首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Characterization of Repetitive DNA Elements in Arabidopsis   总被引:1,自引:0,他引:1  
We have applied computational methods to the available database and identified several families of repetitive DNA elements in the Arabidopsis thaliana genome. While some of the elements have features expected of either miniature inverted-repeat transposable elements (MITEs) or retrotransposons, the most abundant class of repetitive elements, the AthE1 family, is structurally related to neither. The AthE1 family members are defined by conserved 5′ and 3′ sequences, but these terminal sequences do not represent either inverted or direct repeats. AthE1 family members with greater than 98% identity are easily identified on different Arabidopsis chromosomes. Similar to nonautonomous DNA-based transposon families, the AthE1 family contains members in which the conserved terminal domains flank unrelated sequences. The primary utility of characterizing repetitive sequences is in defining, at least in part, the evolutionary architecture of specific Arabidopsis loci. The repetitive elements described here make up approximately 1% of the available Arabidopsis thaliana genomic sequence. Received: 13 October 1998 / Accepted: 30 December 1998  相似文献   

2.
Calmodulin is a calcium-binding EF-hand protein that is an activator of many enzymes as well as ion pumps and channels. Due to its multiple targets and its central role in the cell, understanding the evolutionary history of calmodulin genes should provide insights into the origin of genetic complexity in eukaryotes. We have previously isolated and characterized a calmodulin gene from the early-diverging chordate Branchiostoma lanceolatum (CaM1). In this paper, we report the existence of a second calmodulin gene (CaM2) as well as two CaM-like genomic fragments (CaML-2, CaML-3) in B. lanceolatum and a CaM2 and three CaM-like genes (CaML-1, CaML-2, CaML-3) in B. floridae. The CaM-like genes were isolated using low-stringency PCR. Surprisingly, the nucleotide sequences of the B. lanceolatum CaM1 and CaM2 cDNAs differ by 19.3%. Moreover, the CaM2 protein differs at two positions from the amino acid sequence of CaM1; the latter is identical to calmodulins in Drosophila melanogaster, the mollusc Aplysia californica, and the tunicate Halocynthia roretzi. The two B. lanceolatum CaM-like genes are more closely related to the CaM2 than to the CaM1 gene. This relationship is supported by the phylogenetic analyses and the identical exon/intron organization of these three genes, a relationship unique among animal CaM sequences. These data demonstrate the existence of a CaM multigene family in the cephalochordate Branchiostoma, which may have evolved independently from the multigene family in vertebrates. Received: 2 November 1999 / Accepted: 25 April 2000  相似文献   

3.
Evolution of the Integrin α and β Protein Families   总被引:4,自引:0,他引:4  
A phylogenetic analysis of vertebrate and invertebrate α integrins supported the hypothesis that two major families of vertebrate α integrins originated prior to the divergence of deuterostomes and protostomes. These two families include, respectively, the αPS1 and αPS2 integrins of Drosophila melanogaster, and each family has duplicated repeatedly in vertebrates but not in Drosophila. In contrast, a third family (including αPS3) has duplicated in Drosophila but is absent from vertebrates. Vertebrate αPS1 and αPS2 family members are found on human chromosomes 2, 12, and 17. Linkage of these family members may have been conserved since prior to the origin of vertebrates, and the two genes duplicated simultaneously. A phylogenetic analysis of β integrins did not clearly resolve whether vertebrate β integrin genes duplicated prior to the origin of vertebrates, although it suggested that at least the gene encoding vertebrate β4 may have done so. In general, the phylogeny of neither α nor β integrins showed a close correspondence with patterns of α–β heterodimer formation or other functional characteristics. One major exception to this trend involved αL, αM, αX, and αD, a monophyletic group of immune cell-expressed α integrins, which share a number of common functional characteristics and have evolved in coordinated fashion with their β integrin partners. Received: 22 June 2000 / Accepted: 11 September 2000  相似文献   

4.
Short interspersed DNA elements (SINEs) amplify by retroposition either by (i) successive waves of amplification from one or a few evolving master genes or by (ii) the generation of new master genes that coexist with their progenitors. Individual, highly conserved, elements of the B1 SINE family were identified from the GenBank nucleotide database using various B1 subfamily consensus query sequences to determine their integration times into the mouse genome. A comparison of orthologous loci in various species of the genus Mus demonstrated that four subfamilies of B1 elements have been amplifying within the last 1–3 million years. Therefore, B1 sequences are generated by coexisting source genes. Additionally, three B1 subfamilies have been concurrently propagated during subspecies divergence and strain formation in Mus, indicating very recent activity of this retroposon family. The patterns of intra- and interspecies variations of orthologous loci demonstrate the usefulness of B1 integrations as a phylogenetic tool. A single inconsistency in the phylogenetic trends was depicted by the presence of a B1 insert in an orthologous locus exclusively in M. musculus and M. pahari. However, DNA sequence analysis revealed that these were independent integrations at the same genomic site. One highly conserved B1 element that integrated at least 4–6 million years ago suggests the possibility of occasional function for B1 integrations. Received: 25 February 2000 / Accepted: 5 June 2000  相似文献   

5.
The genomic organization of the hsp83 gene of Drosophila auraria, a far-eastern endemic species belonging to the montium subgroup of the melanogaster species group, is presented here. Based on in situ hybridization on polytene chromosomes, cDNA and genomic clone mapping, nucleotide sequencing, and genomic Southern analysis, hsp83 is shown to be present as a single-copy gene at locus 64B on the 3L chromosome arm in D. auraria. This gene is organized into two exons separated by a 929-bp intron. The first exon represents the mRNA leader sequence and is not translated, while the coding region, having a length of 2,151 bp, is solely included in the second exon. Nucleotide sequence comparisons of D. auraria hsp83 with homologous sequences from other organisms show high conservation of the coding region (88–92% identity) in the genus Drosophila, in addition to the conserved genomic organization of two-exons–one-intron, of comparable size and arrangement. A phylogenetic tree based on the protein sequences of homologous genes from representative organisms is in accord with the accredited phylogenetic position of D. auraria. In the hsp83 gene region, a second case of long antiparallel coupled open reading frames (LAC ORFs) for this species was found. The antiparallel to the hsp83 gene ORF is 1,554 bases long, while the two ORFs overlap has a size of 1,548 bp. The anti-hsp83 ORF does not show significant homology to any known gene sequences. In addition, no similar LAC ORF structures were found in homologous gene regions of other organisms. Received: 18 April 1997 / Accepted: 1 August 1997  相似文献   

6.
The phylogenetic relationships among the species belonging to the family Pectinidae are still an issue of debate. The mitochondrial DNA sequences from the large ribosomal RNA gene may be of great value for systematic and phylogenetic studies within families. Partial sequences of the 16S rRNA gene were obtained for the scallop species Adamussium colbecki, Aequipecten opercularis, Chlamys glabra, C. islandica, C. varia, and Pecten jacobeus and compared with the published sequence of Pecten maximus. The present molecular data show that Chlamys are polyphyletic and do not support the assignment of these species to the two subfamilies Chlamydinae and Pectininae. Moreover, the minimal genetic distance between P. maximus and P. jacobeus suggests that they could belong to the same species. Received: 24 May 1999 / Accepted: 1 September 1999  相似文献   

7.
The human CD1 proteins belong to a lipid-glycolipid antigen-presenting gene family and are related in structure and function to the MHC class I molecules. Previous mapping and DNA hybridization studies have shown that five linked genes located within a cluster on human chromosome 1q22-23 encode the CD1 protein family. We have analyzed the complete genomic sequence of the human CD1 gene cluster and found that the five active genes are distributed over 175,600 nucleotides and separated by four expanded intervening genomic regions (IGRs) ranging in length between 20 and 68 kb. The IGRs are composed mostly of retroelements including five full-length L1 PA sequences and various pseudogenes. Some L1 sequences have acted as receptors for other subtypes or families of retroelements. Alu molecular clocks that have evolved during primate history are found distributed within the HLA class I duplicated segments (duplicons) but not within the duplicons of CD1. Phylogeny of the alpha3 domain of the class I-like superfamily of proteins shows that the CD1 cluster is well separated from HLA class I by a number of superfamily members including MIC (PERB11), HFE, Zn-alpha2-GP, FcRn, and MR1. Phylogenetically, the human CD1 sequences are interspersed by CD1 sequences from other mammalian species, whereas the human HLA class I sequences cluster together and are separated from the other mammalian sequences. Genomic and phylogenetic analyses support the view that the human CD1 gene copies were duplicated prior to the evolution of primates and the bulk of the HLA class I genes found in humans. In contrast to the HLA class I genomic structure, the human CD1 duplicons are smaller in size, they lack Alu clocks, and they are interrupted by IGRs at least 4 to 14 times longer than the CD1 genes themselves. The IGRs seem to have been created as "buffer zones" to protect the CD1 genes from disruption by transposable elements.  相似文献   

8.
In this paper we have analyzed 49 vertebrate gene families that were generated in the early stage of vertebrates and/or shortly before the origin of vertebrates, each of which consists of three or four member genes. We have dated the first (T1) and second (T2) gene duplications of 26 gene families with 3 member genes. The means of T1 (594 mya) and T2 (488 mya) are largely consistent to a well-cited version of two-round (2R) genome duplication theory. Moreover, in most cases, the time interval between two successive gene duplications is large enough that the fate of duplicate genes generated by the first gene duplication was likely to be determined before the second one took place. However, the phylogenetic pattern of 23 gene families with 4 members is complicated; only 5 of them are predicted by 2R model, but 11 families require an additional gene (or genome) duplication. For the rest (7 families), at least one gene duplication event had occurred before the divergence between vertebrate and Drosophila, indicating a possible misleading of the 4:1 rule (member gene ratio between vertebrates and invertebrates). Our results show that Ohno's 2R conjecture is valid as a working hypothesis for providing a most parsimonious explanation. Although for some gene families, additional gene duplication is needed, the credibility of the third genome duplication (3R) remains to be investigated. Received: 13 December 1999 / Accepted: 7 April 2000  相似文献   

9.
Short retroposons can be used as natural phylogenetic markers. By means of hybridization and PCR analysis, we demonstrate that B2 retroposon copies are present only in the three rodent families: Muridae, Cricetidae, and Spalacidae. This observation highlights the close phylogenetic relation between these families. Two novel B2-related retroposon families, named DIP and MEN elements, are described. DIP elements are found only in the genomes of jerboas (family Dipodidae) and birch mice (family Zapodidae), demonstrating the close relationship between these rodents. MEN element copies were isolated from the squirrel, Menetes berdmorei, but were not detected in three other species from the family Sciuridae. The MEN element has an unusual dimeric structure: the left and right monomers are B2- and B1-related sequences, respectively. Comparison of the B2, DIP, MEN, and 4.5S1 RNA elements revealed an 80-bp core sequence located at the beginning of the B2 superfamily retroposons. This observation suggests that these retroposon families descended from a common progenitor. A likely candidate for this direct progenitor could be the ID retroposon. Received: 20 December 1996 / Accepted: 17 June 1997  相似文献   

10.
11.
We surveyed the molecular evolutionary characteristics of 25 plant gene families, with the goal of better understanding general processes in plant gene family evolution. The survey was based on 247 GenBank sequences representing four grass species (maize, rice, wheat, and barley). For each gene family, orthology and paralogy relationships were uncertain. Recognizing this uncertainty, we characterized the molecular evolution of each gene family in four ways. First, we calculated the ratio of nonsynonymous to synonymous substitutions (d N/d S) both on branches of gene phylogenies and across codons. Our results indicated that the d N/d S ratio was statistically heterogeneous across branches in 17 of 25 (68%) gene families. The vast majority of d N/d S estimates were <<1.0, suggestive of selective constraint on amino acid replacements, and no estimates were >1.0, either across phylogenetic lineages or across codons. Second, we tested separately for nonsynonymous and synonymous molecular clocks. Sixty-eight percent of gene families rejected a nonsynonymous molecular clock, and 52% of gene families rejected a synonymous molecular clock. Thus, most gene families in this study deviated from clock-like evolution at either synonymous or nonsynonymous sites. Third, we calculated the effective number of codons and the proportion of G+C synonymous sites for each sequence in each gene family. One or both quantities vary significantly within 18 of 25 gene families. Finally, we tested for gene conversion, and only six gene families provided evidence of gene conversion events. Altogether, evolution for these 25 gene families is marked by selective constraint that varies among gene family members, a lack of molecular clock at both synonymous and nonsynonymous sites, and substantial variation in codon usage. Received: 25 May 2000 / Accepted: 16 October 2000  相似文献   

12.
The complete nucleotide sequence of the mitochondrial genome was determined for a conger eel, Conger myriaster (Elopomorpha: Anguilliformes), using a PCR-based approach that employs a long PCR technique and many fish-versatile primers. Although the genome [18,705 base pairs (bp)] contained the same set of 37 mitochondrial genes [two ribosomal RNA (rRNA), 22 transfer RNA (tRNA), and 13 protein-coding genes] as found in other vertebrates, the gene order differed from that recorded for any other vertebrates. In typical vertebrates, the ND6, tRNAGlu, and tRNAPro genes are located between the ND5 gene and the control region, whereas the former three genes, in C. myriaster, have been translocated to a position between the control region and the tRNAPhe gene that are contiguously located at the 5′ end of the 12S rRNA gene in typical vertebrates. This gene order is similar to the recently reported gene order in four lineages of birds in that the latter lack the ND6, tRNAGlu, and tRNAPro genes between the ND5 gene and the control region; however, the relative position of the tRNAPro to the ND6–tRNAGlu genes in C. myriaster was different from that in the four birds, which presumably resulted from different patterns of tandem duplication of gene regions followed by gene deletions in two distantly related groups of organisms. Sequencing of the ND5–cyt b region in 11 other anguilliform species, representing 11 families, plus one outgroup species, revealed that the same gene order as C. myriaster was shared by another 4 families, belonging to the suborder Congroidei. Although the novel gene orders of four lineages of birds were indicated to have multiple independent origins, phylogenetic analyses using nucleotide sequences from the mitochondrial 12S rRNA and cyt b genes suggested that the novel gene orders of the five anguilliform families had originated in a single ancestral species. Received: 13 July 2000 / Accepted: 30 November 2000  相似文献   

13.
We isolated and sequenced the cDNAs coding for lysozymes of six bivalve species. Alignment and phylogenetic analysis showed that, together with recently described bivalve lysozymes, the leech destabilase, and a number of putative proteins from extensive genomic and cDNA analyses, they belong to the invertebrate type of lysozymes (i type), first described by Jollès and Jollès (1975). We determined the genomic structure of the gene encoding the lysozyme of Mytilus edulis, the common mussel. We provide evidence that the central exon of this gene is homologous to the second exon of the chicken lysozyme gene, belonging to the c type. We propose that the origin of this domain can be traced back in evolution to the origin of bilaterian animals. Phylogenetic analysis suggests that i-type proteins form a monophyletic family. Received: 21 May 2001 / Accepted: 22 October 2001  相似文献   

14.
Eukaryotic vesicular transport requires the recognition of membranes through specific protein complexes. The heterotetrameric adaptor protein complexes 1, 2, and 3 (AP1/2/3) are composed of two large, one small, and one medium adaptin subunit. We isolated and characterized the cDNA for Arabidopsisγ-adaptin and performed a phylogenetic analysis of all adaptin subunits (proteins) in the context of all known homologous proteins. This analysis revealed (i) that the large subunits of AP1/2/3 are homologous and (ii) two subunits of the heptameric coatomer I (COPI) complex belong to this gene family. In addition, all small subunits and the aminoterminal domain of the medium subunits of the heterotetramers are homologous to each other; this also holds for two corresponding subunits of the COPI complex. AP1/2/3 and a substructure (heterotetrameric, F-COPI subcomplex) of the heptameric COPI had a common ancestral complex (called pre-F-COPI). Since all large and all small/medium subunits share sequence similarity, the ancestor of this complex is inferred to have been a heterodimer composed of one large and one small subunit. The situation encountered today is the result of successive rounds of coordinated gene duplications of both the large and the small/medium subunits, with F-COPI being the first that separated from the ancestral pre-F-COPI. Received: 1 October 1998 / Accepted: 4 January 1999  相似文献   

15.
We report the cloning and structural characterization of two Adh loci of the olive fruit fly, Bactrocera oleae. Each of the two genes, named Adh1 and Adh2, consists of three exons and two introns for a total length of 1981 and 988 nucleotides, respectively. Their deduced amino acid sequences of 257 and 258 residues exhibit a 77% identity and display the characteristics of the insect ADH enzymes, which belong to the short-chain dehydrogenases/reductases family. The Adh genes of B. oleae are compared to the two genes of the Mediterranean fly, Ceratitis capitata, the only other species of the Tephritidae family in which the Adh genes have been studied. On the basis of amino acid divergence the four genes form two clusters each containing one gene from each species, as expected if there was one duplication event before speciation. On the basis of nucleotide sequence the four sequences form two clusters each containing the two sequences from the same species, as expected if there was a separate duplication event in each species. To help decide between the two alternatives, we compared at both the amino acid and DNA level the Adh genes of five Drosophila species that are known to carry two such genes and observed that, with only one exception at the amino acid level, conspecific loci cluster together. We conclude that the information we have at present does not allow a firm choice between the hypothesis of a single duplication event that occurred before the split of Bactrocera and Ceratitis from their common ancestor and the hypothesis of two independent duplication events, one in each of the two genera. Received: 30 May 2000 / Accepted: 17 August 2000  相似文献   

16.
We have isolated a 29,000-Da carbonic anhydrase (CA) protein from the zebrafish, Danio rerio, sequenced two peptide fragments, and tentatively identified it as a high-activity CA by inhibition kinetics. We have also characterized a 1,537-bp message whose deduced sequence of 260 amino acids matches that of the isolated protein. This CA is clearly an α-CA based on the similarity of its sequence to that of other members of the α-CA gene family. A phylogenetic analysis suggested CAH-Z diverged after the branching of the CA-V and CA-VII genes and prior to the duplications that generated the CA-I, CA-II, and CA-III genes of amniotes. This marks the first characterization of the mRNA and its protein product from the CA gene of a teleost. Received: 31 March 1996 / Accepted: 8 September 1996  相似文献   

17.
DNA repair in the Archaea is relevant to the consideration of genome maintenance and replication fidelity in the last universal common ancestor (LUCA) from two perspectives. First, these prokaryotes embody a mix of bacterial and eukaryal molecular features. Second, DNA repair proteins would have been essential in LUCA to maintain genome integrity, regardless of the environmental temperature. Yet we know very little of the basic molecular mechanisms of DNA damage and repair in the Archaea in general. Many studies on DNA repair in archaea have been conducted with hyperthermophiles because of the additional stress imposed on their macromolecules by high temperatures. In addition, of the six complete archaeal genome sequences published so far, five are thermophilic archaea. We have recently shown that the hyperthermophile Pyrococcus furiosus has an extraordinarily high capacity for repair of radiation-induced double-strand breaks and we have identified and sequenced several genes involved in DNA repair in P. furiosus. At the sequence level, only a few genes share homology with known bacterial repair genes. For instance, our phylogenetic analysis indicates that archaeal recombinases occur in two paralogous gene families, one of which is very deeply branched, and both recombinases are more closely related to the eukaryotic RAD51 and Dmc1 gene families than to the Escherichia coli recA gene. We have also identified a gene encoding a repair endo/exonuclease in the genomes of several Archaea. The archaeal sequences are highly homologous to those of the eukaryotic Rad2 family and they cluster with genes of the FEN-1 subfamily, which are known to be involved in DNA replication and repair in eukaryotes. We argue that there is a commonality of mechanisms and protein sequences, shared between prokaryotes and eukaryotes for several modes of DNA repair, reflecting diversification from a minimal set of genes thought to represent the genome of the LUCA.  相似文献   

18.
Analysis of the 18S rDNA sequences of five species of the family Dugesiidae (phylum Platyhelminthes, suborder Tricladida, infraorder Paludicola) and eight species belonging to families Dendrocoelidae and Planaridae and to the infraorder Maricola showed that members of the family Dugesiidae have two types of 18S rDNA genes, while the rest of the species have only one. The duplication event also affected the ITS-1, 5.8S, ITS-2 region and probably the 28S gene. The mean divergence value between the type I and the type II sequences is 9% and type II 18S rDNA genes are evolving 2.3 times more rapidly than type I. The evolutionary rates of type I and type II genes were calibrated from biogeographical data, and an approximate date for the duplication event of 80–120 million years ago was calculated. The type II gene was shown, by RT-PCR, to be transcribed in adult individuals of Schmidtea polychroa, though at very low levels. This result, together with the fact that most of the functionally important positions for small-subunit rRNA in prokaryotes have been conserved, indicates that the type II gene is probably functional. Received: 24 March 1998 / Accepted: 17 March 1999  相似文献   

19.
The genus Chrysolina consists of specialized phytophagous leaf-beetles (Coleoptera, Chrysomelidae) with feed on several plant families. There is no explicit phylogenetic hypothesis available for this genus, which includes 65 subgenera and more than 400 species with a wide distribution. We obtained 839-bp sequence data from the 16S rDNA and cytochrome oxidase subunit I (COI) mitochondrial genes. Thirty Chrysolina taxa representing eight host–plant affiliations, two species of the closely related genus Oreina, and two outgroups were sampled. These data sets were used separately and combined to obtain the mitochondrial cladogram of the group using maximum-parsimony and maximum-likelihood criteria. The results were compared to current proposals for Chrysolina systematics that are based on morphological, ecological, and karyological data. The trees obtained were in the most part congruent with the proposed ancestral association of Chrysolina to Lamiaceae based on chromosome number in several lineages. A minimum of five host-plant switches from the ancestral state inferred at the family level and two at the subclass level suggests the absence of parallel evolution of beetles and their host plants. Another switch leading to oligophagy at the family level was deduced to have occurred in the lineage of the subgenus Chrysolina s.str. Received: 22 May 1998 / Accepted: 16 September 1998  相似文献   

20.
Detailed nucleotide diversity studies revealed that the fil1 gene of Antirrhinum, which has been reported to be single copy, is a member of a gene family composed of at least five genes. In four Antirrhinum majus populations with different mating systems and one A. graniticum population, diversity within populations is very low. Divergence among Antirrhinum species and between Antirrhinum and Digitalis is also low. For three of these genes we also obtained sequences from a more divergent member of the Scrophulariaceae, Verbascum nigrum. Compared with Antirrhinum, little divergence is again observed. These results, together with similar data obtained previously for five cycloidea genes, suggest either that these gene families (or the Antirrhinum genome) are unusually constrained or that there is a low rate of substitution in these lineages. Using a sample of 52 genes, based on two measures of codon usage (ENC and GC3 content), we show that cyc and fil1 are among the least biased Antirrhinum genes, so that their low diversity is not due to extreme codon bias. Received: 20 June 2000 / Accepted: 25 October 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号