首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vanillin (VAN) and cinnamaldehyde (CIN) are dietary antimutagens that effectively inhibit both induced and spontaneous mutations. We have shown previously that VAN and CIN reduced the spontaneous mutant frequency in Salmonella TA104 (hisG428, rfa, ΔuvrB, pKM101) by approximately 50% and that both compounds significantly reduced mutations at GC sites but not at AT sites. Previous studies have suggested that VAN and CIN may reduce mutations in bacterial model systems by modulating DNA repair pathways, particularly by enhancing recombinational repair. To further explore the basis for inhibition of spontaneous mutation by VAN and CIN, we have determined the effects of these compounds on survival and mutant frequency in five Escherichia coli strains derived from the wild-type strain NR9102 with different DNA repair backgrounds. At nontoxic doses, both VAN and CIN significantly reduced mutant frequency in the wild-type strain NR9102, in the nucleotide excision repair-deficient strain NR11634 (uvrB), and in the recombination-proficient but SOS-deficient strain NR11475 (recA430). In contrast, in the recombination-deficient and SOS-deficient strain NR11317 (recA56), both VAN and CIN not only failed to inhibit the spontaneous mutant frequency but actually increased the mutant frequency. In the mismatch repair-defective strain NR9319 (mutL), only CIN was antimutagenic. Our results show that the antimutagenicity of VAN and CIN against spontaneous mutation required the RecA recombination function but was independent of the SOS and nucleotide excision repair pathways. Thus, we propose the counterintuitive notion that these antimutagens actually produce a type of DNA damage that elicits recombinational repair (but not mismatch, SOS, or nucleotide excision repair), which then repairs not only the damage induced by VAN and CIN but also other DNA damage—resulting in an antimutagenic effect on spontaneous mutation.  相似文献   

2.
Reactive oxygen species (ROS) produced by intracellular metabolism are believed to contribute to spontaneous mutagenesis in somatic cells. Hydrogen peroxide (H(2)O(2)) has been shown to induce a variety of genetic alterations, probably by the generation of hydroxyl radicals via the Fenton reaction. The kinds of DNA sequence alterations caused by H(2)O(2) in prokaryotic cells have been studied extensively, whereas relatively little is known about the mutational spectrum induced by H(2)O(2) in mammalian genes. We have used the T-cell cloning assay to study the ability of H(2)O(2) to induce mutations at the hypoxanthine guanine phosphoribosyltransferase (HPRT) locus in primary human lymphocytes. Treatment of cells for 1 h with 0.34-1.35 mM of H(2)O(2) caused a dose dependent decrease of cell survival and increase of the HPRT mutant frequency (MF). After 8 days of expression time, the highest dose of H(2)O(2) caused a 5-fold increase of MF compared to the untreated control cells. Mutant clones were collected and the genomic rearrangements at the T-cell receptor (TCR) gamma-locus were studied to identify independent mutations. RT-PCR and DNA sequencing was used to identify mutations in the HPRT coding region. Due to a relatively high frequency of sibling clones, only six independent mutations were obtained among the controls, and 20 among the H(2)O(2) treated cells. In both sets, single base pair substitutions were the most common type of mutation (5/6 and 13/20, respectively), with a predominance of transitions at GC base pairs, which is also the most common type of HPRT mutation in T-cells in vivo. Among the single base pair substitutions, five were new mutations not previously reported in the human HPRT mutation database. Overall, the kinds of mutation occurring in T-cells in vivo and H(2)O(2) treated cells were similar, albeit the number of mutants was too small to allow a meaningful statistical comparison. These results demonstrate that H(2)O(2) is mutagenic to primary human T-lymphocytes in vitro and induces mutations of the same kind that is observed in the background spectrum of HPRT mutation in T-cells in vivo.  相似文献   

3.
This paper (1) presents an analysis of published data on the molecular nature of spontaneously arising and radiation-induced mutations in mammalian somatic cell systems and (2) examines whether the molecular nature and mechanisms of origin of radiation-induced mutations, in mammalian in vivo and in vitro systems, as currently understood, are consistent with expectations based on the biophysical and microdosimetric properties of ionizing radiation. Depending on the test system (CHO cells, human T lymphocytes and human lymphoid cell line TK6), 80-97% of spontaneous HPRT mutations show normal Southern patterns; the remainder is due to gross changes, predominantly partial (intragenic) deletions. Total gene deletions at the HPRT locus are rare except in the TK6 cell line. At the APRT locus in CHO cells, 80-97% of spontaneous mutations are due to base-pair changes, the remainder being, mostly, partial deletions. The latter can extend upstream in the 5' direction but not beyond the APRT gene in the 3' direction. At the human HLA-A locus (T lymphocytes), the percentage of mutations with normal Southern patterns is lower than that for HPRT, and in the range of 50-60%. At the HLA-A locus, mitotic recombination contributes substantially to the mutation spectrum (approximately 30% of mutations recovered) and this is likely to be true of the TK locus in the TK6 cell line as well. With a few exceptions, most of the radiation-induced mutations show altered Southern patterns and are consistent with their being deletions and/or other gross changes (HPRT, 70-90% (CHO); 50-85% (TK6); 50-75% (T lymphocytes); TK, 60-80% (TK6); HLA-A, 80% (T lymphocytes); DHFR, 100% (CHO]. The exceptions are APRT mutations in CHO cells (16-20% of mutants with deletions or other changes) and HPRT mutations in T lymphocytes from A-bomb survivors (15-25%); the latter finding is consistent with the occurrence of in vivo selection against HPRT mutant cells. In cases of HPRT intragenic deletions analyzed (CHO cells and V79 Chinese hamster cells), there is evidence for a non-random distribution of breakpoints. The spontaneous mutation frequencies vary widely, from about 0.04/10(6) cells (sickle cell mutations at the human HBB locus) to 30.8/10(6) cells (HLA-A mutations in T lymphocytes) and are dependent on the locus, the system employed and a number of other factors. Those for the other loci fall between these limits.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Recently, we showed that the cytotoxic and mutagenic response in human cells to the model SN2 alkylating agent methyl methanesulfonate (MMS) can be modulated by the mismatch repair (MMR) pathway. That is, human cancer cell lines defective in MMR are more resistant to the cytotoxic effects of MMS exposure and suffer more induced mutations at the HPRT locus than MMR-proficient cell lines. Since MMS produces little O6-methylguanine (O6-meG), the observed hypermutability and resistance to cytotoxicity in MMR-defective cells likely results from lesions other than O6-meG. MMS produces a high yield of N7-methylguanine (N7-meG) and N3-methyladenine (N3-meA), which can lead to the formation of promutagenic abasic sites, and these lesions may be responsible for the observed cytotoxic and/or mutagenic effects of MMS. To further investigate the mechanism of MMS mutagenesis, two MMR-defective human cancer cell lines were treated with MMS and the frequency and the types of mutations produced at the HPRT locus were determined. MMS treatment (1.5 mM) produced a 1.6- and a 2.2-fold increase in mutations above spontaneous levels in HCT116 and DLD-1 cell lines, respectively. An average 3.7-fold increase in transversion mutations was observed, which accounted for greater than one-third of all induced mutations in both cell lines. In contrast, an average 1.6-fold increase was seen among transition mutations (the class expected from O-alkylation products). Since transversion mutations are not produced by O6-meG, these findings suggest that abasic sites may be the lesion responsible for a large proportion of MMS mutagenicity in MMR-defective cells. Furthermore, these data suggest the MMS-induced damage, either abasic site-inducing base alterations (i.e., N7-meG and N3-meA) or the resulting abasic sites themselves, may be substrates for recognition and/or repair by MMR proteins.  相似文献   

5.
Measurement of mutant frequency in tumour specimens has been hampered by low cloning efficiency in soft agar. A method was developed to detect cell proliferation using the thymidine analogue 5-bromo-2'-deoxyuridine (BrUdR). BrUdR incorporation was monitored by immunofluorescent staining of fixed cells using a monoclonal antibody highly specific for this nucleoside analogue. The 6-thioguanine (6TG) exposure conditions which inhibited DNA synthesis, as measured by BrUdR incorporation, in wild-type cells while allowing proliferation of spontaneous hypoxanthine-guanine phosphoribosyltransferase (HPRT) mutants were investigated using tumour cell lines. It was shown that exposure to 10(-5) M BrUdR for the equivalent of 1 cell cycle time did not affect growth of wild-type cells, nor did it affect the growth of HPRT- mutants in the presence of 6TG. Methods for rapid flow cytometric enumeration of BrUdR-labelled 6TG-resistant cells were developed using fluorescent microspheres as an internal standard. To validate the BrUdR mutation assay, the 6TG mutant frequency (MF) was measured in L1210 R/S, a mouse leukaemic cell line (BrUdR 6TG MF = 7.0 X 10(-5] and the results directly compared with those from a microtitration cloning assay (MF = 4.6 X 10(-5]. The results were similar and within the range reported for HPRT MF in mammalian cells.  相似文献   

6.
DNA mismatch repair is required for correcting any mismatches that are created during replication and recombination, and a defective mismatch repair system contributes to DNA damage-induced growth arrest. The colorectal cancer cell line HCT116 is known to have a mutation in the hMLH1 mismatch repair gene resulting in microsatellite instability and defective mismatch repair. Honokiol is a biphenolic compound that has been used in traditional Chinese medicine for treating various ailments including cancer. This study was designed to test the hypothesis that honokiol enhances the radiosensitivity of cancer cells with mismatch repair defect (HCT116) compared with those that are mismatch repair proficient (HCT116-CH3). We first determined that the combination of honokiol and γ-irradiation treatment resulted in dose-dependent inhibition of proliferation and colony formation in both cell lines. However, the effects were more pronounced in HCT116 cells. Similarly, the combination induced higher levels of apoptosis (caspase 3 activation, Bax to Bcl2 ratio) in the HCT116 cells compared with HCT116-CH3 cells. Cell cycle analyses revealed higher levels of dead cells in HCT116 cells. The combination treatment reduced expression of cyclin A1 and D1 and increased phosphorylated p53 in both cell lines, although there were significantly lower amounts of phosphorylated p53 in the HCT116-CH3 cells, suggesting that high levels of hMLH1 reduce radiosensitivity. These data demonstrate that honokiol is highly effective in radiosensitizing colorectal cancer cells, especially those with a mismatch repair defect.  相似文献   

7.
8.
Bioassay-directed fractionation with a Salmonella/microsomal assay against the food borne mutagen 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) was used to identify antimutagenic components of hops. Hops pellets extracted with diethylether showed antimutagenic activity against mutations induced by IQ. Fractionation of the diethylether extract (DE) by column chromatography, followed by semi-preparative HPLC yielded two fractions (E4b and E4d) with strong antimutagenic activity against IQ induced mutations. Separation of fraction E4b resulted in inactive fractions, while fraction E4d has been identified to be xanthohumol. In mammalian test system with human hepatoma HepG2 cells fraction E4d at 10 μg/ml completely prevented formation of IQ induced DNA damage. These results indicate that xanthohumol is a very promising potential protective agent against genotoxicity of food borne carcinogens, which warrants further investigation.  相似文献   

9.
Aneuploid colon cancer cells have a robust spindle checkpoint   总被引:7,自引:0,他引:7       下载免费PDF全文
Colon cancer cells frequently display minisatellite instability (MIN) or chromosome instability (CIN). While MIN is caused by mismatch repair defects, the lesions responsible for CIN are unknown. The observation that CIN cells fail to undergo mitotic arrest following spindle damage suggested that mutations in spindle checkpoint genes may account for CIN. However, here we show that CIN cells do undergo mitotic arrest in response to spindle damage. Although the maximum mitotic index achieved by CIN lines is diminished relative to MIN lines, CIN cells clearly have a robust spindle checkpoint. Consistently, mutations in spindle checkpoint genes are rare in human tumours. In contrast, the adenomatous polyposis coli (APC) gene is frequently mutated in CIN cells. Significantly, we show here that expression of an APC mutant in MIN cells reduces the mitotic index following spindle damage to a level observed in CIN cells, suggesting that APC dysfunction may contribute to CIN.  相似文献   

10.
Epidemiological and animal studies indicate that selenium supplementation suppresses risk of colorectal and other cancers. The majority of colorectal cancers are characterized by a defective DNA mismatch repair (MMR). Here, we have employed the MMR-deficient HCT 116 colorectal cancer cells and the MMR-proficient HCT 116 cells with hMLH1 complementation to investigate the role of hMLH1 in selenium-induced DNA damage response, a tumorigenesis barrier. The ATM (ataxia telangiectasia mutated) protein responds to clastogens and initiates DNA damage response. We show that hMLH1 complementation sensitizes HCT 116 cells to methylseleninic acid, methylselenocysteine, and sodium selenite via reactive oxygen species and facilitates the selenium-induced oxidative 8-oxoguanine damage, DNA breaks, G2/M checkpoint response, and ATM pathway activation. Pretreatment of the hMLH1-complemented HCT 116 cells with the antioxidant N-acetylcysteine or 2,2,6,6-tetramethylpiperidine-1-oxyl or the ATM kinase inhibitor KU55933 suppresses hMLH1-dependent DNA damage response to selenium exposure. Selenium treatment stimulates the association between hMLH1 and hPMS2 proteins, a heterodimer critical for functional MMR, in a manner dependent on ATM and reactive oxygen species. Taken together, the results suggest a new role of selenium in mitigating tumorigenesis by targeting the MMR pathway, whereby the lack of hMLH1 renders the HCT 116 colorectal cancer cells resistant to selenium-induced DNA damage response.  相似文献   

11.
The transforming growth-beta receptor type II (TGF-beta RII) gene is one of the target genes of the DNA mismatch repair (MMR) defect. The human colorectal carcinoma cell line HCT116 has mutations in the hMLH1 gene and in the microsatellite region of the TGF-beta RII gene, both located on the short arm of chromosome 3. Introduction of the wild-type hMLH1 gene on transferred human chromosome 3 restores many characteristics of MMR-deficiency in HCT116. In this study, we determined whether transfer of chromosome 3 into HCT116 also complements the TGF-beta RII gene defect. We compared in vitro growth characteristics between HCT116 and HCT116 with a transferred chromosome 3 (HCT116 + ch3). The growth was suppressed in HCT116 + ch3 compared with parental HCT116. This suppression was abolished by frequent replacement with fresh medium, suggesting that the autocrine TGF-beta-TGF-beta RII system may be responsible for growth suppression. To explore this possibility, we determined several characteristics essential for the autocrine system. We found that HCT116 + ch3 expresses wild-type as well as mutated TGF-beta RII mRNA. In addition, phosphorylation of TGF-beta RI and growth inhibition were observed in HCT116 + ch3 but not in HCT116 by exposure to exogenous TGF-beta. The amount of TGF-beta1 in HCT116 + ch3 cultures was remarkably less than that in the HCT116, suggesting that TGF-beta produced by HCT116 + ch3 cells may be consumed by the cells. The conditioned medium from HCT116 cultures inhibits HCT116 + ch3 growth. This inhibition was neutralized by the anti-TGF-beta antibody. Taken together, these results strongly suggest that the TGF-beta RII gene defect in HCT116 is complemented by a wild-type gene on the transferred chromosome 3 and that HCT116 + ch3 gained the ability to respond to TGF-beta. Simultaneous complementation of defects of a responsible gene and a major target gene by the chromosome transfer is useful to prove the inactivated phenotypes acquired during colorectal tumorigenesis.  相似文献   

12.
Colorectal cancer (CC) is one of two diseases, in which the link between cancer proneness and DNA repair deficiency appears to be proved. A strict relationship between mismatch repair (MMR) gene mutations, microsatellite instability (MSI) has been found in familiar colorectal cancer (Lynch syndrome). Tumorigenesis at familiar cancer is initiated by biallelic mutations in the major MMR genes, namely MSH2 or MLH1. One of these mutations is an inherited germline alteration and the other is a somatic one. The initiating mutation in sporadic colorectal tumors was not still identified although biochemical and genetic signs of MMR deficiency are observed in tumor cells. Two currently used colorectal tumor cell lines HCT116 and COLO320HSR were derived from hereditary and sporadic tumors accordingly. HCT116 cell line exhibits MMR-deficiency due to biallelic deletion in MLHL. As a consequence this shows MSI phenotype and a near-diploid karyotype. COLO320HSR cell line is characterized by MSS phenotype with mostly imbalanced aberrations. This indicates MMR proficiency in these cells. However, both MMR-deficient HCT116 and COLO320HSR cells reveal near-diploid karyotype. Earlier we have shown that the number of secondary DNA double strand breaks, induced by methylnitrosourea (MNU), represent functional activity of cellular MMR. In the present study, using this approach we evaluated sensitivity to MNU and MMR activity in two colorectal tumor cell lines (HCT 116, COLO320HSR) and compared them to that in the HeLa cell line, which have MMR-proficient phenotype. We showed that cell line COLO320HSR exhibits low MMR activity, close to the level of MMR-activity in HCT116 cell line. We found a mutation in MSH2-G520A gene in COLO320HSR. This neutral mutation apparently is not related to polymorphism as we failed to identify the same mutation in any of MSH2 gene sequences of lymphocytes from 30 patients with sporadic colorectal cancer.  相似文献   

13.
The PTEN tumor suppressor gene is one of the most commonly mutated genes in human cancer. Because inactivation of PTEN is a somatic event, PTEN mutations represent an important genetic difference between cancer cells and normal cells and therefore a potential anticancer drug target. However, it remains a substantial challenge to identify compounds that target loss-of-function events such as mutations of tumor suppressors. In an effort to identify small molecules that preferentially kill cells with mutations of PTEN, the authors developed and implemented a high-throughput, paired cell-based screen composed of parental HCT116 cells and their PTEN gene-targeted derivatives. From 138 758 compounds tested, two hits were identified, and one, N'-[(1-benzyl-1H-indol-3-yl)methylene]benzenesulfonohydrazide (CID1340132), was further studied using a variety of cell-based models, including HCT116, MCF10A, and HEC1A cells with targeted deletion of either their PTEN or PIK3CA genes. Preferential killing of PTEN and PIK3CA mutant cells was accompanied by DNA damage, inhibition of DNA synthesis, and apoptosis. Taken together, these data validate a cell-based screening approach for identifying lead compounds that target cells with specific tumor suppressor gene mutations and describe a novel compound with preferential killing activity toward PTEN and PIK3CA mutant cells.  相似文献   

14.
Treatment of cells with the anti-cancer drug camptothecin (CPT) induces topoisomerase I (Top1)-mediated DNA damage, which in turn affects cell proliferation and survival. In this report, we demonstrate that treatment of the wild-type HCT116 (wt HCT116) human colon cancer cell line and the isogenic p53(-/-) HCT116 and p21(-/-) HCT116 cell lines with a high concentration (250 nm) of CPT resulted in apoptosis, indicating that apoptosis occurred by a p53- and p21-independent mechanism. In contrast, treatment with a low concentration (20 nm) of CPT induced cell cycle arrest and senescence of the wt HCT116 cells, but apoptosis of the p53(-/-) HCT116 and p21(-/-) HCT116 cells. Further investigations indicated that p53-dependent expression of p21 blocked apoptosis of wt HCT116 cells treated with 20 nm, but not 250 nm CPT. Interestingly, blocking of the apoptotic pathway, by Z-VAD-FMK, in p21(-/-) HCT116 cells following treatment with 20 nm CPT did not permit the cells to develop properties of senescence. These observations demonstrated that p21 was required for senescence development of HCT116 cells following treatment with low concentrations of CPT.  相似文献   

15.
DNA hypomethylation is an important epigenetic modification found to occur in many different cancer types, leading to the upregulation of previously silenced genes and loss of genomic stability. We previously demonstrated that hypoxia and hypoglycaemia (ischemia), two common micro-environmental changes in solid tumours, decrease DNA methylation through the downregulation of DNMTs in human colorectal cancer cells. Here, we utilized a genome-wide cross-platform approach to identify genes hypomethylated and upregulated by ischemia. Following exposure to hypoxia or hypoglycaemia, methylated DNA from human colorectal cancer cells (HCT116) was immunoprecipitated and analysed with an Affymetrix promoter array. Additionally, RNA was isolated and analysed in parallel with an Affymetrix expression array. Ingenuity pathway analysis software revealed that a significant proportion of the genes hypomethylated and upregulated were involved in cellular movement, including PLAUR and CYR61. A Matrigel invasion assay revealed that indeed HCT116 cells grown in hypoxic or hypoglycaemic conditions have increased mobility capabilities. Confirmation of upregulated expression of cellular movement genes was performed with qPCR. The correlation between ischemia and metastasis is well established in cancer progression, but the molecular mechanisms responsible for this common observation have not been clearly identified. Our novel data suggests that hypoxia and hypoglycaemia may be driving changes in DNA methylation through downregulation of DNMTs. This is the first report to our knowledge that provides an explanation for the increased metastatic potential seen in ischemic cells; i.e. that ischemia could be driving DNA hypomethylation and increasing expression of cellular movement genes.  相似文献   

16.
The insertion of foreign DNA at a specific genomic locus directed by homologous DNA sequences, or gene targeting, is an inefficient process in mammalian somatic cells. Given the key role of non-homologous end joining (NHEJ) pathway in DNA double-strand break (DSB) repair in mammalian cells, we investigated the effects of decreasing NHEJ protein levels on gene targeting. Here we demonstrate that the transient knockdown of integral NHEJ proteins, Ku70 and Xrcc4, by RNAi in human HCT116 cells has a remarkable effect on gene targeting/random insertions ratios. A timely transfection of an HPRT-based targeting vector after RNAi treatment led to a 70% reduction in random integration events and a 33-fold increase in gene targeting at the HPRT locus. These findings bolster the role of NHEJ proteins in foreign DNA integration in vivo, and demonstrate that their transient depletion by RNAi is a viable approach to increase the frequency of gene targeting events. Understanding how foreign DNA integrates into a cell’s genome is important to advance strategies for biotechnology and genetic medicine.  相似文献   

17.
The production of reactive oxygen species (ROS) in mammalian cells is tightly regulated because of their potential to damage macromolecules, including DNA. To investigate possible links between high ROS levels, oxidative DNA damage, and genomic instability in mammalian cells, we established a novel model of chronic oxidative stress by coexpressing the NADPH oxidase human (h) NOX1 gene together with its cofactors NOXO1 and NOXA1. Transfectants of mismatch repair (MMR)-proficient HeLa cells or MMR-defective Msh2(-/-) mouse embryo fibroblasts overexpressing the hNOX1 complex displayed increased intracellular ROS levels. In one HeLa clone in which ROS were particularly elevated, reactive nitrogen species were also increased and nitrated proteins were identified with an anti-3-nitrotyrosine antibody. Overexpression of the hNOX1 complex increased the steady-state levels of DNA 8-oxo-7,8-dihydroguanine and caused a threefold increase in the HPRT mutation rate in HeLa cells. In contrast, additional oxidatively generated damage did not affect the constitutive mutator phenotype of the Msh2(-/-) fibroblasts. Because no significant changes in the expression of several DNA repair enzymes for oxidative DNA damage were identified, we suggest that chronic oxidative stress can saturate the cell's DNA repair capacity and cause significant genomic instability.  相似文献   

18.
Colorectal cancer (CC) is one of two diseases, in which the link between cancer proneness and DNA repair deficiency appears to be proved. A strict relationship between mismatch repair (MMR) gene mutations, microsatellite instability (MSI) has been found in familiar colorectal cancer (Lynch syndrome). Tumorigenesis at familiar cancer is initiated by biallelic mutations in the major MMR genes, namely MSH2 or MLH1. One of these mutations is an inherited germline alteration and the other is a somatic one. The initiating mutation in sporadic colorectal tumors was not still identified although biochemical and genetic signs of MMR deficiency are observed in tumor cells. Two currently used colorectal tumor cell lines HCT116 and COLO320HSR were derived from hereditary and sporadic tumors accordingly. HCT116 cell line exhibits MMR-deficiency due to biallelic deletion in MLH1. As a consequence this shows MSI phenotype and a near-diploid karyotype. COLO320HSR cell line is characterized by MSS phenotype with mostly imbalanced aberrations. This indicates MMR proficiency in these cells. However, both MMR-deficient HCT116 and COLO320HSR cells reveal near-diploid karyotype. Earlier we have shown that the number of secondary DNA double strand breaks, induced by methylnitrosourea (MNU), represent functional activity of cellular MMR. In the present study, using this approach we evaluated sensitivity to MNU and MMR activity in two colorectal tumor cell lines (HCT116, COLO320HSR) and compared them to that in the HeLa cell line, which have MMR-proficient phenotype. We showed that cell line COLO320HSR exhibits low MMR activity, close to the level of MMR-activity in HCT116 cell line. We found a mutation in MSH2-G520A gene in COLO320HSR. This neutral mutation apparently is not related to polymorphism as we failed to identify the same mutation in any of MSH2 gene sequences of lymphocytes from 30 patients with sporadic colorectal cancer.  相似文献   

19.
20.
Antimutagenesis by factors affecting DNA repair in bacteria   总被引:3,自引:0,他引:3  
Y Kuroda  T Inoue 《Mutation research》1988,202(2):387-391
The term 'antimutagen' was originally used to describe an agent that reduces the apparent yield of spontaneous and/or induced mutations, regardless of the mechanisms involved. The 'antimutagens' include 'desmutagens' and 'bio-antimutagens'. In this article, our attention was focused on the bio-antimutagens affecting DNA repair in bacteria. Cobaltous chloride reduced the frequency of mutations in Escherichia coli induced by MNNG. The possibility that metal compound inhibits the growth of mutagen-treated cells was examined. The results clearly showed that the antimutagen surely reduces the mutation rate. The target of cobaltous chloride was found to be cellular factors including Rec A. Vanillin and cinnamaldehyde had strong antimutagenic activities against UV, 4NQO and AF-2. They stimulated Rec A-dependent recombination repair functions in the mutagen-treated cells. Among plant materials, tannins possess antimutagenic activity against UV-induced mutations in E. coli. It has been found that tannic acid stimulates the excision repair encoded by the uvrA gene thereby reducing the yield of mutants. Substances which are antimutagenic in bacterial systems also had antimutagenic activity in cultured mammalian cell systems. Vanillin reduced the frequency of mutagen-induced chromosomal aberrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号