首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ratios of Rb to Cs contents were studied in five fish species from seven lakes located in the Patagonia Andean Range, Argentina in order to trace fish diet. The species studied were native velvet catfish (Diplomistes viedmensis) and creole perch (Percichthys trucha), and exotic brown trout (Salmo trutta), rainbow trout (Oncorhynchus mykiss), and brook trout (Salvenilus fontinalis). Rainbow trout specimens from two farms were also studied, as well as fish food items and native mussels (Diplodon chilensis). Rb and Cs concentrations were determined by instrumental neutron activation analysis. A positive correlation of Cs concentration in the muscle of velvet catfish with fish length was observed, probably associated with the long biological half-life of this element in this species, whereas the Rb concentration remained constant, hence inhibiting the use of Rb-Cs ratios as a tracer in this case. Seasonal variations observed for rainbow trout and Cs concentration background bias in one of the lakes studied are also a limiting factor to the use of Rb-Cs ratios as a diet tracer. Rb-Cs ratios allowed clear differentiation of rainbow trout raised in farms from the natural specimens that lived in the same environment, in agreement with Rb-Cs ratios determined in both diets. Rb-Cs ratios in rainbow trout showed significant differences between Rivadavia and Futalaufquen lakes compared to Moreno and Nahuel Huapi lakes, which could be associated with a higher participation of plankton in the diet in the first case. No relevant variations in Rb-Cs ratios of brown trout were observed, probably because of the similarity in the diet.  相似文献   

2.
Hybridization with introduced taxa is one of the major threats to the persistence of native biodiversity. The westslope cutthroat trout (Oncorhynchus clarkii lewisi) is found in southeastern British Columbia and southwestern Alberta, Canada, and adjacent areas of Montana, Idaho, and Washington State, USA. Through much of this area, native populations are threatened by hybridization with introduced rainbow trout (O. mykiss). We surveyed 159 samples comprising over 5,000 fish at 10 microsatellite DNA loci to assess the level of admixture between native westslope cutthroat trout (wsct) and introduced rainbow trout in southwestern Alberta. Admixture levels (qwsct of 0 = pure rainbow trout, qwsct of 1.0 = pure westslope cutthroat trout) ranged from <0.01 to 0.99 and averaged from 0.72 to 0.99 across seven drainage areas. Regression tree analyses indicated that water temperature, elevation, distance to the nearest stocking site, and distance to the nearest railway line were significant components of a model that explained 34 % of the variation across sites in qwsct across 58 localities for which habitat variables were available. Partial dependence plots indicated that admixture with rainbow trout increased with increasing water temperature and distance to the nearest railway line, but decreased with increasing elevation and distance from stocking site to sample site. Our results support the hypothesis that westslope cutthroat trout may be less susceptible to hybridization with rainbow trout in colder, higher elevation streams, and illustrate the interaction between abiotic and anthropogenic factors in influencing hybridization between native and introduced taxa.  相似文献   

3.
1. Generalist fish species are recognised as important couplers of benthic and pelagic food‐web compartments in lakes. However, interspecific niche segregation and individual specialisation may limit the potential for generalistic feeding behaviour. 2. We studied summer habitat use, stomach contents and stable isotopic compositions of the generalist feeder Arctic charr coexisting with its common resource competitor brown trout in five subarctic lakes in northern Norway to reveal population‐level and individual‐level niche plasticity. 3. Charr and trout showed partial niche segregation in all five lakes. Charr used all habitat types and a wide variety of invertebrate prey including zooplankton, whereas trout fed mainly on insects in the littoral zone. Hence, charr showed a higher potential to promote habitat and food‐web coupling compared to littoral‐dwelling trout. 4. The level of niche segregation between charr and trout and between pelagic‐caught and littoral‐caught charr depended on the prevailing patterns of interspecific and intraspecific resource competition. The two fish species had partially overlapping trophic niches in one lake where charr numerically dominated the fish community, whereas the most segregated niches occurred in lakes where trout were more abundant. 5. In general, pelagic‐caught charr had substantially narrower dietary and isotopic niches and relied less on littoral carbon sources compared to littoral‐caught conspecifics that included generalist as well as specialised benthivorous and planktivorous individuals. Despite the partially specialised planktivorous niche and thus reduced potential of pelagic‐dwelling charr to promote benthic–pelagic coupling, the isotopic compositions of both charr subpopulations suggested a significant reliance on both littoral and pelagic carbon sources in all five study lakes. 6. Our study demonstrates that both interspecific niche segregation between and individual trophic specialisation within generalist fish species can constrain food‐web coupling and alter energy mobilisation to top consumers in subarctic lakes. Nevertheless, pelagic and littoral habitats and food‐web compartments may still be highly integrated due to the potentially plastic foraging behaviour of top consumers.  相似文献   

4.
1. Rainbow Trout (Oncorhynchus mykiss [Walbaum]) is commonly stocked as a sport fish throughout the world but can have serious negative effects on native species, especially in headwater systems. Productive fish‐bearing lakes represent a frequently stocked yet infrequently studied system, and effects of trout in these systems may differ from those in headwater lakes. 2. We used a Before‐After Control‐Impact (BACI) design to determine how stocked trout affected assemblage‐level and taxon‐level biomass, abundance and average length of littoral invertebrates in a stocked lake relative to three unstocked control lakes in the boreal foothills of Alberta, Canada. Lakes were studied 1 year before and for 2 years after stocking. Because characteristics of productive fish‐bearing lakes should buffer impacts of introduced fish, we predicted that trout would not affect assemblage‐level structure of littoral invertebrates but might reduce the abundance or average length of large‐bodied taxa frequently consumed by trout. 3. Relative to the unstocked control lakes, biomass, but not abundance, of the littoral invertebrate assemblage was affected indirectly by trout through increases of some taxa after trout stocking. At the individual taxon‐level, trout stocking did not affect most (23 of the 27) taxa, with four taxa increasing in abundance or biomass after stocking. Only one taxon, Chironomidae, showed evidence of size‐selective predation by trout, being consumed frequently by trout and decreasing significantly in average length after stocking. 4. Our results contrast with the strong negative effects of trout stocking on invertebrate assemblages commonly reported from headwater lakes. A combination of factors, including large and robust native populations of forage fish, the generalised diet of trout, overwinter aeration, relatively high productivity and dense macrophyte beds, likely works in concert to reduce potentially negative effects of stocked trout in these systems. As such, productive, fish‐bearing lakes may represent a suitable system for trout stocking, especially where native sport fish populations are lacking.  相似文献   

5.
1. Rainbow (Oncorhynchus mykiss) and brown trout (Salmo trutta) are widespread and invasive salmonids with important lethal effects as predators, although indirect effects are also possible. We used stable isotope analyses (δ15N, δ13C) to explore how the density of invasive trout in 25 Patagonian lakes alters the trophic niche (TN) of a widespread native fish, Galaxias platei (Galaxiidae). We also explored how the density of the galaxiid influences the TN of invasive trout. 2. We quantified two aspects of the TN: (i) the proportion of littoral carbon (PL) and (ii) trophic height (TH) (i.e. the ‘height’ at which the fish feeds in the food web). We related these measures of TN in a given species to the density of other species (as estimated by catch‐per‐unit‐effort). 3. As G. platei body size increased, their PL increased (increasing littoral feeding) in several lakes. However, none of the fish species investigated showed changes in PL with increasing density of the other fish species. TH increased with body size in all three species. In addition, the TH of large G. platei declined with increasing trout density and, reciprocally, the TH of large S. trutta decreased with decreasing G. platei density. 4. The reciprocal effects of native and the invasive fish on TH were as large as a shift of one trophic level. This pattern is consistent with an exhaustion of galaxiid prey for both piscivorous G. platei and S. trutta in lakes with high trout density. 5. These finding support the suggested management strategy of culling trout from overpopulated lakes, which should simultaneously protect native fish and enhance a lucrative sport fishery for large trout.  相似文献   

6.
7.
Brook trout (Salvelinus fontinalis) and rainbow trout (Oncorhynchus mykiss) have been widely introduced outside their respective ranges within North America causing declines and displacement of native trout. Yet, successful coexistence of native and non-native trout has received little attention. Here we evaluated the effect of introduced brook trout on the size and density of native redband trout in two invaded sub-basins in southeastern Oregon. In a multi-year study, we investigated whether habitat and fish communities differed between streams and stream reaches where redband trout were allopatric versus where redband trout were sympatric with brook trout. We hypothesized that redband trout would be less dense and have smaller total length in sympatry with brook trout than in allopatry, but that total trout density would not differ. We investigated whether differences in habitat existed between sympatric and allopatric locations that would indicate differentiation in site level habitat preferences for each trout species. We found that sympatric locations had more wood but similar fish community structure. Mean length and densities of redband trout were higher at allopatric locations. However, in most years at sympatric locations total trout density was twice that of allopatric redband trout sites. Using comparable data from an eastern United States system where brook trout are native, sympatric sites had lower densities of brook trout; however, total trout density did not differ. We conclude that invading trout negatively impact native trout densities; but in southeastern Oregon system the negative impact is minimized.  相似文献   

8.
We evaluated overlap in microhabitat use between nonnative rainbow trout, Oncorhynchus mykiss, and native Little Colorado spinedace, Lepidomeda vittata, a federally threatened cyprinid, in natural and experimental settings. In natural settings, we also examined occurrence and microhabitat use of two other native fishes, speckled dace, Rhinichthys osculus, and bluehead sucker, Catostomus discobolus. Native species co-occurred, as did rainbow trout and bluehead sucker. However, occurrences of Little Colorado spinedace and speckled dace were not significantly correlated with occurrence of rainbow trout. Total lengths of all three native species were significantly smaller at allopatric sites than at sites sympatric with rainbow trout. Microhabitat characteristics at sites with rainbow trout did not differ from those where the other three species were found, but did differ among the native species. In laboratory experiments with Little Colorado spinedace and rainbow trout, rainbow trout used the lower depth zone most, and spinedace increased use of the lower depth zone upon addition of rainbow trout. In addition, species tended to co-occur in zones, but used cover independently of one-another, suggesting a low level of agonistic interactions. However, after addition of a high density of rainbow trout, spinedace tended to use cover less than before. We suggest that the species can coexist at low rainbow trout densities. Potential negative effects of rainbow trout on Little Colorado spinedace likely increase with increasing densities of rainbow trout, and rainbow trout likely affect smaller size classes of Little Colorado spinedace more than larger ones.  相似文献   

9.
Ceratomyxa shasta is a virulent myxosporean parasite of salmon and trout in the Pacific Northwest of North America. The parasite is endemic in the Klamath River, Oregon/California, where a series of dams prevent movement of fish hosts between the upper and lower parts of the basin. Ceratomyxa shasta exhibits a range of infection patterns in different fish species above and below the dams. We hypothesised that the variations in infection and disease are indicators that different strains of the parasite exist, each with distinct host associations. Accordingly, we sought to identify strain-specific genetic markers in the ssrRNA and internal transcribed spacer region 1 (ITS-1). We examined 46 C. shasta isolates from water samples and two fish hosts, from June 2007 field exposures at upper and lower Klamath River sites with similarly high parasite densities. We found 100% of non-native rainbow trout became infected and died at both locations. In contrast, mortality in native Chinook salmon was <10% in the upper basin, compared with up to 40% in the lower basin. Parasite ssrRNA sequences were identical from all fish. However, ITS-1 sequences contained multiple polymorphic loci and a trinucleotide repeat (ATC)0-3 from which we defined four genotypes: 0, I, II and III. Non-native rainbow trout at both sites were infected with genotype II and with a low level of genotype III. Chinook salmon in the upper basin had genotypes II and III, whereas in the lower basin genotype I predominated. Genotype I was not detected in water from the upper basin, a finding consistent with the lack of anadromous Chinook salmon there. Genotype O was only detected in water from the upper basin. Resolution of C. shasta into sympatric, host-specific genotypes has implications for taxonomy, monitoring and management of this significant parasite.  相似文献   

10.
Trophic relations among introduced species may induce highly variable and complex effects in communities and ecosystems. However, studies that identify the potential impacts for invaded systems and illuminate mechanisms of coexistence with native species are scarce. Here, we examined trophic relations between two introduced fishes in streams of NW Patagonia, rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta). These species originate from different regions of the Northern Hemisphere but they now coexist as invading species over the world. We used gastric contents and stable isotopes analysis to compare the diets of two size‐classes of these two invaders in three localities of southern Chile. Both species displayed similar ontogenic diet shifts with smaller trout consuming mostly invertebrates and larger trout being more piscivorous and epibenthic feeders. However, piscivory was more prevalent in brown trout than in rainbow trout and highest at the site with the greatest density of native fishes suggesting that the availability of native fishes as trout prey may limit the occurrence of trout piscivory. We found an elevated dietary overlap between the two trout species at larger sizes while at smaller size a higher intraspecific dietary overlap occurred suggesting a potential interference competition among the two fish invaders especially at larger sizes. Our results highlight that the impacts of invading species on non‐native fishes are context specific (i.e. species and ontogenic stages) and thus, difficult to generalize.  相似文献   

11.
Climate change and invasive species are two stressors that should have large impacts on native species in aquatic and terrestrial ecosystems. We quantify and integrate the effects of climate change and the establishment of an invasive species (smallmouth bass Micropterus dolomieu ) on native lake trout Salvelinus namaycush populations. We assembled a dataset of almost 22 000 Canadian lakes that contained information on fish communities, lake morphologies, and geography. We examined the pelagic-benthic and littoral forage fish community available to lake trout populations across three lake size classes in these aquatic ecosystems. Due to the decreased presence of alternate prey resources, lake trout populations residing in smaller lakes are more vulnerable to the effects of smallmouth bass establishment. A detailed spatially and temporally explicit approach to assess smallmouth bass invasion risk in Ontario lakes suggests that the number of Ontario lakes with vulnerable lake trout populations could increase from 118 (~1%) to 1612 (~20%) by 2050 following projected climate warming. In addition, we identified nearly 9700 lake trout populations in Canada threatened by 2100, by the potential range expansion of smallmouth bass. Our study provides an integration of two major stressors of ecosystems, namely climate change and invasive species, by considering climate-change scenarios, dispersal rates of invasive species, and inter-specific biotic interactions.  相似文献   

12.
Eurasian perch (Perca fluviatilis) is a promising aquaculture candidate, but the growth performance of this non-domesticated species may be negatively affected by its stress responsiveness to intensive culture conditions. To evaluate this potential problem, juvenile Eurasian perch were exposed to a standardized handling stressor twice a week for an 8-week period. A similar study was conducted on domesticated rainbow trout (Oncorhynchus mykiss) for comparison of intra- and inter-specific differences. The stressed fish of both species showed lower body growth than the non-stressed control fish, however, the final mean body mass was 35.4% lower in the stressed Eurasian perch than in the non-stressed controls, compared to 22.8% difference between the two groups in rainbow trout. The stress responsiveness was examined by comparing the post-stress cortisol and glucose levels in repeatedly stressed fish and fish exposed to the stressor only once. The cortisol stress response in both species strongly indicated a habituation to the repeated stressor. Thus, repeatedly stressed Eurasian perch reached maximum cortisol levels of 130 ng/mL after 0.5 h compared to 200 ng/mL in the fish stressed once, while considerably smaller differences in cortisol levels were shown between the repeatedly and single stressed rainbow trout. Rainbow trout also showed lower post-stress glucose levels in the repeatedly stressed fish compared to the single stressed fish. In contrast, the glucose levels in both groups of Eurasian perch increased abruptly after stress treatment and remained elevated at approximately 19 mM for 6 h; levels were three times as high as the peak levels 3 h post-stress in rainbow trout. Together, the habituation of the stress response shown in both species did not eliminate the growth difference found in the repeatedly stressed fish versus the control fish. Further, the lower growth performance of Eurasian perch compared to rainbow trout could partly be due to the increased energy consumption in the more stress responsive Eurasian perch.  相似文献   

13.
A survey of mercury (Hg) and selenium (Se) contents was performed in fish collected from lakes located in two National Parks of the northern patagonian Andean range. Two native species, catfish (Diplomystes viedmensis) and creole perch (Percichthys trucha), and three introduced species, brown trout (Salmo trutta), rainbow trout (Oncorhynchus mykiss), and brook trout (Salvelinus fontinalis), were caught from lakes Nahuel Huapi, Moreno, Traful, Espejo Chico, and Guillelmo belonging to Nahuel Huapi National Park and from lakes Futalaufquen and Rivadavia, Los Alerces National Park. In lake Moreno, fish diet items were analyzed and rainbow trout grown in a farm. Hg and Se were measured in muscle and liver tissues by instrumental neutron activation analysis. The average concentrations in muscle of Hg for all species, ages, and lakes are between 0.4 to 1.0 μg g−1 dry weight (DW) with a few fish, mainly native, exceeding the United States Environmental Protection Agency health advisory for freshwater fish limited consumption, and from 0.8 to 1.5 μg g−1 DW for Se. Average concentrations in liver of Hg in all species range from 0.4 to 0.9 μg g−1 DW. Brown trout, the top predator in these lakes, showed the lowest average Hg burden in both tissues. Se concentrations in the liver of brown and rainbow trout, up to 279 μg g−1 DW, are higher than those expected for nearly pristine lakes, exceeding 20 μg g−1 DW, the threshold concentration associated with Se toxicity. These species show lower Hg contents in muscle, suggesting a possible detoxification of Hg by a Se-rich diet. Creole perch and velvet catfish livers have lower Se concentrations, with a narrower span of values (2.3 to 8.5 μg g−1 and 3.3 to 5.5 μg g−1 DW respectively).  相似文献   

14.
Movements of prey organisms across ecosystem boundaries often subsidize consumer populations in adjacent habitats. Human disturbances such as habitat degradation or non-native species invasions may alter the characteristics or fate of these prey subsidies, but few studies have measured the direct effects of this disruption on the growth and local abundance of predators in recipient habitats. Here we present evidence, obtained from a combined experimental and comparative study in northern Japan, that an invading stream fish usurped the flux of allochthonous prey to a native fish, consequently altering the diet and reducing the growth and abundance of the native species. A large-scale field experiment showed that excluding terrestrial invertebrates that fell into the stream with a mesh greenhouse reduced terrestrial prey in diets of native Dolly Varden charr (Salvelinus malma) by 46–70%, and reduced their growth by 25% over six weeks. However, when nonnative rainbow trout (Oncorhynchus mykiss) were introduced, they monopolized these prey and caused an even greater reduction of terrestrial prey in charr diets of 82–93%, and reduced charr growth by 31% over the same period. Adding both greenhouse and rainbow trout treatments together produced similar results to adding either alone. Results from a comparative field study of six other stream sites in the region corroborated the experimental findings, showing that at invaded sites rainbow trout usurped the terrestrial prey subsidy, causing a more than 75% decrease in the biomass of terrestrial invertebrates in Dolly Varden diets and forcing them to shift their foraging to insects on the stream bottom. Moreover, at sites with even low densities of rainbow trout, biomass of Dolly Varden was more than 75% lower than at sites without rainbow trout. Disruption of resource fluxes between habitats may be a common, but unidentified, consequence of invasions, and an additional mechanism contributing to the loss of native species Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
The occurrence of Hexamita salmonis Moore, 1922 and Loma salmonae Putz, Hoffman and Dunbar, 1965 was investigated at 10 sites on the R. Itchen (five for brown trout only, three for rainbow trout only, and two for both brown trout and rainbow trout) and at three of its nine fish farms (two for rainbow trout, one for brown trout). Hexamita salmonis was recorded in brown trout from three river sites and the farm, and in rainbow trout from both farms and four river sites. Prevalence of Hexamita salmonis in farmed rainbow trout was higher than in farmed brown trout and was consistent with the former species being more susceptible to infection. H. salmonis was at significantly higher prevalence in rainbow trout from farm no. 5 than farm no. 2 for three size classes of fish. In wild brown trout and feral rainbow trout, the highest prevalences of H. salmonis were recorded at sites in the vicinity of farm no. 2. This distribution was consistent with an area of naturally high infection levels, and with infected fish unintentionally released from farm no. 2 serving as a source of infection, the infection subsequently becoming established in the river fish. Loma salmonae was recorded in wild brown trout and in rainbow trout from both farms. This appears to be the first recording of this parasite from British salmonids and also the first recording of the parasite from brown trout. The distribution of the parasite (particularly the prevalence being higher at farm no. 2 than farm no. 5) was consistent with it being introduced into the R. Itchen via rainbow trout from farm no. 2 (and probably no. 3) much of whose stock derived from imported Californian 'Shasta' rainbow trout.  相似文献   

16.
Invasive crayfish are spreading rapidly across Europe, where they are replacing the native crayfish species and impacting negatively on some other biota. Freshwater crayfish and many benthic fishes share similar habitat and food requirements and hence potentially compete for resources. In this study, we investigated impacts of the introduced signal crayfish (Pacifastacus leniusculus) on fish in stony littoral habitats of two large boreal lakes. We compared the littoral fish community composition and the densities of two common benthic fish species between sites with and without crayfish. To evaluate whether signal crayfish share the same food resources as benthic littoral fish or change their feeding habits, we used mixing models and trophic niche estimates based on analyses of stable isotopes of carbon and nitrogen. Both the community composition of littoral fish and the densities of benthic fish species were similar at sites with and without signal crayfish. Even though stable isotope signatures indicated strong dietary overlap between crayfish and benthic fish, the use of food sources and trophic niche widths of fish were not noticeably different between crayfish sites and non-crayfish sites. Our results suggest that, at current densities, the non-native signal crayfish does not have significant impacts on benthic fish in the stony littoral habitats of large boreal lakes.  相似文献   

17.
A survey of trace element contents in fish muscle and liver was performed in different lakes of two northern Patagonian national parks: Nahuel Huapi and Los Alerces national parks. The aim of the work was to obtain the first set of reference data on elements that are not liable to be disturbed by human activities and to identify compositional patterns related to the species and site of collection. The species studied are native creole perch and velvet catfish and exotic brown trout, rainbow trout, and brook trout. The elements analyzed are Br, Cs, Fe, Rb, Se, Na, and Zn. Trace elements in muscle of brown trout, rainbow trout, and creole perch showed statistical patterns that allow one to identify the national park of origin, as well as which of the lakes (Traful, Espejo Chico, or the Nahuel Huapi-Moreno system) of the Nahuel Huapi National Park from which they come. Contents in the liver provide similar but less clear patterns than contents in muscle; however, in some particular cases, they provide additional information. Trace element contents in muscle are also good indicators of the species collected within a lake.  相似文献   

18.
The study tests whether diurnal microhabitat use by Hatcheria macraei depends upon specific environmental parameters and/or the abundance of other fish. We carried out a 1-year field study in a low-order river of northern Patagonia, Pichileufu River, and used experimental trials to determine substrate preferences. Fishes were captured during daylight and physicochemical environmental variables were recorded. Headwater zones were dominated by rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta), while native fishes, H. macraei and the creole perch (Percichthys trucha) were more abundant downstream. H. macraei inhabited mostly shallow microhabitats with fast water velocity and substrates having significant interstitial spaces, independently of the abundance of other fishes. Experimental trials pointed out that H. macraei preferred mostly coarser substrates (>6 cm), avoiding fine ones. This study highlights the importance of erosional zones with high water velocity, large substrates, and suitable interstitial space in the microhabitat selection of H. macraei. The knowledge of microhabitat use by native fish populations is critical for management and conservation strategies and should be taken into account before any river modification.  相似文献   

19.
20.
Introgressive hybridization between native and introduced species is a growing conservation concern. For native cutthroat trout and introduced rainbow trout in western North America, this process is thought to lead to the formation of hybrid swarms and the loss of monophyletic evolutionary lineages. Previous studies of this phenomenon, however, indicated that hybrid swarms were rare except when native and introduced forms of cutthroat trout co‐occurred. We used a panel of 86 diagnostic, single nucleotide polymorphisms to evaluate the genetic composition of 3865 fish captured in 188 locations on 129 streams distributed across western Montana and northern Idaho. Although introgression was common and only 37% of the sites were occupied solely by parental westslope cutthroat trout, levels of hybridization were generally low. Of the 188 sites sampled, 73% contained ≤5% rainbow trout alleles and 58% had ≤1% rainbow trout alleles. Overall, 72% of specimens were nonadmixed westslope cutthroat trout, and an additional 3.5% were nonadmixed rainbow trout. Samples from seven sites met our criteria for hybrid swarms, that is, an absence of nonadmixed individuals and a random distribution of alleles within the sample; most (6/7) were associated with introgression by Yellowstone cutthroat trout. In streams with multiple sites, upstream locations exhibited less introgression than downstream locations. We conclude that although the widespread introduction of nonnative trout within the historical range of westslope cutthroat trout has increased the incidence of introgression, sites containing nonadmixed populations of this taxon are common and broadly distributed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号