共查询到20条相似文献,搜索用时 3 毫秒
1.
The local overall volumetric gas-liquid mass transfer coefficients at the specified point in a gas-liquid-solid three-phase reversed flow jet loop bioreactor (JLB) with a non-Newtonian fluid was experimentally investigated by a transient gassing-in method. The effects of liquid jet flow rate, gas jet flow rate, particle density, particle diameter, solids loading, nozzle diameter and CMC concentration on the local overall volumetric gas-liquid mass transfer coefficient (K(L)a) profiles were discussed. It was observed that local overall K(L)a profiles in the three-phase reversed flow JLB with non-Newtonian fluid increased with the increase of gas jet flow rate, liquid jet flow rate, particle density and particle diameter, but decreased with the increase of the nozzle diameter and CMC concentration. The presence of solids at a low concentration increased the local overall K(L)a profiles, and the optimum of solids loading for a maximum profile of the local overall K(L)a was found to be 0.18x10(-3)m(3) corresponding to a solids volume fraction, varepsilon(S)=2.8%. 相似文献
2.
Effect of low density particles on the apparent liquid circulation velocity and overall gas holdup was studied in a modified reversed flow jet loop bioreactor. Experiments were conducted using polyurethane beads, polystyrene particles which are comparable to bioparticles found in biological applications and glass beads. Influence of gas and liquid flow rates, draft tube to reactor diameter ratio and solids loading on these hydrodynamic properties were studied. The liquid circulation velocity was found to increase with an increase in liquid flow rate but decrease with an increase in gas flow rate or solids loading. The overall gas holdup increased with an increase in gas or liquid flow rate but decreased with an increase in solids loading. The range of optimum draft tube to reactor diameter ratio was found to be 04–0.5. The results obtained with low density particles were comparatively better than those with glass beads. Correlations were proposed to evaluate liquid circulation velocity and overall gas holdup in terms of operational and geometrical variables. 相似文献
3.
Sameer M. Wagh Kishore V. Koranne Raju B. Mankar Ram L. Sonolikar 《Biotechnology and Bioprocess Engineering》2010,15(3):497-504
Reversed flow jet loop bioreactors (RFJLB) have been used extensively for 2 or 3 phase biochemical reactions. From visual observations and gas holdup data, 3 distinct flow regimes are identified in RFJLB, namely: (1) Bubble free regime (BFR), where bubbles are observed in the draft tube only; (2) Transition regime (TR), where bubbles are observed in both the draft tube and the annulus, but without circulation; and (3) Complete bubble circulation regime (CBCR), where bubbles circulate in both the draft tube and annulus. CBCR is the most desirable regime, since the reactor operation in this regime gives a higher gas holdup and mass transfer rate than in the other two regimes. In the present study, the hydrodynamic behavior of RFJLB was investigated under various operational and geometrical conditions, such as gas and liquid velocity and nozzle configuration. Factors affecting the critical liquid circulation velocity (CLCV) above which the CBCR is established were identified and evaluated quantitatively. 相似文献
4.
Gas holdup and liquid circulation time were measured in a down flow jet loop bioreactor with a non-Newtonian fluid. It was observed that the circulation time decreases with increase in nozzle diameter, draft tube to column diameter ratio and shear thinning of the media. The gas holdup increases with increase in gas and liquid velocities. The optimum draft tube to column diameter ratio was found to be 0.438. Correlations for gas holdup and circulation time involving operational and geometrical variables were presented. 相似文献
5.
Farnaz Behzadian Laleh Yerushalmi Mahmood Alimahmoodi Catherine N. Mulligan 《Bioprocess and biosystems engineering》2013,36(8):1043-1052
The hydrodynamic characteristics and the overall volumetric oxygen transfer coefficient of a new multi-environment bioreactor which is an integrated part of a wastewater treatment system, called BioCAST, were studied. This bioreactor contains several zones with different environmental conditions including aerobic, microaerophilic and anoxic, designed to increase the contaminant removal capacity of the treatment system. The multi-environment bioreactor is designed based on the concept of airlift reactors where liquid is circulated through the zones with different environmental conditions. The presence of openings between the aerobic zone and the adjacent oxygen-depleted microaerophilic zone changes the hydrodynamic properties of this bioreactor compared to the conventional airlift designs. The impact of operating and process parameters, notably the hydraulic retention time (HRT) and superficial gas velocity (U G), on the hydrodynamics and mass transfer characteristics of the system was examined. The results showed that liquid circulation velocity (V L), gas holdup (ε) and overall volumetric oxygen transfer coefficient ( $ k_{\text{L}} a_{\text{L}} $ ) increase with the increase of superficial gas velocity (U G), while the mean circulation time (t c) decreases with the increase of superficial gas velocity. The mean circulation time between the aerobic zone (riser) and microaerophilic zone (downcomer) is a stronger function of the superficial gas velocity for the smaller openings (1/2 in.) between the two zones, while for the larger opening (1 in.) the mean circulation time is almost independent of U G for U G ≥ 0.023 m/s. The smaller openings between the two zones provide higher mass transfer coefficient and better zone generation which will contribute to improved performance of the system during treatment operations. 相似文献
6.
Mixing time was determined in a down-flow jet loop bioreactor with Newtonian and non-Newtonian fluids. It was observed that the mixing time decreased with an increase in linear liquid velocity, superficial gas velocity, draft tube to column diameter ratio, nozzle diameter and shear thinning of media. The optimum draft tube to column diameter ratio was found to be about 0.44. Correlations were presented for prediction of mixing time.List of Symbols
A m2
cross sectional area of the column
-
C kmol/m3
local tracer concentration
-
A
D
m2
flow area,A
D
=/4 (D
Z
2
-D
TO
2
)
-
D m
column diameter
-
D
E
m
draft tube diameter
-
D
TO
m
outside diameter of the air tube
-
D
TFL
m
equivalent flow diameter,D
TFL
=(D
Z
2
-D
TO
2
)0.5
-
D
z
m
nozzle diameter
-
g m/s2
gravitational acceleration
-
h %
inhomogeneity
-
H m
height of the column
-
H
B
m
distance between the lower edge of the draft tube and the impact plate
-
H
T
m
distance between the upper edge of the draft tube and the liquid nozzle
-
K Pa.sn
consistency index in power-law model
-
L
E
m
length of the draft tube
-
n
flow index in the power-law model
-
Re
j
jet Reynolds number,Re
j
=(D
TFL×w1×L)/
eff
-
t
M
s
mixing time
-
t
sg
m/s
superficial gas velocity based onA
-
W
l
m/s
linear liquid velocity based onD
D
Greek Letters
N/m2
shear stress
-
s
shear rate
-
kg/m3
density of liquid
-
N/m
surface tension of the liquid
-
Pa.sn
viscosity of liquid
Indices X
concentration at infinite time maximum value of tracer concentration
- eff
effective
- L
Liquid
- obs
observed
- pred
Predicted 相似文献
7.
V. Saravanan B. Hemachandran A. Eugene Raj S. Sundaram 《Bioprocess and biosystems engineering》2000,23(2):175-176
The effluent from a dairy cold storage plant was studied for the levels of dissolved oxygen saturation. The effluent to the aerobic digester mainly contains lactose, milk fat, protein and lactic acid. The study was conducted at five different temperatures in a two litre laboratory fermentor. The volumetric liquid phase mass transfer coefficient was correlated to temperature with an average absolute deviation of 6.2%. 相似文献
8.
This paper approaches the problem of oxygen mass transfer. This transfer is in antibiotic biosynthesis liquids produced by microorganisms belonging to the actinomycete and fungi classes, which exhibit a shear thinning non-Newtonian rheological behaviour. The volumetric oxygen mass transfer coefficients in these liquids (kL ab) change during biosynthesis processes. The change is mainly due to rheological parameter modifications, such as increasing the consistency index (K) and decreasing the flow behaviour index (n). The values of kL ab were 3.0–6.5 times lower than those recorded in water, and their decreasing depended on the kL a values obtained without biological liquid and on the nature of fermentation broths, as well. Starting from experimental data, two correlations were established between kL ab and P/V,υSG and P/V,υSG, N, respectively. These correlations contain a dimensionless factor (ηam/ηg), which takes into account the rheological properties of the liquid phase and offers the possibility for a fast and sufficiently accurate estimation of kL ab. The empirical correlations developed in the paper correspond reasonably well with the relatively wide variety of experimental data, as in the model proposed by PEREZ and SANDALL , and allow for the comparison of the fermentation batches of the same or different microorganisms; also, they may be applied to the workings of design, scale-up, control and monitoring of bioreactors. 相似文献
9.
10.
Gas holdup, foaming and oxygen transfer in a jet loop bioreactor with artificial foaming media and yeast culture 总被引:2,自引:0,他引:2
A concentric draft tube jet loop bioreactor (10.5 m3) was used to study the influence of aerated liquid height (above the draft tube) on the amount of surfactant addition allowable without foaming. Sodium lauryl sulfate (SLS) and defatted soybean flour in tap water were used as model artificial media. The amount of surfactant required to develop foaming and the maximum gas holdup achieved prior to foaming were notably influenced by aerated liquid height. Decreasing the aerated liquid height from 1.50 to 0.05 m increased the amount of SLS allowed without foaming from 2.2 to 12.1 g, the gas holdup in the riser from 0.18 to 0.31 and the gas holdup in the downcomer from 0.12 to 0.25. Similar behavior was observed for soybean flour. Decreasing the aerated liquid height from 1.45 to 0.05 m increased the amount of soybean flour allowed without foaming from 822 to 3200 g, the gas holdup in the riser from 0.17 to 0.26 and the gas holdup in the downcomer from 0.10 to 0.19. Data from a representative continuous yeast culture are reported to show that operation at low aerated liquid heights (0.5 m) can also be used to produce a culture broth with large gas holdup and oxygen transfer but without foaming. 相似文献
11.
12.
Mixing characteristics in the downcomer and the riser of a continuous down-flow jet loop bioreactor was studied with Newtonian and non-Newtonian fluids. The mixing parameters were determined through the curve fitting of the experimental impulse response data with the solution of one dimensional axial dispersion model. It was found that circulation number and axial dispersion coefficient increased with an increase in liquid flow rate and draft tube to column diameter ratio and the axial dispersion coefficient was comparatively higher in the riser. The circulation number increased with decrease in nozzle diameter. The model predicted the experimental data well within 8% deviation for both the systems (water and CMC). Correlations were obtained to predict axial dispersion coefficients in the riser and downcomer of the reactor. 相似文献
13.
Vanderberg-Twary L Steenhoudt K Travis BJ Hanners JL Foreman TM Brainard JR 《Biotechnology and bioengineering》1997,55(1):163-169
Paint stripping wastes generated during the decontamination and decommissioning of former nuclear facilities contain paint stripping organics (dichloromethane, 2-propanol, and methanol) and bulk materials containing paint pigments. It is desirable to degrade the organic residues as part of an integrated chemical-biological treatment system. We have developed a modified gas lift loop bioreactor employing a defined consortium of Rhodococcus rhodochrous strain OFS and Hyphomicrobium sp. DM-2 that degrades paint stripper organics. Mass transfer coefficients and kinetic constants for biodegradation in the system were determined. It was found that transfer of organic substrates from surrogate waste into the air and further into the liquid medium in the bioreactor were rapid processes, occurring within minutes. Monod kinetics was employed to model the biodegradation of paint stripping organics. Analysis of the bioreactor process was accomplished with BIOLAB, a mathematical code that simulates coupled mass transfer and biodegradation processes. This code was used to fit experimental data to Monod kinetics and to determine kinetic parameters. The BIOLAB code was also employed to compare activities in the bioreactor of individual microbial cultures to the activities of combined cultures in the bioreactor. This code is of benefit for further optimization and scale-up of the bioreactor for treatment of paint stripping and other volatile organic wastes in bulk materials. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 163-169, 1997. 相似文献
14.
Summary The solubility of oxygen in the liquid phase of a bioreactor was changed by a ramp change of temperature, and kLa was determined from the resulting return to equilibrium of dissolved oxygen activity. The maximum kLa that can be measured by this method in a standard laboratory scale bioreactor is 145 h–1 corresponding to a temperature change rate of 320°C h–1.Nomenclature p
Difference between pG and pL (% saturation)
- T
Ramp change of temperature (°C)
- E
Temperature-compensated output from the oxygen electrode (A)
- Eu
Uncompensated output from the oxygen electrode (A)
- kLa
Overall volumetric mass transfer coefficient (h–1)
- kLaTm
Overall volumetric mass transfer coefficient at temperature Tm (h–1)
- PG
Dissolved oxygen activity in equilibrium with the gas phase (% saturation)
- pL
Dissolved oxygen activity (% saturation)
- pLm
Dissolved oxygen activity at time tm (% saturation)
- t
Time (h)
- tm
Time of maximum p (h)
- T
Temperature (°C)
- Tcal
Calibration temperature of the oxygen electrode (°C)
- Tm
Final temperature after a temperature shift (°C)
- Tn
Temperature at time tn 相似文献
15.
In the present study the oxygen mass transfer from the gas to the aqueous phase in a Three-Phase Inverse Fluidized Bed (TPIFB) has been studied. A pilot scale TPIFB has been designed and constructed. For determination of the volumetric oxygen mass transfer coefficient the elegant dynamic method, described by Dang et al. (1977) was used. The influence of hydrodynamic parameters, e.g., superficial velocities of the gas and liquid phases on the mass transfer rate was studied. In the range of variables covered, it was found that the superficial liquid velocity had a weak effect on the mass transfer whereas the gas flowrate affects the mass transfer positively. The results for the volumetric oxygen transfer coefficient in the TPIFB were compared to reported values of that coefficient, measured in a classic three-phase fluidised bed under similar hydrodynamic conditions and solid phase properties. The comparison demonstrated a two-fold increase of the oxygen transfer rate in the inverse bed over that in the classic one. 相似文献
16.
17.
The influence of the rheology of some antibiotic biosynthesis liquids produced by Streptomyces aureofaciens, Nocardia mediterranei and Penicillium chrysogenum on the volumetric liquid phase oxygen transfer coefficient, kLa, and gas holdup, εG, together with the influence of superficial gas velocity, were studied in a bubble column bioreactor, using samples of fermentation liquids taken from industrial stirred tank fermenters, at 30-hour intervals during fermentation batch. The results were compared to those of previous studies from literature on non-Newtonian homogeneous fluids, such as CMC-Na, xanthan and starch solutions, respectively. In the heterogeneous broths, εG and kLa decreased with increasing apparent viscosity of the broth and increased with increasing superficial velocity. The experimental data were correlated using non-linear regression with correlation coefficients above 0.85. 相似文献
18.
A study of mass transfer in yeast in a pulsed baffled bioreactor 总被引:1,自引:0,他引:1
We report experimental data of mass transfer of oxygen into yeast resuspension in a pulsed baffled bioreactor. The bioreactor consists of a 50-mm-diameter column with the presence of a series of either wall (orifice) or central (disc) baffles or a mixture of both where fluid oscillation can also be supermposed during the experiments. Air bubbles are sparged into the bottom of the pulsed baffled bioreactor, and the kinetics of liquid oxygen concentration in the yeast solution is followed using a dissolved oxygen probe with a fast response time of 3 s together with the dynamic gassing-out technique. Among the three different baffle geometries investigated, the orifice baffles gave the highest and sharpest increase in the oxygen transfer rate, and the trends in the k(L)a measurements are consistent with the fluid mechanics observed within both the systems and previous work. In addition, we have also compared the k(L)a values with those obtained in a stirred tank; an 11% increase in the K(L)a is reported. (c) 1995 John Wiley & Sons, Inc. 相似文献
19.
Amaral PF Freire MG Rocha-Leão MH Marrucho IM Coutinho JA Coelho MA 《Biotechnology and bioengineering》2008,99(3):588-598
Oxygenation is an important parameter involved in the design and operation of mixing-sparging bioreactors and it can be analyzed by means of the oxygen mass transfer coefficient (k(L)a). The operational conditions of a stirred, submerged aerated 2-L bioreactor have been optimized by studying the influence of a second liquid phase with higher oxygen affinity (perfluorodecalin or olive oil) in the k(L)a. Using k(L)a measurements, the influence of the following parameters on the oxygen transfer rate was evaluated: the volume of working medium, the type of impellers and their position, the organic phase concentration, the aqueous phase composition, and the concentration of inactive biomass. This study shows that the best experimental conditions were achieved with a perfluorodecalin volume fraction of 0.20, mixing using two Rushton turbines with six vertical blades and in the presence of YPD medium as the aqueous phase, with a k(L)a value of 64.6 h(-1). The addition of 20% of perfluorodecalin in these conditions provided a k(L)a enhancement of 25% when pure water was the aqueous phase and a 230% enhancement when YPD medium was used in comparison to their respective controls (no perfluorodecalin). Furthermore it is shown that the presence of olive oil as a second liquid phase is not beneficial to the oxygen transfer rate enhancement, leading to a decrease in the k(L)a values for all the concentrations studied. It was also observed that the magnitude of the enhancement of the k(L)a values by perfluorodecalin depends on the biomass concentration present. 相似文献
20.
A 10.5-m(3) concentric tube jet loop reactor was used to study the influence of the working liquid volume, mean superficial air velocity, operating pressure, downcomer aeration, liquid jet velocity, and two ratios of draft tube/reactor diameter (D(t)/D) on liquid circulation time (T(c)). The experiments were carried out in a water-air system with the use of the acid pulse method. Results showed that circulation time was independent of the working liquid volume over a certain minimum liquid level, whereas downcomer aeration and D(t)/D ratio appeared as amenable parameters to achieve a high degree of control over liquid circulation and mixing efficiency, and to optimize the overall reactor performance. Increasing the operating pressure caused a reduction of the liquid circulation rate. However, ionger residence times of the air bubbles and the higher mass transfer driving force that result at higher pressures improve oxygen utilization. The relationship between T(c) and air load was independent of the operating pressure, provided the correlation is given as a function of the mean superficial air velocity. Neither liquid circulation nor gas holdup were significantly affected by liquid jet velocity. (c) 1995 John Wiley & Sons, Inc. 相似文献