首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
At the transition from meiosis to cleavage mitoses, Drosophila requires the cell cycle regulators encoded by the genes, giant nuclei (gnu), plutonium (plu) and pan gu (png). Embryos lacking Gnu protein undergo DNA replication and centrosome proliferation without chromosome condensation or mitotic segregation. We have identified the gnu gene encoding a novel phosphoprotein dephosphorylated by Protein phosphatase 1 at egg activation. Gnu is normally expressed in the nurse cells and oocyte of the ovary and is degraded during the embryonic cleavage mitoses. Ovarian death and sterility result from gnu gain of function. gnu function requires the activity of pan gu and plu.  相似文献   

2.
Unfertilized eggs and fertilized embryos from Drosophila mothers mutant for the plutonium (plu) gene contain giant polyploid nuclei resulting from unregulated S-phase. The PLU protein, a 19-kDa ankyrin repeat protein, is present in oocytes and early embryos but is not detectable after the completion of the initial rapid S-M cycles of the embryo. The persistence of the protein during the early embryonic divisions is consistent with a direct role in linking S-phase and M-phase. When ectopically expressed in the eye disc, PLU did not perturb the cell cycle, suggesting that PLU regulates S-phase only in early embryonic development. The pan gu (png) and giant nuclei (gnu) genes also affect the S-phase in the unfertilized egg and early embryo. We show that functional png is needed for the presence of PLU protein. By analyzing png mutations of differing severity, we find that the extent of the png mutant phenotype inversely reflects the level of PLU protein. Our data suggest that PLU protein is required at the time of egg activation and the completion of meiosis.  相似文献   

3.
F L Shamanski  T L Orr-Weaver 《Cell》1991,66(6):1289-1300
Mutations in the Drosophila maternal genes plutonium (plu) and pan gu (png) have the striking phenotype that DNA replication initiates in unfertilized eggs. Fertilized eggs from plu or png mutant mothers also have a mutant phenotype; DNA replication is uncoupled from nuclear division, resulting in giant, polyploid nuclei. Analysis of multiple alleles of these genes indicates that their wild-type function is required to maintain repression of DNA replication until fertilization. The phenotype of two png alleles suggests that this gene also may play a direct role in coupling S phase and mitosis during the early cleavage divisions. We describe genetic interactions among png, plu, and the previously identified gene gnu that demonstrate these three genes regulate the same process.  相似文献   

4.
Following completion of meiosis, DNA replication must be repressed until fertilization. In Drosophila, this replication block requires the products of the pan gu (png), plutonium (plu) and giant nuclei (gnu) genes. These genes also ensure that S phase oscillates with mitosis in the early division cycles of the embryo. We have identified the png gene and shown that it encodes a Ser/Thr protein kinase expressed only in ovaries and early embryos, and that the predicted extent of kinase activity in png mutants inversely correlates with the severity of the mutant phenotypes. The PLU and PNG proteins form a complex that has PNG-dependent kinase activity, and this activity is necessary for normal levels of mitotic cyclins. Our results reveal a novel protein kinase complex that controls S phase at the onset of development apparently by stabilizing mitotic cyclins.  相似文献   

5.
Lee LA  Elfring LK  Bosco G  Orr-Weaver TL 《Genetics》2001,158(4):1545-1556
The early cell cycles of Drosophila embryogenesis involve rapid oscillations between S phase and mitosis. These unique S-M cycles are driven by maternal stockpiles of components necessary for DNA replication and mitosis. Three genes, pan gu (png), plutonium (plu), and giant nuclei (gnu) are required to control the cell cycle specifically at the onset of Drosophila development by inhibiting DNA replication and promoting mitosis. PNG is a protein kinase that is in a complex with PLU. We employed a sensitized png mutant phenotype to screen for genes that when reduced in dosage would dominantly suppress or enhance png. We screened deficiencies covering over 50% of the autosomes and identified both enhancers and suppressors. Mutations in eIF-5A and PP1 87B dominantly suppress png. Cyclin B was shown to be a key PNG target. Mutations in cyclin B dominantly enhance png, whereas png is suppressed by cyclin B overexpression. Suppression occurs via restoration of Cyclin B protein levels that are decreased in png mutants. The plu and gnu phenotypes are also suppressed by cyclin B overexpression. These studies demonstrate that a crucial function of PNG in controlling the cell cycle is to permit the accumulation of adequate levels of Cyclin B protein.  相似文献   

6.
Control of chromosome condensation in the sea urchin egg   总被引:3,自引:0,他引:3  
  相似文献   

7.
During meiosis, evolutionarily conserved mechanisms regulate chromosome remodeling, leading to the formation of a tight bivalent structure. This bivalent, a linked pair of homologous chromosomes, is essential for proper chromosome segregation in meiosis. The formation of a tight bivalent involves chromosome condensation and restructuring around the crossover. The synaptonemal complex (SC), which mediates homologous chromosome association before crossover formation, disassembles concurrently with increased condensation during bivalent remodeling. Both chromosome condensation and SC disassembly are likely critical steps in acquiring functional bivalent structure. The mechanisms controlling SC disassembly, however, remain unclear. Here we identify akir-1 as a gene involved in key events of meiotic prophase I in Caenorhabditis elegans. AKIR-1 is a protein conserved among metazoans that lacks any previously known function in meiosis. We show that akir-1 mutants exhibit severe meiotic defects in late prophase I, including improper disassembly of the SC and aberrant chromosome condensation, independently of the condensin complexes. These late-prophase defects then lead to aberrant reconfiguring of the bivalent. The meiotic divisions are delayed in akir-1 mutants and are accompanied by lagging chromosomes. Our analysis therefore provides evidence for an important role of proper SC disassembly in configuring a functional bivalent structure.  相似文献   

8.
At the onset of meiosis, chromosomes first decondense and then condense as the process of recognition and intimate pairing occurs between homologous chromosomes. We show here that okadaic acid, a drug known to induce chromosome condensation, can be introduced into wheat interspecific hybrids prior to meiosis to induce chromosome pairing. This pairing occurs in the presence of the Ph1 locus, which usually suppresses pairing of related chromosomes and which we show here delays condensation. Thus the timing of chromosome condensation during the onset of meiosis is an important factor in controlling chromosome pairing.  相似文献   

9.
Cui J  Sackton KL  Horner VL  Kumar KE  Wolfner MF 《Genetics》2008,178(4):2017-2029
Egg activation is the process that modifies mature, arrested oocytes so that embryo development can proceed. One key aspect of egg activation is the cytoplasmic polyadenylation of certain maternal mRNAs to permit or enhance their translation. wispy (wisp) maternal-effect mutations in Drosophila block development during the egg-to-embryo transition. We show here that the wisp gene encodes a member of the GLD-2 family of cytoplasmic poly(A) polymerases (PAPs). The WISP protein is required for poly(A) tail elongation of bicoid, Toll, and torso mRNAs upon egg activation. In Drosophila, WISP and Smaug (SMG) have previously been reported to be required to trigger the destabilization of maternal mRNAs during egg activation. SMG is the major regulator of this activity. We report here that SMG is still translated in activated eggs from wisp mutant mothers, indicating that WISP does not regulate mRNA stability by controlling the translation of smg mRNA. We have also analyzed in detail the very early developmental arrest associated with wisp mutations. Pronuclear migration does not occur in activated eggs laid by wisp mutant females. Finally, we find that WISP function is also needed during oogenesis to regulate the poly(A) tail length of dmos during oocyte maturation and to maintain a high level of active (phospho-) mitogen-activated protein kinases (MAPKs).  相似文献   

10.
11.
Fertilization triggers egg activation and converts the egg into a developing embryo. The events of this egg-to-embryo transition typically include the resumption of meiosis, the reorganization of the cortical actin cytoskeleton, and the remodeling of the oocyte surface. The factors that regulate sperm-dependent egg-activation events are not well understood. Caenorhabditis elegans EGG-3, a member of the protein tyrosine phosphatase-like (PTPL) family, is essential for regulating cell-surface and cortex rearrangements during egg activation in response to sperm entry. Although fertilization occurred normally in egg-3 mutants, the polarized dispersal of F-actin is altered, a chitin eggshell is not formed, and no polar bodies are produced. EGG-3 is associated with the oocyte plasma membrane in a pattern that is similar to CHS-1 and MBK-2. CHS-1 is required for eggshell deposition, whereas MBK-2 is required for the degradation of maternal proteins during the egg-to-embryo transition. The localization of CHS-1 and EGG-3 are interdependent and both genes were required for the proper localization of MBK-2 in oocytes. Therefore, EGG-3 plays a central role in egg activation by influencing polarized F-actin dynamics and the localization or activity of molecules that are directly involved in executing the egg-to-embryo transition.  相似文献   

12.
The titan (ttn) mutants of Arabidopsis exhibit striking alterations in chromosome dynamics and cell division during seed development. Endosperm defects include aberrant mitoses and giant polyploid nuclei. Mutant embryos differ in cell size, morphology and viability, depending on the locus involved. Here we demonstrate that three TTN genes encode chromosome scaffold proteins of the condensin (SMC2) and cohesin (SMC1 and SMC3) classes. These proteins have been studied extensively in yeast and animal systems, where they modulate chromosome condensation, chromatid separation, and dosage compensation. Arabidopsis contains single copies of SMC1 and SMC3 cohesins. We used forward genetics to identify duplicate T-DNA insertions in each gene. These mutants (ttn7 and ttn8) have similar titan phenotypes: giant endosperm nuclei and arrested embryos with a few small cells. A single SMC2 knockout (ttn3) was identified and confirmed by molecular complementation. The weak embryo phenotype observed in this mutant may result from expression of a related gene (AtSMC2) with overlapping functions. Further analysis of titan mutants and the SMC gene family in Arabidopsis should provide clues to chromosome mechanics in plants and insights into the regulation of nuclear activity during endosperm development.  相似文献   

13.
14.
We have identified six protein kinases that belong to the family of cdc2-related kinases in Caenorhabditis elegans. Results from RNA interference experiments indicate that at least one of these kinases is required for cell-cycle progression during meiosis and mitosis. This kinase, encoded by the ncc-1 gene, is closely related to human Cdk1/Cdc2, Cdk2 and Cdk3 and yeast CDC28/cdc2(+). We addressed whether ncc-1 acts to promote passage through a single transition or multiple transitions in the cell cycle, analogous to Cdks in vertebrates or yeasts, respectively. We isolated five recessive ncc-1 mutations in a genetic screen for mutants that resemble larval arrested ncc-1(RNAi) animals. Our results indicate that maternal ncc-1 product is sufficient for embryogenesis, and that zygotic expression is required for cell divisions during larval development. Cells that form the postembryonic lineages in wild-type animals do not enter mitosis in ncc-1 mutants, as indicated by lack of chromosome condensation and nuclear envelope breakdown. However, progression through G1 and S phase appears unaffected, as revealed by expression of ribonucleotide reductase, incorporation of BrdU and DNA quantitation. Our results indicate that C. elegans uses multiple Cdks to regulate cell-cycle transitions and that ncc-1 is the C. elegans ortholog of Cdk1/Cdc2 in other metazoans, required for M phase in meiotic as well as mitotic cell cycles.  相似文献   

15.
Sexual devolution in plants: apomixis uncloaked?   总被引:1,自引:0,他引:1  
There are a growing number of examples where naturally occurring mutations disrupt an established physiological or developmental pathway to yield a new condition that is evolutionary favored. Asexual reproduction by seed in plants, or apomixis, occurs in a diversity of taxa and has evolved from sexual ancestors. One form of apomixis, diplospory, is a multi-step development process that is initiated when meiosis is altered to produce an unreduced rather than a reduced egg cell. Subsequent parthenogenetic development of the unreduced egg yields genetically maternal progeny. While it has long been apparent from cytological data that meiosis in apomicts was malfunctional or completely bypassed, the genetic basis of the phenomenon has been a long-standing mystery. New data from genetic analysis of Arabidopsis mutants in combination with more sophisticated molecular understanding of meiosis in plants indicate that a weak mutation of the gene SWI, called DYAD, interferes with sister chromatid cohesion in meiosis I, causes synapsis to fail in female meiosis and yields two unreduced cells. The new work shows that a low percentage of DYAD ovules produce functional unreduced egg cells (2n) that can be fertilized by haploid pollen (1n) to give rise to triploid (3n) progeny. While the DYAD mutants differ in some aspects from naturally occurring apomicts, the work establishes that mutation to a single gene can effectively initiate apomictic development and, furthermore, focuses efforts to isolate apomixis genes on a narrowed set of developmental events. Profitable manipulation of meiosis and recombination in agronomically important crops may be on the horizon.  相似文献   

16.
17.
Production of haploid gametes relies on the specially regulated meiotic cell cycle. Analyses of the role of essential mitotic regulators in meiosis have been hampered by a shortage of appropriate alleles in metazoans. We characterized female-sterile alleles of the condensin complex component dcap-g and used them to define roles for condensin in Drosophila female meiosis. In mitosis, the condensin complex is required for sister-chromatid resolution and contributes to chromosome condensation. In meiosis, we demonstrate a role for dcap-g in disassembly of the synaptonemal complex and for proper retention of the chromosomes in a metaphase I-arrested state. The chromosomal passenger complex also is known to have mitotic roles in chromosome condensation and is required in some systems for localization of the condensin complex. We used the QA26 allele of passenger component incenp to investigate the role of the passenger complex in oocyte meiosis. Strikingly, in incenpQA26 mutants maintenance of the synaptonemal complex is disrupted. In contrast to the dcap-g mutants, the incenp mutation leads to a failure of paired homologous chromosomes to biorient, such that bivalents frequently orient toward only one pole in prometaphase and metaphase I. We show that incenp interacts genetically with ord, suggesting an important functional relationship between them in meiotic chromosome dynamics. The dcap-g and incenp mutations cause maternal effect lethality, with embryos from mutant mothers arrested in the initial mitotic divisions.  相似文献   

18.
Fertilization and early embryonic mitoses of the cricket Gryllus bimaculatus were examined by fluorescence staining of whole-mount as well as squash preparations. Egg meiosis occurs near the ventral surface of the egg, while sperm transforms into a sperm pronucleus in the cytoplasmic island on the dorsal side. After meiosis, the egg pronucleus moves across the egg toward the sperm pronucleus in the island, where union of these nuclei occurs. The first cleavage mitosis is gonomeric, as in insects such as Pyrrhocoris, Drosophila, and Bombyx. After the third cleavage the synchrony of nuclear division is lost and the dividing nuclei are distributed all over the egg by 12 h after deposition.  相似文献   

19.
DNA topoisomerase II has been implicated in regulating chromosome interactions. We investigated the effects of the specific DNA topoisomerase II inhibitor, teniposide on nuclear events during oocyte maturation, fertilization, and early embryonic development of fertilized Spisula solidissima oocytes using DNA fluorescence. Teniposide treatment before fertilization not only inhibited chromosome separation during meiosis, but also blocked chromosome condensation during mitosis; however, sperm nuclear decondensation was unaffected. Chromosome separation was selectively blocked in oocytes treated with teniposide during either meiotic metaphase I or II indicating that topoisomerase II activity may be required during oocyte maturation. Teniposide treatment during meiosis also disrupted mitotic chromosome condensation. Chromosome separation during anaphase was unaffected in embryos treated with teniposide when the chromosomes were already condensed in metaphase of either first or second mitosis; however, chromosome condensation during the next mitosis was blocked. When interphase two- and four-cell embryos were exposed to topoisomerase II inhibitor, the subsequent mitosis proceeded normally in that the chromosomes condensed, separated, and decondensed; in contrast, chromosome condensation of the next mitosis was blocked. These observations suggest that in Spisula oocytes, topoisomerase II activity is required for chromosome separation during meiosis and condensation during mitosis, but is not involved in decondensation of the sperm nucleus, maternal chromosomes, and somatic chromatin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号