首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Abstract. The semiaquatic bugs (Hemiptera–Heteroptera, infraorder Gerromorpha), comprising water striders and their allies (c. 1900 described species), are familiar inhabitants of water surfaces in all continents. Recent fossil evidence indicates that the evolutionary history of semiaquatic bugs spans more than 120 million years of geological time. At present, our insight into the phylogeny of higher taxa is based upon Andersen's manual cladistic analysis of a suite of morphological characters. The present work expands the phylogenetic insight with numerical cladistic analyses of morphological and molecular datasets (partial sequences of 16S and 28S rDNA) for forty species of Gerromorpha covering most higher taxa (families, subfamilies), estimates of branch support, character incongruence, and topological congruence (nodal stability). For the molecular data we apply different alignment options (manual vs numerical alignment; multiple alignment vs direct optimization), treat insertion–deletion events (indels) as either missing data or as a fifth character state, subject the data to a sensitivity analysis, and estimate topological congruence between different analysis trees. Relationships change considerably under different analysis conditions, which means that there is little node stability, and for selecting preferred analysis conditions there is conflicting evidence from rescaled incongruence length difference and the key node criterion. Based on the analysis of the combined morphological and molecular datasets, this study supports the close relationship between the families Gerridae, Hermatobatidae and Veliidae (superfamily Gerroidea), but not the monophyly of the family Veliidae. The results suggest that the genus Ocellovelia (Ocelloveliinae) should be excluded from this family and placed as a sister group to Gerridae + the remaining species of Veliidae. Our study also supports a close relationship between the subfamilies Halobatinae and Ptilomerinae (Gerridae), and that the subfamily Veliinae is probably nonmonophyletic.  相似文献   

2.
Water striders (Hemiptera: Gerridae) are predators found on the water surface that prey mainly on arthropods. The feeding on other organisms (dead vertebrates, fishes and tadpoles) is a rare event. To our knowledge, predation of frog eggs by water striders has not yet been reported. We observed that adult water striders, Gerris latiabdominis Miyamoto, 1958 (Hemiptera: Gerridae), preyed on the eggs of three frog species, Pelophylax nigromaculata Hallowell, 1861 (Anura: Ranidae), Rana japonica Boulenger, 1879 (Anura: Ranidae), and Rhacophorus schlegelii Günther, 1858 (Anura: Rhacophoridae). We found predation by the water striders affects the survival rate of frog eggs floating on the water surface. We suggest that this hunting event would occur in water bodies in which water striders and frogs coexist, especially the region where their phenology overlaps.  相似文献   

3.
Water striders (Hemiptera, Gerromorpha) are a very distinct ecological group specially adapted for life on the water surface. The present paper reports on four species of Gerromorpha from the Middle Eocene fossil sites of Eckfeld and Messel describingLutetiabates eckfeldensis n. gen. et n. sp.,Cylindrobates messelensis n. gen. et n. sp. (both Gerridae), and two nymphs most probably of the genusGerris. The record of two new members of Gerridae from the Paleogene as well as the hitherto known Gerromorpha from fossiliferous resins document a distinctly higher diversity of water striders within die European Paleogene than today. Lastly, comments are made on the fossil history as well as on the palaeobiological and palaeobiogeographical significance of the faunas.  相似文献   

4.
No other group of insects have been more successful in colonizing marine habitats than water striders and their allies (Heteroptera, Gerromorpha). More than 10% of the 1700 species of gerromorphan bugs are marine. Water striders have colonized the marine environment at least 14 times. The fossil records suggest that marine habitats were invaded by members of the families Veliidae and Gerridae earlier than 20-30 and 45 million years before present, respectively. Estuaries and mangrove swamps are undoubtedly the ancestral type of habitat, but water striders have diversified further in marine habitats including the surface of the open ocean (sea skaters. Halobates). Except for being obligatorily flightless, marine water striders are structurally very similar to their non-marine relatives. Physiological and behavioral rather than morphological specializations are likely to have been key innovations in the transition from limnic to marine habitats. The oldest and most species-rich clades originated in the Indo-West Pacific region. There are 3.5 times as many species of marine water striders in the Indo-West Pacific region than in the Atlantic/Caribbean/East Pacific region. This "diversity anomaly" is explained historically by region-specific differences in the origin and proliferation of clades, in paleoclimate and paleogeography, and in the propensity for dispersal between regions.  相似文献   

5.
Summary Competition for water surface prey between fish (Priapichtus annectens: Poeciliidae) and water striders (Potamobates unidentatus: Gerridae) was studied in the laboratory and in pools in a small tropical stream. Laboratory experiments showed that fish depressed activity and foraging success of water striders. Large fish (4–5 cm) had a greater effect than small fish (2–3 cm). The field experiment showed that competition was highly asymmetric. Presence of fish decreased water strider foraging success while the reverse interaction was insignificant. It is suggested that the higher individual foraging success of the fish, harassment of water striders by fish and the use of an exclusive resource, benthic invertebrates, by the fish, contribute to this pattern. Habitat use differed between the two species. Fish used the deeper parts of stream pools and water striders used the shallower parts of the pools. Asymmetric interference and exploitation competition may force water striders to use shallow edge habitats.  相似文献   

6.
Based on specimens (Natural History Museum Vienna, Cambodian Entomology Initiatives at the Royal University of Phnom Penh, private collection of fourth author) and based on literature, we provide a first species list of aquatic Hemiptera (Gerromorpha and Nepomorpha) of Cambodia. We studied 38 species (37 identified) and added three reliable species records from the literature. In total, we report on 41 species in 25 genera and 11 families (Belostomatidae, Gerridae, Hebridae, Helotrephidae, Hydrometridae, Mesoveliidae, Micronectidae, Naucoridae, Nepidae, Notonectidae, Veliidae). Most of these taxa are recorded from Cambodia for the first time. We describe two species as new to science: Microvelia falcata sp. n. (Veliidae) and Ranatra cardamomensis sp. n. (Nepidae). Subspecific rank is given for Cylindrostethus costalis malayensis Polhemus, 1994 stat. n. (Gerridae) that was formerly described as a distinct species.

http://zoobank.org/urn:lsid:zoobank.org:pub:C95441BD-C817-42BA-87CA-01070A4B7F17  相似文献   


7.
G. Arnqvist  M. Mäki 《Oecologia》1990,84(2):194-198
Summary Trypanosomatid flagellates are common protozoan gut parasites of a wide range of insect species. Water striders (Gerridae) harbour the trypanosomatid Blastocrithidia gerridis. Three different populations of the water strider Gerris odontogaster in northern Sweden were sampled to assess the infection rate dynamics of trypanosomatids. The initially very low infection rates (0%–15%) early in the season were followed by a rapid increase during the reproductive period of the water striders, reaching very high levels (80%–90%). The pathogenic effects of trypanosomatids on G. odontogaster adults were studied in laboratory experiments. The parasites caused a general reduction of host vigour. Male skating endurance was negatively correlated with the intensity of the trypanosomatid infection. However, infection of trypanosomatids increased the mortality among adults only when the water striders were subjected to food stress. The trypanosomatids did not reduce the fecundity of females provided with food. We suggest that trypanosomatid gut parasites may be an important mortality factor in water strider populations. Since the pathogenicity of the parasites is enhanced by stress, parasitism by trypanosomatids may contribute to the regulation of host populations.  相似文献   

8.
报道了印度唇形科刺蕊草属一新记录种:长苞刺蕊草,该种在印度产于阿萨姆邦,凭证标本保存于英国皇家植物园爱丁堡植物园标本馆(E)。在形态特征上,该种与中国特有的北刺蕊草相似,但其茎叶被糙硬毛、花萼呈近管状等特征与之相异。  相似文献   

9.
The effect of the entomopathogenic fungus Beauveria bassiana on the biological characteristics and life table of Aphidius matricariae, a parasitoid of the green peach aphid, Myzus persicae, was studied under laboratory conditions. Aphids were first infected with twice the LC95 of B. bassiana for third-instar M. persicae (2 × 108 conidia/ml). Subsequently, at different intervals they were exposed to 1-day-old mated parasitoid females for 24 h. The number of mummies produced per female and the percentage emergence of the F1 generation differed significantly as a function of the time interval between application of the fungus and exposure to the parasitoid. The interference of B. bassiana on parasitoid development was also studied by first exposing the aphid hosts to the parasitoid for 24 h and subsequently applying B. bassiana. The number of mummies produced by a female A. matricariae varied from 11.8 to 24.8 and was significantly different when the aphids were first exposed to the parasitoids and then treated with B. bassiana 24, 48, 72, and 96 h after exposure. There were no significantly different effects of B. bassiana on net reproductive rate (R0), mean generation time (T), intrinsic rate (rm) and the finite rate of increase (λ) of A. matricariae as a result of development in hosts exposed to low or high conidial concentrations (1 × 102, 2 × 108 conidia/ml). The parasitoids developed in infected hosts had lower rm, λ, T and DT (doubling time) values compared with those that developed in uninfected hosts but no differences were observed in R0 values. With proper timing, A. matricariae and B. bassiana can be used in combination in the successful biological control of M. persicae.  相似文献   

10.
The mobility hypothesis could explain the evolution of female‐biased size dimorphism if males with a smaller body size and longer legs have an advantage in scramble competition for mates. This hypothesis is tested by performing a selection analysis in the wild on Micrarchus hystriculeus (Westwood) (Phasmatodea), a sexually size dimorphic stick insect endemic to New Zealand. This analysis examined the form and strength of sexual selection on body size, leg lengths (front, mid and hind), and clasper size (a genitalic trait), and also quantified the degree of phenotypic variation and the allometric scaling pattern of these traits. By contrast to the mobility hypothesis, three lines of evidence were found to support significant stabilizing sexual selection on male hind leg length: a significant nonlinear selection gradient, negative static allometry, and a low degree of phenotypic variation. Hind leg length might be under stabilizing selection in males if having average‐sized legs facilitates female mounting or improves a male's ability to achieve the appropriate copulation position. As predicted, a negative allometric scaling pattern and low phenotypic variation of clasper size is suggestive of stabilizing selection and supports the ‘one‐size‐fits‐all’ hypothesis. Opposite to males, the mid and hind leg lengths of females showed positive static allometry. Relatively longer mid and hind leg lengths in larger females might benefit individuals via the better support of their larger abdomens. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 471–484.  相似文献   

11.
Abstract 1. Non‐lethal genetic surveys in insects usually extract DNA from a leg or a piece of wing. Although preferable to lethal sampling, little is known about the effect of leg/wing non‐lethal sampling on fitness‐related traits. 2. Graellsia isabelae (Graells, 1849) is a European moth protected by the Habitats Directive and the Bern Convention. Conservation genetics surveys on this species should therefore use non‐lethal sampling. 3. The present study aimed to (1) quantify the effects of both leg and hind‐wing tail sampling on survivorship and reproductive behaviour of adult males and females, and (2) assess the quality and quantity of DNA obtained from those tissues. 4. Both hind‐wing tails and mid‐legs proved to be good sources of high quality nuclear and mitochondrial DNA. DNA concentration was significantly higher when extracted from a large (130 mm2) piece of the hind‐wing tails than from about half of the mid‐leg. Using mark–release–recapture experiments with adults, it was found that neither mid‐leg nor hind‐wing tail sampling significantly reduced male survivorship or total number of matings. However, although mid‐leg sampling did not significantly affect female survivorship, it had a negative effect on female mating success. 5. Wing‐tail clipping on males appeared to be the best non‐lethal sampling procedure for G. isabelae. It is a fast procedure, similar to natural wing impairment, and did not significantly affect survival or mating behaviour.  相似文献   

12.
We examined the course of spermatogenesis and the meiotic chromosome complements in aquatic species of true bugs, Heteroptera. The chromosome complement of the Veliidae species was 2n = 39 (38A + X0) and 23 (22A + X0) in Rhagovelia whitei and Rhagovelia sp, respectively, and in the species of the Notonectidae (Martarega sp) it was 26 (22A + 2m + XY); all collected from the region of S?o José do Rio Preto, SP, Brazil. An impressive characteristic of the first analysis was the size of the cells belonging to Martarega sp, which were six times larger than the same cells in Pentatomidae and twice as large as the cells in aquatic Heteroptera (Gerridae). Regarding spermatogenesis, all the species analyzed showed the same pattern: holocentric chromosomes and elongated spermatids with the chromatin distributed evenly along the head. The family Veliidae showed several bodies impregnated with silver nitrate at prophase, while the family Notonectidae displayed only one. The cells of Notonectidae also showed an evident and round body until the end of prophase I and in the family Veliidae the silver-impregnated bodies were disorganized, where the only region visualized was possibly that of the NOR. In metaphase, silver-stained regions were found at the periphery of all chromosomes in Veliidae and at the periphery of some chromosomes in Notonectidae. The spermatids of Veliidae showed a less silver-impregnated vesicle, while Notonectidae showed silver staining only in part of the nuclear membrane. Therefore, families of Heteroptera have some differences and features that can help identify and classify these species.  相似文献   

13.
1. The introduction of trout to montane lakes has negatively affected amphibian populations across the western United States. In northern California’s Klamath–Siskiyou Mountains, introduced trout have diminished the distribution and abundance of a native ranid frog, Rana (=Lithobates) cascadae. This is primarily thought to be the result of predation on frog larvae. However, if trout feed on larval aquatic insects that are available to R. cascadae only after emergence, then resource competition may also affect this declining native amphibian. 2. Stomach contents of R. cascadae were compared between lakes that contained trout and those from which introduced trout were removed. Total prey mass in stomach contents relative to frog body mass was not significantly different between lakes with fish and fish‐removal lakes, but in the former R. cascadae consumed a smaller proportion of adult aquatic insects. The stomach contents of fish included larvae of aquatic insects that are, as adults, eaten by R. cascadae. 3. Rana cascadae consumed fewer caddisflies (Trichoptera) and more grasshoppers (Orthoptera) at lakes with higher densities of fish. At lakes with greater aquatic habitat complexity, R. cascadae consumed more water striders (Hemiptera: Gerridae) and terrestrial spiders (Araneae). 4. We suggest that reductions in the availability of emerging aquatic insects cause R. cascadae to consume more terrestrial prey where trout are present. Thus, introduced trout may influence native amphibians directly through predation and, indirectly, through pre‐emptive resource competition.  相似文献   

14.
Winter survival of organisms has a crucial effect on their fitness in a seasonal environment. We tested whether overwinter survival of male water striders, Aquarius najas (De Geer) (Heteroptera: Gerridae), is associated with the time of season they leave the water for winter diapause. This was performed by comparing parameters of males leaving the water at the beginning of autumn and 1 month later. The results show significantly higher overwinter survival in males of the early diapausing group. They were found to be larger than late diapausing individuals. Overall, overwinter survival was found to be associated with body length. The strength of immune defence measured as encapsulation response against nylon monofilament appeared to be stronger in the early than in the late dia‐pausing group. Body length had an effect on the encapsulation rates of water striders, with larger males having a stronger encapsulation response. The amount of lipids was larger in males of the early diapausing group, and the relationship between body length and absolute lipid reserves was positive in both groups. However, a correlation between body reserves and body length was not found when lipid content was expressed as a proportion of total body weight. The results suggest that body length is the main variable linking overwinter survival and resistance against pathogens and parasitoids. This study shows that differences in resistance can explain differential winter survival of larger and smaller A. najas water striders.  相似文献   

15.

Background

Many legged animals change gaits when increasing speed. In insects, only one gait change has been documented so far, from slow walking to fast running, which is characterised by an alternating tripod. Studies on some fast-running insects suggested a further gait change at higher running speeds. Apart from speed, insect gaits and leg co-ordination have been shown to be influenced by substrate properties, but the detailed effects of speed and substrate on gait changes are still unclear. Here we investigate high-speed locomotion and gait changes of the cockroach Nauphoeta cinerea, on two substrates of different slipperiness.

Results

Analyses of leg co-ordination and body oscillations for straight and steady escape runs revealed that at high speeds, blaberid cockroaches changed from an alternating tripod to a rather metachronal gait, which to our knowledge, has not been described before for terrestrial arthropods. Despite low duty factors, this new gait is characterised by low vertical amplitudes of the centre of mass (COM), low vertical accelerations and presumably reduced total vertical peak forces. However, lateral amplitudes and accelerations were higher in the faster gait with reduced leg synchronisation than in the tripod gait with distinct leg synchronisation.

Conclusions

Temporally distributed leg force application as resulting from metachronal leg coordination at high running speeds may be particularly useful in animals with limited capabilities for elastic energy storage within the legs, as energy efficiency can be increased without the need for elasticity in the legs. It may also facilitate locomotion on slippery surfaces, which usually reduce leg force transmission to the ground. Moreover, increased temporal overlap of the stance phases of the legs likely improves locomotion control, which might result in a higher dynamic stability.
  相似文献   

16.
The guava weevil, Conotrachelus psidii, is a major pest of guava in Brazil and causes severe reduction in fruit quality. This weevil is difficult to control with insecticides because adults emerge over a long period, and larvae develop to the fourth-instar inside the fruit and move to the soil for pupation. We assessed the virulence of entomopathogenic nematodes to fourth-instar larvae in soil by comparing their susceptibility to nine species or strains: Heterorhabditis bacteriophora HP88, H. baujardi LPP7, and LPP1, H. indica Hom1, Steinernema carpocapsae All and Mexican, S. feltiae SN, S. glaseri NC, and S. riobrave 355. In petri dish assays with sterile sand at a concentration of 100 infective juveniles (IJs) of a given nematode species/strain, larval mortality ranged from 33.5 to 84.5%, with the heterorhabditids being the most virulent. In sand column assays with H. baujardi LPP7, H. indica Hom1, or S. riobrave 355 at concentrations of 100, 200, and 500 IJs, mortality was greater than the control only for H. baujardi (62.7%) and H. indica (68.3%) at the highest concentration. For H. baujardi LPP7 in a petri dish assay, the time required to kill 50 and 90% of the larvae (LT50 and LT90) for 100 IJs was 6.3 and 9.9 days, whereas the lethal concentration required to kill 50 and 90% of the larvae (LC50 and LC90) over 7 days was 52 and 122.2 IJs. In a greenhouse study with guava trees in 20-L pots, 10 weevil larvae per pot, and concentrations of 500, 1000 or 2000 IJs, H. baujardi LPP7 caused 30 and 58% mortality at the two highest concentrations. These results show that H. baujardi is virulent to fourth-instar larvae and has potential as a biological control agent in IPM programs.  相似文献   

17.
应用固定监测样方法对5年自然恢复前后的单性木兰群落进行了系统全面的调查,分析了单性木兰群落的物种组成、物种多样性和群落结构的变化。结果表明,(1)组成群落的植物科、属、种数量均有所减少,但物种个体数量却明显增加;(2)乔木、灌木层物种多样性变幅较大,草本层则波动不大,群落还处于初期演替阶段,各物种间竞争强烈,一些下层阳性物种正在消失,中性、耐阴性物种在不断补充,群落物种多样性变得更加复杂;(3)濒危植物单性木兰的密度、盖度和重要值明显增加,单性木兰对自然环境有较强的适应性,在群落中的优势地位不断加强,群落正向着以单性木兰为主要建群种的方向发展。  相似文献   

18.
Eriborus applititus Sheng & Sun (Hymenoptera: Ichneumonidae) is a specialist parasitoid of the small carpenter moth Holcocerus insularis Staudinger (Lepidoptera: Cossidae). Each year damages to trees caused by H. insularis lead to extensive economic and ecological losses. E. applititus is thus a promising candidate for use as a biocontrol agent against H. insularis. To investigate the means by which E. applititus locates and parasitizes H. insularis, we used scanning electron microscopy to determine the morphology and distribution of sensilla on antenna, ovipositor and leg of male and female E. applititus. Eight different sensilla types were found: sensilla chaetica, sensilla trichodea, sensilla placodea, sensilla basiconica, sensilla coeloconica, sensilla pit basiconica, sensilla campaniformia and Böhm's bristles. The sensilla types were differently distributed in the three organs. In addition, differences between sexes were found in the distribution of sensilla trichodea type 2, sensilla placodea and sensilla chaetica type 4. Putative functions of the sensilla are discussed based on the morphological and location data and on previous research. Chemosensitive sensilla are putatively involved in host detection, pheromone detection and host discrimination processes. Mechanoreceptive sensilla likely function as vibrational sensors and are thought to be critical for accurate ovipositor positioning.  相似文献   

19.
Summary This paper describes the engineering of braced tripod proteins for use as molecular frameworks. Specifically, a 30-residue tripod-shaped protein with three proline-II helical legs braced by an iron(II)tris(bipyridine) complex was modularly designed, chemically synthesized, and biophysically characterized. Three copies of a 10-residue leg peptide were covalently linked through sulfide bonds to an N-terminal apex (1,3,5-tris(methylene)benzene) and by amide bonds to the brace (FeII (Mbc)3: Mbc is 4′-methyl-2,2′-bipyridine-4-carbonyl). The leg peptide (H-Cys-Pro5-Pra(Mbc)-Pro3-NH2: Pra iscis-4-amino-l-proline) was assembled by the solid-phase method using Boc-Pra(Mbc)-OH, which was synthesized in 75% overall yield by coupling Mbc-OH to the 4-amino group of Boc-Pra-OCH3 and saponifying the methyl ester group. The iron(II)-braced tripod was assembled by S-alkylation of three copies of the leg peptide with 1,3,5-tris(bromomethyl)benzene followed by ligation of Fe2+ to the resulting unbraced tripod. The CD spectrum of the iron(II)-braced tripod showed a positive MLCT band at 570 nm and a negative π-π* band at 312 nm, so its FeII(Mbc)3 brace was predominantly in the Δ configuration. In a mostly acetonitrile solution at 25°C, the leg peptide and the unbraced tripod isomerized from the proline-II helical form into the proline-I helical form but the iron(II)-braced tripod remained in the proline-II helical form.  相似文献   

20.
Our objective was to estimate the biocontrol potential of the recently discovered entomopathogenic nematode species Heterorhabditis georgiana (Kesha strain). Additionally, we conducted a phylogenetic characterization of the nematode’s symbiotic bacterium. In laboratory experiments, we compared H. georgiana to other entomopathogenic nematodes for virulence, environmental tolerance (to heat, desiccation, and cold), and host seeking ability. Virulence assays targeted Acheta domesticus, Agrotis ipsilon, Diaprepes abbreviatus, Musca domestica, Plodia interpunctella, Solenopsis invicta, and Tenebrio molitor. Each assay included H. georgiana and five or six of the following species: Heterorhabditis floridensis, Heterorhabditis indica, Heterorhabditis mexicana, Steinernema carpocapsae, Steinernema feltiae, Steinernema rarum, and Steinernema riobrave. Environmental tolerance assays included Heterorhabditis bacteriophora, H. georgiana, H. indica, S. carpocapsae, S. feltiae, and S. riobrave (except cold tolerance did not include S. carpocapsae or S. riobrave). Host seeking ability was assessed in H. bacteriophora, H. georgiana, S. carpocapsae, and Steinernema glaseri, all of which showed positive orientation to the host with S. glaseri having greater movement toward the host than S. carpocapsae (and the heterorhabditids being intermediate). Temperature range data (tested at 10, 13, 17, 25, 30 and 35 °C) indicated that H. georgiana can infect Galleria mellonella between 13 and 35 °C (with higher infection at 17–30 °C), and could reproduce between 17 and 30 °C (with higher nematode yields at 25 °C). Compared with other nematode species, H. georgiana expressed low or intermediate capabilities in all virulence and environmental tolerance assays indicating a relatively low biocontrol potential. Some novel observations resulted from comparisons among other species tested. In virulence assays, H. indica caused the highest mortality in P. interpunctella followed by S. riobrave; S. carpocapsae caused the highest mortality in A. domesticus followed by H. indica; and S. riobrave was the most virulent nematode to S. invicta. In cold tolerance, S. feltiae exhibited superior ability to cause mortality in G. mellonella (100%) at 10 °C, yet H. bacteriophora and H. georgiana exhibited the ability to produce attenuated infections at 10 °C, i.e., the infections resumed and produced mortality at 25 °C. In contrast, H. indica did not show an ability to cause attenuated infections. Based on the phylogenetic analysis, the bacterium associated with H. georgiana was identified as Photorhabdus luminescens akhurstii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号