term of the curve describing age-specific mortality rates, and also for the rate at which mortality decelerates late in life. These results fail to support a prediction derived from MEDAWAR's ``mutation accumulation' theory for the evolution of senescence. However, our results could be consistent with alternative interpretations of evolutionary models of aging.  相似文献   

19.
Unraveling the factors that determine the rate of adaptation is a major question in evolutionary biology. One key parameter is the effect of a new mutation on fitness, which invariably depends on the environment and genetic background. The fate of a mutation also depends on population size, which determines the amount of drift it will experience. Here, we manipulate both population size and genotype composition and follow adaptation of 23 distinct Escherichia coli genotypes. These have previously accumulated mutations under intense genetic drift and encompass a substantial fitness variation. A simple rule is uncovered: the net fitness change is negatively correlated with the fitness of the genotype in which new mutations appear—a signature of epistasis. We find that Fisher's geometrical model can account for the observed patterns of fitness change and infer the parameters of this model that best fit the data, using Approximate Bayesian Computation. We estimate a genomic mutation rate of 0.01 per generation for fitness altering mutations, albeit with a large confidence interval, a mean fitness effect of mutations of ?0.01, and an effective number of traits nine in mutS? E. coli. This framework can be extended to confront a broader range of models with data and test different classes of fitness landscape models.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号