首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary In the 1940's the root-knot nematode resistance gene (Mi) was introgressed into the cultivated tomato from the wild species, L. peruvianum, and today it provides the only form of genetic resistance against this pathogen. We report here the construction of a high resolution RFLP map around the Mi gene that may aid in the future cloning of this gene via chromosome walking. The map covers the most distal nine map units of chromosome 6 and contains the Mi gene, nine RFLP markers, and one isozyme marker (Aps-1). Based on the analysis of more than 1,000 F2 plants from four crosses, we were able to pinpoint the Mi gene to the interval between two of these markers — GP79 and Aps-1. In crosses containing the Mi gene, this interval is suppressed in recombination and is estimated to be 0.4 cM in length. In contrast, for a cross not containing Mi, the estimated map distance is approximately 5 times greater (ca. 2 cM).Using RFLP markers around Mi as probes, it was possible to classify nematode resistant tomato varieties into three types based on the amount of linked peruvianum DNA still present. Two of these types (representing the majority of the varieties tested) were found to still contain more than 5 cM of peruvianum chromosome — a result that may explain some of the negative effects (e.g. fruit cracking) associated with nematode resistance. The third type (represented by a single variety) is predicted to carry a very small segment of peruvianum DNA (<2 cM) and may be useful in the identification of additional markers close to Mi and in the orientation of clones during a chromosome walk to clone the gene.  相似文献   

2.
Accessions of the wild tomato species L. peruvianum were screened with a root-knot nematode population (557R) which infects tomato plants carrying the nematode resistance gene Mi. Several accessions were found to carry resistance to 557R. A L. peruvianum backcross population segregating for resistance to 557R was produced. The segregation ratio of resistant to susceptible plants suggested that a single, dominant gene was a major factor in the new resistance. This gene, which we have designated Mi-3, confers resistance against nematode strains that can infect plants carrying Mi. Mi-3, or a closely linked gene, also confers resistance to nematodes at 32°C, a temperature at which Mi is not effective. Bulked-segregant analysis with resistant and susceptible DNA pools was employed to identify RAPD markers linked to this gene. Five-hundred-and-twenty oligonucleotide primers were screened and two markers linked to the new resistance gene were identified. One of the linked markers (NR14) was mapped to chromosome 12 of tomato in an L. esculentum/L. pennellii mapping population. Linkage of NR14 and Mi-3 with RFLP markers known to map on the short arm of chromosome 12 was confirmed by Southern analysis in the population segregating for Mi-3. We have positioned Mi-3 near RFLP marker TG180 which maps to the telomeric region of the short arm of chromosome 12 in tomato.  相似文献   

3.
With a view to cloning the root-knot nematode resistance gene Mi in tomato by chromosome walking, we have developed a molecular probe for the tightly linked acid phosphatase-1 (Aps-1) locus. The acid phosphatase-1 allozyme (APS-11), encoded by the Aps-1 1 allele originating from Lycopersicon peruvianum, was purified to apparent homogeneity from tomato roots and suspension cells. Microsequencing of CNBr and tryptic peptides generated from APS-11 provided a partial amino acid sequence, which accounted for approximately 23% of the protein and revealed two stretches of homology with soybean proteins KSH3 and VSP27, comprising 22 matches within 26 amino acid residues. The partial amino acid sequence information enabled us to isolate a 2.4 kb genomic Aps-1 1 sequence by means of the polymerase chain reaction (PCR), primed by degenerate pools of oligodeoxyribonucleotides, synthesized on the basis of the amino acid sequences. Synthesis of the 2.4 kb PCR product was specific for genomic templates carrying the L. peruvianum Aps-1 1 allele. Crucial to the priming specificity and the synthesis of the 2.4 kb genomic sequence was the use of degenerate primer pools in which the number of different primer species was limited by incorporating deoxyinosine phosphate residues at three and four base ambiguities. In using cDNA as a template, a 490 bp sequence was obtained, indicating a high proportion of intron sequences in the 2.4 kb genomic Aps-1 1 sequence. The Aps-1 1 origin of the PCR product was confirmed by RFLP (restriction fragment length polymorphism) analysis, using both a chromosome 6 substitution line and a pair of nearly isogenic lines, differing for a small chromosomal region around the Aps-1/Mi loci.  相似文献   

4.
Summary Genes introduced into cultivated plants by backcross breeding programs are flanked by introgressed segments of DNA derived from the donor parent. This phenomenon is known as linkage drag and is frequently thought to affect traits other than the one originally targeted. The Tm-2 gene of Lycopersicon peruvianum, which confers resistance to tobacco mosaic virus, was introduced into several different tomato cultivars (L. esculentum) by repeated backcrossing. We have measured the sizes of the introgressed segments flanking the Tm-2 locus in several of these cultivars using a high density map of restriction fragment length polymorphic (RFLP) markers. The smallest introgressed segment is estimated to be 4 cM in length, while the longest is over 51 cM in length and contains the entire short arm of chromosome 9. Additionally, RFLP analysis was performed on remnant seed from different intermediate generations corresponding to two different backcross breeding programs for TMV resistance. The results reveal that plants containing desirable recombination near the resistance gene were rarely selected during backcrossing and, as a result, the backcross breeding method was largely ineffective in reducing the size of linked DNA around the resistance gene. We propose that, by monitoring recombination around genes of interest with linked RFLP markers, one can quickly and efficiently reduce the amount of linkage drag associated with introgression. Using such a procedure, it is estimated that an introgressed segment can be obtained in two generations that is as small as that which would otherwise require 100 backcross generations without RFLP selection.  相似文献   

5.
As part of a map-based cloning strategy designed to isolate the root-knot nematode resistance gene Mi, tomato F2 populations were analyzed in order to identify recombination points close to this economically important gene. A total of 21 089 F2 progeny plants were screened using morphological markers. An additional 1887 F2 were screened using PCR-based flanking markers. Fine-structure mapping of recombinants with newly developed AFLP markers, and RFLP markers derived from physically mapped cosmid subclones, localized Mi to a genomic region of about 550 kb. The low frequency of recombinants indicated that recombination was generally suppressed in these crosses and that crossovers were restricted to particular regions. To circumvent this problem, a population of Lycopersicon peruvianum, the species from which Mi was originally introgressed, that was segregating for resistance was developed. Screening of this population with PCR, RFLP and AFLP markers identified several plants with crossovers near Mi. Recombination frequency was approximately eight-fold higher in the Mi region of the L. peruvianum cross. However, even within the wild species cross, recombination sites were not uniformly distributed in the region. By combining data from the L. esculentum and L. peruvianum recombinant analyses, it was possible to localize Mi to a region of the genome spanning less than 65 kb. Received: 15 July 1997 / Accepted: 1 October 1997  相似文献   

6.
Summary Asymmetric somatic hybrids of Lycopersicon esculentum and Lycopersicon peruvianum were analysed for the retention of genes and alleles specific for L. peruvianum. The hybrids were obtained by fusion of protoplasts from L. esculentum with those of L. peruvianum (the donor), the latter having been irradiated before fusion with 50, 300 or 1,000 Gy of gamma-rays. The retention of three different types of genes or alleles was analysed. (1) The gene coding for kanamycin resistance, which is dominant and had been introduced in most of the L. peruvianum donor plants by transformation. It was present at one locus in 16 L. peruvianum donor plants and at two loci in one donor plant. (2) The genes coding for acid phosphatase, locus Aps-1, and glutamate oxaloacetate transaminase (GOT); different alleles of these genes are co-dominant and were detected by isozyme analysis. (3) Eighteen single gene morphological markers for which most of the L. esculentum genotypes used were homozygous recessive. Kanamycin resistance from donor plants with one locus was retained in about 50% of the asymmetric 30H-hybrids (the donor was irradiated with 300 Gy). L. peruvianum specific alleles of Aps-1 and GOT were present in at least 70% of the hybrids; the retention of donor alleles was lower in 30H- than in 5H-hybrids (donor irradiated with 50 Gy). On average, 73% of the L. peruvianum-specific alleles (one or both) of the morphological markers were detected in the 30H-hybrids. Several of the L. esculentum genotypes used were homozygous recessive for two morphological markers on the same chromosome; in 43% of the 30H-hybrids derived from them, only one of these markers was complemented by the L. peruvianum allele. This is an indication of frequent breakage of the L. peruvianum chromosomes. Several hybrid calli regenerated genotypically different shoots. On the whole, this analyses confirms the conclusion drawn from the cytogenetic and morphological analysis of these asymmetric hybrids, namely that irradiation prior to fusion eliminates the L. peruvianum genome to only a limited extent.  相似文献   

7.
As part of a map-based cloning strategy designed to isolate the root-knot nematode resistance gene Mi, tomato F2 populations were analyzed in order to identify recombination points close to this economically important gene. A total of 21?089 F2 progeny plants were screened using morphological markers. An additional 1887 F2 were screened using PCR-based flanking markers. Fine-structure mapping of recombinants with newly developed AFLP markers, and RFLP markers derived from physically mapped cosmid subclones, localized Mi to a genomic region of about 550?kb. The low frequency of recombinants indicated that recombination was generally suppressed in these crosses and that crossovers were restricted to particular regions. To circumvent this problem, a population of Lycopersicon peruvianum, the species from which Mi was originally introgressed, that was segregating for resistance was developed. Screening of this population with PCR, RFLP and AFLP markers identified several plants with crossovers near Mi. Recombination frequency was approximately eight-fold higher in the Mi region of the L. peruvianum cross. However, even within the wild species cross, recombination sites were not uniformly distributed in the region. By combining data from the L.?esculentum and L. peruvianum recombinant analyses, it was possible to localize Mi to a region of the genome spanning less than 65?kb.  相似文献   

8.
The amount of recombination in three different intraspecific crosses of the wild tomato species Lycopersicon peruvianum was investigated for the short arm of chromosome 6 that harbors the Mi nematode resistance gene and the centromeric region of chromosome 9 that contains the Tm2a virus resistance gene. These two genes have been introgressed into the cultivated tomato and are associated with a significant reduction in recombination in the respective region when crossed to other L. esculentum lines. For both regions and all crosses within L. peruvianum significantly more recombination (up to more than ten fold) was observed in the gametes derived from the female parent than in those from the male parent. In general, the differences were more pronounced for chromosome 6 than for chromosome 9. The amount of recombination in the three intraspecific L. peruvianum crosses was compared with the amount of recombination observed in the standard interspecific cross used for the construction of a saturated genetic map of tomato (L. esculentum x L. pennellii). In two of three cases for each region, more recombination was observed in the intraspecific crosses and in one case for each region significantly less recombination was found in the intraspecific cross when compared to the interspecific cross. Specifically for the Mi-carrying region, crosses within L. peruvianum exhibited up to 15-fold more recombination than crosses between resistant and susceptible L. esculentum lines, and such crosses will allow the fine mapping of this gene for the purpose of map-based cloning.  相似文献   

9.
Selection of detectable numbers of Mi-virulent root-knot nematodes has necessitated a greater understanding of nematode responses to new sources of resistance. During the course of this research, we compared the reproduction of four geographically distinct Mi-virulent root-knot nematode isolates on three resistant accessions of Lycopersicon peruvianum. Each accession carried a different resistant gene, Mi-3, Mi-7, or Mi-8. All nematode isolates were verified as Meloidogyne incognita using diagnostic markers in the mitochondrial genome of the nematode. Reproduction of Mi-virulent isolates W1, 133 and HM, measured as eggs per g of root, was greatest on the Mi-7 carrying accession and least on the Mi-8 carrying accession. In general, Mi-3 behaved similar to the Mi-8 carrying accession. Reproduction of the four nematode isolates was also compared on both Mi and non-Mi-carrying L. esculentum cultivars and a susceptible L. peruvianum accession. Resistance mediated by Mi in L. esculentum still impacted the Mi-virulent nematodes with fewer eggs per g of root on the resistant cultivar (P ≤ 0.05). Preliminary histological studies suggests that Mi-8 resistance is mediated by a hypersensitive response, similar to Mi.  相似文献   

10.
A PCR-based codominant marker has been developed which is tightly linked to Mi, a dominant genetic locus in tomato that confers resistance to several species of root-knot nematode. DNA from tomato lines differing in nematode resistance was screened for random amplified polymorphic DNA markers linked to Mi using decamer primers. Several markers were identified. One amplified product, REX-1, obtained using a pair of decamer primers, was present as a dominant marker in all nematode-resistant tomato lines tested. REX-1 was cloned and the DNA sequences of its ends were determined and used to develop 20-mer primers. PCR amplification with the 20-mer primers produced a single amplified band in both susceptible and resistant tomato lines. The amplified bands from susceptible and resistant lines were distinguishable after cleavage with the restriction enzyme Taq I. The linkage of REX-1 to Mi was verified in an F2 population. This marker is more tightly linked to Mi than is Aps-1, the currently-used isozyme marker, and allows screening of germplasm where the linkage between Mi and Aps-1 has been lost. Homozygous and heterozygous individuals can be distinguished and the procedure can be used for rapid, routine screening. The strategy used to obtain REX-1 is applicable to obtaining tightly-linked markers to other genetic loci. Such markers would allow rapid, concurrent screening for the segregation of several loci of interest.  相似文献   

11.
The root knot nematode resistance gene Mi in tomato has been mapped in the pericentromeric region of chromosome 6. With the objective of isolating Mi through a map-based cloning approach, we have previously identified and ordered into a high-resolution genetic linkage map a variety of tightly linked molecular markers. Using pulsed-field gelelectrophoresis and various rarely cutting restriction enzymes in single, double and partial digestions, we now report long-range physical maps of the two closest flanking markers, acid phosphatase-1 (Aps-1) and GP79, which span over 400 and 800 kb, respectively. It is concluded that the physical distance between both markers is larger than predicted on the basis of genetic linkage analysis. Furthermore, two RFLP markers (H3F8 and H4H10) which map genetically to the same locus as Aps-1 do not show physical linkage, indicating severe suppression of recombination in this region of the chromosome. Finally, no evidence was obtained showing the presence of a CpG island near Aps-1.  相似文献   

12.
Aps-1 encodes acid phosphatase-1, one of the many acid phosphatases present in tomato (Lycopersicon esculentum Mill.). Aps-1 is closely linked to Mi, a gene conferring resistance against nematodes. Thus, a clone of Aps-1 would provide access to the region of the genome containing Mi. Acid phosphatase-1 was purified from tomato suspension culture cells. Fragmentary amino acid sequences were derived from the purified protein and from its proteolytic and chemical digestion products. One of these amino acid sequences was used to design an oligodeoxyribonucleotide probe expected to hybridize to acid phosphatase-1 cDNA. This probe identified, in a cDNA library, a clone encoding the carboxyl-terminal sequence of a protein that is very similar, but not identical, to acid phosphatase-1. Using this clone, we discovered a second cDNA clone that corresponds in its carboxyl terminal sequence to acid phosphatase-1 but, surprisingly, retains sequences of an Aps-1 intron. The second cDNA clone was used to detect both a cDNA clone and a genomic clone corresponding to Aps-1. The identity of these clones was confirmed by sequence analysis and by the correlation of a restriction fragment length polymorphism with two Aps-1 alleles in a segregating tomato population. The deduced amino acid sequence of the Aps-1 open reading frame predicts a hydrophobic animoterminal signal sequence and a mature protein with a molecular weight of 25,000. The amino acid sequence of this protein has a strong similarity in size and sequence to a vegetative storage protein of soybean.  相似文献   

13.
The gene Mi-1 confers effective resistance in tomato (Lycopersicon esculentum) against root-knot nematodes and some isolates of potato aphid. This locus was introgressed from L. peruvianum into the corresponding region on chromosome 6 in tomato. In nematode-resistant tomato, Mi-1 and six homologs are grouped into two clusters separated by 300 kb. Analysis of BAC clones revealed that the Mi-1 locus from susceptible tomato carried the same number and distribution of Mi-1 homologs, as did the resistant locus. Molecular markers flanking the resistant and susceptible loci were in the same relative orientation, but markers between the two clusters were in an inverse orientation. The simplest explanation for these observations is that there is an inversion between the two clusters of homologs when comparing the Mi-1 loci from L. esculentum and L. peruvianum. Such an inversion may explain previous observations of severe recombination suppression in the region. Two Mi-1 homologs identified from the BAC library derived from susceptible tomato are not linked to the chromosome 6 locus, but map to chromosome 5 in regions known to contain resistance gene loci in other solanaceous species.Communicated by J.S. Heslop-Harrison  相似文献   

14.
The inheritance of resistance to powdery mildew (Oidium lycopersicum) in Lycopersicon hirsutum was investigated by disease tests in segregating populations obtained by hybridising tomato (L. esculentum) cv Moneymaker with the wild relative L. hirsutum G1.1560. One incompletely dominant gene Ol-1 was found to largely control resistance to the disease. To map Ol-1, DNA pools from seven resistant and ten susceptible F2 plants were analyzed for random amplified polymorphic DNA (RAPD). With 32 primers tested, one RAPD, primed with the sequence 5-GACGTGGTGA-3, was observed between the susceptible and the resistant bulks, which cosegregated with resistance in the F2 population of L. esculentum × L. hirsutum G1.1560. This RAPD was mapped on chromosome 6 by using an F2 (L. esculentum × L. pennellii) already mapped for 49 RFLPs. RFLP analysis of the F2 from L. esculentum cv Moneymaker × L. hirsutum G1.1560 demonstrated that Ol-1 maps near the Aps-1 region on chromosome 6, in the vicinity of the resistance genes to Meloidogyne spp. (Mi) and to Cladosporium fulvum (Cf-2/Cf-5).  相似文献   

15.
The reproduction of single egg-mass isolates of Meloidogyne javanica from Crete that differed in virulence were compared on tomato (Lycopersicon esculentum) genotypes homozygous or heterozygous for the Mi gene. The reproduction of three isolates with partial virulence was much greater on tomato genotypes heterozygous for the Mi gene (cultivars Scala, Bermuda, and 7353) than on two homozygous genotypes (F8 inbred lines derived from Scala). The reproduction of a highly virulent isolate on the homozygous and heterozygous genotypes was similar to that on a susceptible cultivar. These results pose questions regarding the nature of partial virulence and indicate a quantitative effect of the Mi gene in relation to such virulence.  相似文献   

16.
Three chromosomal segments from the wild tomato, L. chmielewskii, introgressed into the L. esculentum genome have been previously mapped to the middle and terminal regions of chromosome 7 (7M, 7T respectively), and to the terminal region of chromosome 10 (10T). The present study was designed to investigate the physiological mechanisms controlled by the 7M and 7T segments on tomato soluble solids (SS) and pH, and their genetic regulation during fruit development. The effects of 7M and 7T were studied in 64 BC2F5 backcross inbred lines (BILs) developed from a cross between LA 1501 (an L. esculentum line containing the 7M and 7T fragments from L. chmielewskii), and VF145B-7879 (a processing cultivar). BILs were classified into four homozygous genotypes with respect to the introgressed segments based on RFLP analysis, and evaluated for fruit chemical characteristics at different harvest stages. Gene(s) in the 7M fragment reduce fruit water uptake during ripening increasing pH, sugars, and SS concentration. Gene(s) in the 7T fragment were found to be associated with higher mature green fruit starch concentration and red ripe fruit weight. Comparisons between tomatoes ripened on or off the vine suggest that the physiological mechanisms influenced by the L. chmielewskii alleles are dependent on the translocation of photosynthates and water during fruit ripening.  相似文献   

17.
Summary Using a modified embryo callus culture technique, hybrids between Lycopersicon esculentum and L. peruvianum were developed and their usefulness as bridge lines for facilitating interspecific gene transfer was evaluated. Four of these lines showed a high level of sexual compatibility with several other L. peruvianum var. typicum accessions, as well as with accessions of L. peruvianum var. humifusum and L. peruvianum var. glandulosum and L. esculentum. These bridge line x L. peruvianum hybrids could be crossed with L. esculentum to introgress genes from L. peruvianum into L. esculentum.  相似文献   

18.
The superior regeneration capacity of Lycopersicon peruvianum was introduced into the cultivated tomato Lycopersicon esculentum by backcrossing hybrid material with the tomato genotype VF11. In segregating material derived from these backcrosses, the ability to regenerate shoots on root explants cultured on a zeatin-containing medium, was highly correlated with the ability to regenerate shoots on established callus cultures. The efficient shoot-regenerating root explant system permitted us to study the genetics of this trait and to locate the genes involved, using a set of morphological markers defining all 12 tomato chromosomes. Depending on the tomato genotype, mono, -di- or trigenic ratios were observed. It is concluded that a dominant L. peruvianum allele at a locus (Rg-1) near the middle of chromosome 3 determines efficient shoot regeneration on root explants in tomato in combination with dominant alleles at one or two other loci of either L. peruvianum or L. esculentum origin. The map location of the Rg-1 locus was refined further using a number of chromosome-3-specific RFLPs. The addition of new classical and RFLP linkage data to existing literature data and subsequent processing resulted in a revised and integrated map of tomato chromosome 3. From a morphological and physiological analysis of genotypes differing in Rg phenotype, it is concluded that the genetic component associated with regeneration determines the maintenance of morphogenetic competence and not the sensitivity to hormones.  相似文献   

19.
Root-knot nematode resistance of F₁ progeny of an intraspecific hybrid (Lycopersicon peruvianum var. glandulosum Acc. No. 126443 x L. peruvianum Acc. No. 270435), L. esculentum cv. Piersol (possessing resistance gene Mi), and L. esculentum cv. St. Pierre (susceptible) was compared. Resistance to 1) isolates of two Meloidogyne incognita populations artificially selected for parasitism on tomato plants possessing the Mi gene, 2) the wild type parent populations, 3) four naturally occurring resistance (Mi gene)-breaking populations of M. incognita, M. arenaria, and two undesignated Meloidogyne spp., and 4) a population of M. hapla was indexed by numbers of egg masses produced on root systems in a greenhouse experiment. Artificially selected M. incognita isolates reproduced abundantly on Piersol, but not (P = 0.01) on resistant F₁ hybrids. Thus, the gene(s) for resistance in the F₁ hybrid differs from the Mi gene in Piersol. Four naturally occurring resistance-breaking populations reproduced extensively on Piersol and on the F₁ hybrid, demonstrating ability to circumvent both types of resistance. Meloidogyne hapla reproduced on F₁ hybrid plants, but at significantly (P = 0.01) lower levels than on Piersol.  相似文献   

20.
 The cytoplasmic male-sterile (CMS) line CMS-pennellii (BC10P2 L. peruvianum×L. pennellii) and its complex hybrids with L. esculentum were studied. The established sterility was classified as the sporogenous type. As a result of the interaction of the genome of L. pennellii and the cytoplasm of L. peruvianum clear changes were established in the profiles of malic enzyme and esterase. Restriction fragment length polymorphism (RFLP) was detected between the mitochondrial (mt) genomes of CMS-pennellii and the cytoplasm donor, L. peruvianum, for two mtDNA probes: atpA and nad3. The established differences in the isozyme pattern and mt genomes are considered as useful markers to distinguish fertile and sterile plants. A breakthrough in the unilateral incompatibility of CMS-pennellii and the incorporation of the genome of L. esculentum on a CMS background is reported. The analysis of the complex hybrids assumes the interaction of two dominant genes – a maintainer gene from L. pennellii and a restorer gene from cultivated tomato. The hybrids produced with L. esculentum provide the basis for the development of a CMS system in cultivated tomato. Received: 25 May 1998 / Accepted: 26 August 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号