首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The catecholaminergic and serotoninergic neurons in the brain change their performance according to the physiological need via a catecholaminergic/serotoninergic activity enhancer (CAE/SAE) mechanism. Phenylethylamine (PEA), tyramine and tryptamine are the presently known endogenous CAE/SAE substances which enhance the impulse propagation mediated release of catecholamines and serotonin in the brain. A PEA derivative, (-)deprenyl (selegiline), known as a selective inhibitor of MAO-B, is for the time being the only CAE/SAE substance in clinical use. Aiming to develop a selective CAE/SAE substance much more potent than (-)deprenyl, a series of new 1-aryl-2-alkylaminoalkanes, structurally unrelated to PEA and the amphetamines, was designed and prepared. Among them, (-)1-(benzofuran-2-yl)-2-propylaminopentane ((-)BPAP) was selected as a promising candidate substance for further studies. (-)BPAP significantly enhanced in rats the impulse propagation mediated release of catecholamines and serotonin in the brain 30min after acute injection of 0.36nmol/kg sc. In the shuttle box, (-)BPAP was in rats about 130 times more potent than (-)deprenyl in antagonizing tetrabenazine induced inhibition of performance. (+/-)BPAP protected cultured hippocampal neurons from the neurotoxic effect of beta-amyloid in 10(-14)-10(-15)M concentration.  相似文献   

2.
Abstract

The substrate- and inhibitor-related characteristics of monoamine oxidase (MAO) were studied for catfish brain and liver. The kinetic constants for MAO in both tissues were determined using 5-hydroxytryptamine (5-HT), tyramine and β-phenylethylamine (PEA) as substrates. For both tissues, the Vmax values were highest with 5-HT and lowest with PEA. The Km value for the brain was highest with 5-HT, followed by tyramine and PEA; but for the liver its value was highest with PEA, followed by 5-HT and tyramine, although all values were in the same order of magnitude. The inhibition of MAO by clorgyline and deprenyl by use of 5-HT, tyramine and PEA as substrates showed that the MAO-A inhibitor clorgyline was more effective than the MAO-B inhibitor deprenyl for both catfish tissues; a single form was present since inhibition by clorgyline or deprenyl with 1000 μM PEA showed single phase sigmoid curves. It is concluded that catfish brain and liver contain a single form of MAO, relatively similar to mammalian MAO-A.  相似文献   

3.
Acute and delayed (hormonal imprinting) effect of (-) deprenyl and its derivative without MAO-B inhibitory activity (-) PPAP, were studied on cells of the peritoneal fluid (lymphocytes, monocytes, granulocytes and mast cells) by flow cytometric and confocal microscopic analysis. Thirty minutes after treatment of 6-week-old female animals, deprenyl was ineffective while PPAP significantly increased the serotonin level of these cells. Three weeks after treatment at weaning, deprenyl drastically decreased the serotonin level of each cell type, while PPAP moderately but significantly increased the serotonin level of monocytes, granulocytes and mast cells. This means that the two related molecules have different effects on the immune cells, which seem to be independent of MAO-B inhibition. The experiments emphasize the necessity of studying the prolonged effects of biologically active molecules, even if they are without acute effects. As serotonin is a modulator of the immune system, the influence on immune cells of the molecules studied can contribute to their enhancing effect.  相似文献   

4.
A single dose of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) in mice caused 75-87% depletion of heart norepinephrine (NE) concentration 24 hrs later. MPP+ (1-methyl-4-phenylpyridinium) caused similar depletion of heart NE. The effect of MPTP was not blocked by pretreatment with deprenyl, an inhibitor of type B monoamine oxidase (MAO-B). Also, deprenyl pretreatment did not prevent the depletion of heart NE after 4 daily doses of MPTP, even though in the same mice deprenyl pretreatment did prevent depletion of dopamine in the striatum and of NE in the frontal cortex. Apparently the depletion of heart NE by MPTP, unlike the depletion of brain catecholamines, does not require that MPTP be metabolized by MAO-B and can be mimicked by systemic injection of MPP+.  相似文献   

5.
Pargyline, an inhibitor of monoamine oxidase type B (MAO-B), did not prevent the depletion of heart norepinephrine 24 hr after a single dose of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) in mice. In mice killed 24 hr after the last of 4 daily doses of MPTP, the depletion of dopamine in the striatum and of norepinephrine in the frontal cortex was completely prevented by pargyline, but the depletion of heart norepinephrine was not prevented. These results with pargyline are the same as results obtained earlier with deprenyl, another selective inhibitor of MAO-B. The doses of pargyline and of deprenyl that were used resulted in almost complete inhibition of MAO-B activity (phenylethylamine as substrate) in brain, heart and liver of mice. Deprenyl did not inhibit MAO-A activity (serotonin as substrate) in brain, but pargyline caused some inhibition of MAO-A in brain. In heart and liver, serotonin was oxidized only at about 1/10 the rate of phenylethylamine oxidation, suggesting that MAO-B predominates in these tissues. Both pargyline and deprenyl caused some inhibition of serotonin deamination in heart and liver, suggesting that the oxidation may have been due partly to MAO-B. Experiments with selective MAO inhibitors in vitro showed that only about 20% of the oxidation of serotonin was occurring via MAO-B in heart and liver. The in vitro oxidation of MPTP by MAO in mouse brain, heart and liver was almost completely inhibited by pretreatment with either pargyline or deprenyl. Neither pargyline nor deprenyl had any significant effect on the concentrations of MPTP in brain or heart one-half hr after injection of MPTP into mice. The concentrations of the metabolite, MPP+ (1-methyl-4-phenyl-pyridinium), were markedly reduced in brain and in heart by pretreatment with either pargyline or deprenyl. The data suggest that MPP+ formation, which is necessary for the depletion of brain catecholamines after MPTP injection, may not be necessary for depletion of norepinephrine in heart. Since the oxidation of MPTP in vitro was inhibited more by pargyline or deprenyl pretreatment than was the appearance of MPP+ in vivo, the possibility exists that some MPP+ formation might occur by an enzyme other than MAO.  相似文献   

6.
The rate of benzylamine utilization by monoamine oxidase (MAO)-B from human blood platelets was 2-4 times higher than that for octopamine. Both activities were inhibited 100% by 10(-7) M deprenyl (a specific MAO-B inhibitor) and were not affected by clorgyline (a specific MAO-A inhibitor) or by polyclonal antibodies to MAO-A. The preincubation of platelet MAO-B with purified MAO-A from mitochondrial membranes of human placenta resulted in appearance of excess octopamine activity. This additional activity was not precipitated by antibodies to MAO-A or inhibited by deprenyl but was inhibited by clorgyline. Incubation of the MAO-A preparation from placenta at 45 degrees C for 15 min before its preincubation with MAO-B caused 50% loss of both activities. Protease inhibitors had no effect on the modification of MAO. These data indicate that MAO-A or a factor tightly bound to it can modify MAO-B yielding a form of the enzyme with both MAO-A and MAO-B substrate and inhibitor affinities and MAO-B immunospecificity.  相似文献   

7.
1-Methyl-4-phenyl-tetrahydropyridine (MPTP) given in single doses to rats depleted norepinephrine concentration in heart and mesenteric artery but had little effect on catecholamine concentration in brain. MPTP did not share with amphetamine the ability to cause persistent depletion of striatal dopamine in iprindole-treated rats. Administration of MPTP via osmotic minipumps implanted s.c. for 24 hrs after a loading dose of MPTP in rats resulted in depletion of striatal dopamine and its metabolites one week later. MPTP in vitro was a reasonably potent, competitive and reversible inhibitor of MAO-A (monoamine oxidase type A). MPTP appeared to inhibit MAO-A in rat brain in vivo as determined by its antagonism of the inactivation of MAO-A by pargyline and by its antagonism of the increase in dopamine metabolites resulting from the administration of Ro 4-1284, a dopamine releaser. The inhibition of MAO-B by MPTP in vitro was noncompetitive, time-dependent, and not fully reversed by dialysis, consistent with the findings of others that MPTP is acted upon by MAO-B. In mice, four successive daily doses of MPTP is acted upon by MAO-B. In mice, four successive daily doses of MPTP given s.c. resulted in marked depletion of dopamine and its metabolites one week later, and the depletion of dopamine was completely prevented by pretreatment with deprenyl, which inhibited MAO-B but not MAO-A. These and other studies in rodents may help in elucidating the mechanisms involved in the destructive effects of MPTP on striatal dopamine neurons that lead to symptoms of Parkinson's disease in humans and in monkeys.  相似文献   

8.
Deprenyl is a selective monoamine oxidase B (MAO-B) inhibitor and has been used in the treatment of Parkinson's disease. However, it is not known whether deprenyl effects are symptomatic or pharmacological. Aging mice were partially lesioned with MPTP. Control and MPTP-treated mice were given deprenyl in drinking water for 14 days. Brain tissue (including the striatum, olfactory tubercle and cerebral cortex) was assayed for MAO-B and neurotransmitter levels. The results show that deprenyl treatment, given alone or after MPTP, reduced MAO-B activity in all the three regions. No change was seen in dopamine (DA), 3,4-dihydroxyphenyl acetic acid (DO-PAC), and homovanillic acid (HVA) content in any of the three areas. Cortical norepinephrine (NE) levels were also unaltered. However, striatal serotonin (5-HT) levels were decreased while its metabolite, 5-HIAA levels were significantly increased in the olfactory tubercle in animals receiving deprenyl alone. These data suggest that deprenyl treatment reduces MAO-B activity in regions in addition to the striatum without affecting norepinephrine, dopamine (DA) and its metabolites.  相似文献   

9.
Abstract: Acute inhibition of monoamine oxidase B (MAO-B) in the rat does not affect striatal dopamine (DA) metabolism, but chronic MAO-B inhibition with deprenyl has been reported to increase the release of striatal DA, as shown using in vitro techniques. To see whether chronic MAO-B inhibition also causes an increase in DA release in vivo, rats were treated for 21 days with either deprenyl (0.25 mg/kg), TVP-1012 [R(+)-N-propargyl-1-aminoindan mesylate; 0.05 mg/kg), an irreversible inhibitor of MAO-B that is not metabolized to amphetamines, clorgyline (0.2 mg/kg), or saline (all doses once daily by subcutaneous injection). Concentric 4-mm-long microdialysis probes were implanted in the left striatum under pentobarbital/chloral hydrate anesthesia on day 21, and microdialysate DA, 3,4-dihydroxyacetic acid (DOPAC), and 4-hydroxy-3-methoxyphenyl acetic acid (HVA) were determined in the conscious animals on day 22. Baseline levels of DA were as follows: control, 0.34 ± 0.04 (n = 13); deprenyl, 0.88 ± 0.10 (n = 8, p < 0.01); TVP-1012, 0.94 ± 0.20 (n = 7, p < 0.01); clorgyline, 0.90 ± 0.12 (n = 7, p < 0.01) pmol/20 min. Levels of DOPAC and HVA were reduced only in the clorgyline-treated group. The incremental release of DA induced by depolarizing concentration of K+ (100 mM bolus of KCl in perfusate) was significantly greater in clorgyline- and deprenyl-treated rats and elevated (nonsignificantly) in TVP-1012-treated rats. Chronic treatment with the MAO-B inhibitors reduced striatal MAO-B activity by 90%, with 15% (TVP-1012) or 40% (deprenyl) inhibition of MAO-A. Clorgyline inhibited MAO-A by 95%, with 30% inhibition of MAO-B. A single dose of deprenyl (0.25 mg/kg, 24 h before microdialysis) had no significant effect on striatal efflux of DA. The results show that DA metabolism was reduced only by clorgyline, whereas neuronal release of DA was enhanced by both MAO-A and MAO-B inhibitors on chronic administration. The enhanced DA release by chronic MAO-B inhibition does not appear to be dependent on production of amphetamine-like metabolites of the inhibitor. Possible mechanisms for the release-enhancing effect of the MAO-B inhibitors include elevation in levels of endogenous β-phenylethylamine, or an inhibition of DA reuptake, which develops only on chronic administration, because both deprenyl and TVP-1012 have only very weak effects on amine uptake in acute experiments.  相似文献   

10.
Long-term or high dose administration of d-amphetamine (AMPH) in the rat has been shown to result in dopamine terminal neurotoxicity in the striatum of rats. This phenomenon includes depletion of dopamine content, decreased activity of tyrosine hydroxylase and diminish in the number of dopamine reuptake transporter. Recent studies implicate a role of oxidative stress induced by dopamine in the AMPH-induced neurotoxicity. However, the primary source of dopamine responsible for radical formation during AMPH challenge has remained elusive. To elucidate this issue, the study was designed to examine the effects of nomifensine, a dopamine transporter blocker, and deprenyl, a monoamine oxidase B (MAO-B) inhibitor, on the prevention of striatal dopamine neurotoxicity in AMPH-treated rats. The results showed that nomifensine but not deprenyl protected against AMPH-induced long-term dopamine depletion. Correspondingly, the hydroxyl radical formation caused by AMPH in the striatum was attenuated by nomifensine, whereas its formation was not abolished by deprenyl. In conclusion, this study suggests that intracellular oxidative stress is more likely involved in the AMPH-induced dopamine terminal toxicity in the rat striatum, while this phenomenon is not mediated by MAO-B pathway.  相似文献   

11.
The characterization of monoamine oxidase (MAO) activity in lymphocytes and granulocytes was studied by using cells prepared from human blood. The specific activities of the enzyme towards beta-phenylethylamine (PEA), benzylamine (Bz), tyramine (TYR) and 5-hydroxytryptamine (5-HT) were found to be 5-times higher in lymphocytes than in granulocytes. The absence of the semicarbazide-sensitive amine oxidase (SSAO) was confirmed by the lack of effect of semicarbazide on the benzylamine oxidation. The presence of MAO-B was corroborated by the inhibition of PEA oxidation with nanomolar deprenyl concentrations and by inhibition of TYR oxidation with high clorgyline concentrations, as well as by the simple sigmoid curve obtained in both cases. These results, together with the substrate preferences, suggest that the MAO activity of human granulocytes and lymphocytes is predominantly of the B form. For each fraction the kinetic constants were determined towards PEA, TYR and Bz as substrates. The Km values were similar for both cellular samples, whereas the Vmax values were higher in lymphocytes than in granulocytes. MAO-B was titrated with [3H]pargyline in order to find out the number of active sites. The corresponding molecular concentration, Kcat values and turnover number showed the presence of related enzymes in human granulocytes and lymphocytes.  相似文献   

12.
1. Mitochondrial MAO specific activity was measured in eggs and early embryos of the teleostean fish Esox lucius using tryptamine, 5-hydroxytryptamine (5-HT) and phenylethylamine (PEA) as substrates. 2. Tryptamine is the most readily deaminated substrate in mitochondria isolated from unfertilized eggs and embryos at the stages of cleavage, blastula and gastrula. 3. Monoamine oxidase activity gradually decreases during development and at the gastrula stage it is respectively 80% (tryptamine), 70% (5-HT) and 50% (PEA) of that found in the egg using the corresponding substrate. 4. The inhibition of egg MAO activity by clorgyline and deprenyl measured in E. lucius eggs using tryptamine as substrate, indicates the presence of a single form of MAO not corresponding to the MAO A and MAO B described in terrestrial vertebrates.  相似文献   

13.
The oxidative deamination of serotonin (5-HT) to 5-hydroxyindoleacetic acid (5-HIAA) by rat primary astrocyte cultures was investigated in intact cells using HPLC. All detectable 5-HIAA accumulated in the extracellular medium, and its rate of production was proportional to the 5-HT concentration over the tested range of 5 x 10(-7) to 10(-4) M. At 5 x 10(-7) M 5-HT, intracellular 5-HT was detectable only in astrocytes treated with monoamine oxidase (MAO) inhibitors. These findings are consistent with the idea that 5-HT taken up into astrocytes is not stored for re-release, but is rapidly metabolized to 5-HIAA, which is then extruded from the cell. At 5 x 10(-7) M 5-HT, 5-HIAA formation in intact cells was blocked 63% by the selective high-affinity 5-HT uptake inhibitor fluoxetine. 5-HT oxidation to 5-HIAA is carried out principally by MAO-A, because clorgyline was more effective at inhibiting the production of 5-HIAA than was pargyline. Radioenzymatic determinations of MAO activity in cell homogenates supported these findings, because under these conditions clorgyline was 1,000-fold more effective than pargyline at inhibiting MAO activity toward 14C-labelled 5-HT. However, the relatively selective MAO-B substrate beta-phenylethylamine (PEA) was also oxidized, showing that these cultures also contained MAO-B activity; the Km values for MAO-A oxidation of 5-HT and MAO-B oxidation of PEA were 135 and 45 microM, and Vmax values were 88 and 91 nmol/mg of total cell protein/h, respectively. Higher concentrations of PEA (greater than 20 microM) were oxidized by both MAO-A and MAO-B isozymes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
A number of N-substituted-propargylamines are well known mechanism-based MAO inhibitors. Clorgyline and deprenyl in fact represent archetypal MAO-A and MAO-B inhibitors respectively. In the present study several ring-substituted deprenyl structural analogues were synthesized and alterations of selectivity and potency towards MAO-A and MAO-B activities were found. When deprenyl and its structural analogues were further modified to their corresponding quaternary ammonium salts, i.e. by attaching either an extra propargyl or a methyl group to the nitrogen atom, the potency of inhibition of MAO-B activity was drastically reduced and inhibition of MAO-A activity substantially increased. Such a complete inversion of selectivity may be related to a hydrophilic and electrophilic region seemingly present only in the MAO-A but not in the MAO-B molecule. The results also suggest that at least three sites are required for the selectivity and mechanism-based action of an inhibitor towards MAO.  相似文献   

15.
1. Monoamine oxidase activity has been studied in hepatopancreas of Octopus vulgaris using 5-HT and PEA as substrates.2. Time courses of MAO activity against 5-HT and PEA show that the enzyme has higher affinity for PEA than for 5-HT.3. MAO activity against 5-HT appears more sensitive than MAO activity against PEA, to variations of the temperature (range 17–67°C).4. The inhibition curves obtained with clorgyline and deprenyl indicate that MAO activity is due to a single form of the enzyme, not corresponding to type A and type B MAO.5. Semicarbazide 10−4 M does not affect the deamination of 5-HT and PEA, demonstrating that a semicarbazide-sensitive amine oxidase is not involved in this process.  相似文献   

16.
Substrate Selectivity of Type A and Type B Monoamine Oxidase in Rat Brain   总被引:5,自引:5,他引:0  
Abstract: Use of the irreversible inhibitors clorgyline and deprenyl showed that rat brain mitochondria contain type A and type B monoamine oxidase (MAO). Tyramine is a substrate for both types of MAO, whereas serotonin is a preferential substrate for type A MAO. In contrast to MAO in other tissues, type A MAO in brain tissue oxidizes β-phenylethylamine (PEA) at high concentrations (0.5 and 1.0 mM). The proportions of type A and type B MAO activities in the mitochondria estimated from the double-sigmoidal inhibition curves of tyramine oxidation were about 70:30 irrespective of the concentration of tyramine. With PEA as substrate, the ratios of type A to type B activities were found to increase from low values at low concentrations to about 1 at 0.5-1.0 mM-PEA, and even higher at further increased concentrations of PEA. At very low (0.01 mM) and high (10.0 mM) concentrations of PEA, single-sigmoidal curves were obtained; with the high PEA concentration the activity was highly sensitive to clorgyline, whereas with the low concentration it was highly sensitive to deprenyl. In deprenyl-pretreated mitochondrial preparations, all the remaining activity towards 0.5-1.0 mM-PEA was shown to be highly sensitive to clorgyline, demonstrating that this activity was indeed due to oxidation by type A MAO. The opposite result was obtained with deprenyl as inhibitor of clorgyline-pretreated preparations, demonstrating that PEA at this concentration was also oxidized by type B MAO in rat brain mitochondria. The K3 values of type A and type B MAO for PEA were significantly different. On Lineweaver-Burk analysis, plots with PEA as substrate for type A MAO in a deprenyl-treated preparation were linear over a wide concentration range, whereas those for type B MAO in a clorgyline-treated preparation were not linear, but showed substrate inhibition at higher concentrations of the substrate. It is concluded from the present findings that the effect of the substrate concentration must be considered in studies on the characteristics of multiple forms of MAO in various organs and species.  相似文献   

17.
Mitochondrial monoamine oxidase (MAO) has been considered to be involved in neuronal degeneration either by increased oxidative stress or protection with the inhibitors of type B MAO (MAO-B). In this paper, the role of type A MAO (MAO-A) in apoptosis was studied using human neuroblastoma SH-SY5Y cells, where only MAO-A is expressed. An endogenous dopaminergic neurotoxin, N-methyl(R)salsolinol, an MAO-A inhibitor, reduced membrane potential, DeltaPsim, in isolated mitochondria, and induced apoptosis in the cells, which 5-hydroxytryptamine, an MAO-A substrate, prevented. In contrast, beta-phenylethylamine, an MAO-B substrate, did not suppress the DeltaPsim decline by N-methyl(R)salsolinol. The binding of N-methyl(R)salsolinol to mitochondria was inhibited by clorgyline, a MOA-A inhibitor, but not by (-)deprenyl, an MAO-B inhibitor. RNA interference targeting MAO-A significantly reduced the binding of N-methyl(R)salsolinol with simultaneous reduction in the MAO activity. To examine the intervention of MAO-B in the apoptotic process, human MAO-B was transfected to SH-SY5Y cells, but the sensitivity to N-methyl(R)salsolinol was not affected, even although the activity and protein of MAO increased markedly. These results demonstrate a novel function of MAO-A in the binding of neurotoxins and the induction of apoptosis, which may account for neuronal cell death in neurodegenerative disorders, including Parkinson's disease.  相似文献   

18.
Monoamine oxidase specific activities against PEA and 5-HT have been measured in mitochondria isolated from early embryos of Bufo bufo. During the early development up to the neural fold stage, MAO activity undergoes a continuous decrease that is more evident when PEA is used as the substrate. The inhibition patterns of deprenyl and clorgyline demonstrate that, at the neural fold stage, both type A and B MAO are present. Both in eggs and embryos MAO type A activity appears slightly more sensitive to the inhibitory effect of various concentrations (0.1-2 M) of the denaturing agent urea.  相似文献   

19.
Six-month old male rats were treated with 0.25 mg/kg, s.c., (-)p-fluoro-deprenyl (n = 40) or salt solution (n = 20) three times a week for 25 months. Three of the 20 saline-treated and 15 of the 40 drug-treated males survived (p = 0.05). Sexual activity of the survivors was tested at the end of the experiment. Three of the (-)p-fluoro-deprenyl-treated 31-month-old males proved to be sexually fully active, though, Wistar rats lose their ability to ejaculate by completing their second year of life. Non-copulator, 13 month old male rats were treated instead of the usually used 0.25 mg/kg dose with 0.01 mg/kg, s.c., (-)deprenyl (n = 9), (-)p-fluoro-deprenyl (n = 9) and salt solution (n = 9), three times a week, for 82 weeks and mating activity was tested weekly. The lifespan of the non-copulators was very short: 102 weeks for saline (n = 9), 106 weeks for (-)deprenyl (n = 8) and 104 weeks for (-)p-fluoro-deprenyl (n = 7). Survival was lightly changed by this very small dose treatment, one (-)deprenyl-treated male and two (-)p-fluoro-deprenyl-treated rats remained alive. The copulatory activity, however, was substantially improved.  相似文献   

20.
Monoamine oxidase in the vervet monkey showed greater variations in activity in six brain regions when tyramine or phenylethylamine was used as the substrate (3.8- to 4.1-fold differences) than when serotonin was the substrate (1.8-fold differences). With phenylethylamine and tyramine as substrates, the highest MAO specific activities were found in the hypothalamus and the lowest in the cerebellum and cortex. With serotonin as the substrate, the highest specific activities were in the mesencephalon and cortex. The inhibition of tyramine deamination by clorgyline and deprenyl yielded biphasic plots indicative of the presence of MAO-A and MAO-B enzyme forms in the vervet brain. On the basis of these inhibitor curves, the vervet brain could be estimated to contain approximately 85% MAO-B and 15% MAO-A, in contrast to rat brain which contains 45% MAO-B and 55% MAO-A. The inhibition of serotonin deamination by deprenyl in vervet brain yielded a biphasic plot, suggesting that some serotonin deamination in the vervet is accomplished by the MAO-B enzyme form. Estimations of the relative amounts of MAO-A and MAO-B based on inhibitor curves or based on substrate ratios yielded proportionate results which were in close agreement across the different brain regions, supporting the validity of these approaches to estimating MAO-A and MAO-B activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号