首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Necturus gallbladder epithelial cells bathed in 10 mM HCO3/1% CO2 display sizable basolateral membrane conductances for Cl (GCl b) and K + (GK b). Lowering the osmolality of the apical bathing solution hyperpolarized both apical and basolateral membranes and increased the K +/Cl selectivity of the basolateral membrane. Hyperosmotic solutions had the opposite effects. Intracellular free-calcium concentration ([Ca2+]i) increased transiently during hyposmotic swelling (peak at ∼30 s, return to baseline within ∼90 s), but chelation of cell Ca2+ did not prevent the membrane hyperpolarization elicited by the hyposmotic solution. Cable analysis experiments showed that the electrical resistance of the basolateral membrane decreased during hyposmotic swelling and increased during hyperosmotic shrinkage, whereas the apical membrane resistance was unchanged in hyposmotic solution and decreased in hyperosmotic solution. We assessed changes in cell volume in the epithelium by measuring changes in the intracellular concentration of an impermeant cation (tetramethylammonium), and in isolated polarized cells measuring changes in intracellular calcein fluorescence, and observed that these epithelial cells do not undergo measurable volume regulation over 10–12 min after osmotic swelling. Depolarization of the basolateral membrane voltage (Vcs) produced a significant increase in the change in Vcs elicited by lowering basolateral solution [Cl], whereas hyperpolarization of Vcs had the opposite effect. These results suggest that: (a) Hyposmotic swelling increases GK b and decreases G Cl b. These two effects appear to be linked, i.e., the increase in G K b produces membrane hyperpolarization, which in turn reduces G Cl b. ( b) Hyperosmotic shrinkage has the opposite effects on GK b and G Cl b. ( c) Cell swelling causes a transient increase in [Ca2+]i, but this response may not be necessary for the increase in GK b during cell swelling.  相似文献   

2.
Previous studies in chick embryo cardiac myocytes have shown that the inhibition of Na+/K+-ATPase with ouabain induces cell shrinkage in an isosmotic environment (290 mOsm). The same inhibition produces an enhanced RVD (regulatory volume decrease) in hyposmotic conditions (100 mOsm). It is also known that submitting chick embryo cardiomyocytes to a hyperosmotic solution induces shrinkage and a concurrent intracellular alkalization. The objective of this study was to evaluate the involvement of intracellular pH (pHi), intracellular Ca2+ ([Ca2+]i) and Na+/K+-ATPase inhibition during hyposmotic swelling. Changes in intracellular pH and Ca2+ were monitored using BCECF and fura-2, respectively. The addition of ouabain (100 M) under both isosmotic and hyposmotic stimuli resulted in a large increase in [Ca2+]i (200%). A decrease in pHi (from 7.3 ± 0.09 to 6.4 ± 0.08, n = 6; p < 0.05) was only observed when ouabain was applied during hyposmotic swelling. This acidification was prevented by the removal of extracellular Ca2+. Inhibition of Na+/H2+ exchange with amiloride (1 mM) had no effect on the ouabain-induced acidification. Preventing the mitochondrial accumulation of Ca2+ using CCCP (10 M) resulted in a blockade of the progressive acidification normally induced by ouabain. The inhibition of mitochondrial membrane K+/H+ exchange with DCCD (1 mM) also completely prevented the acidification. Our results suggest that intracellular acidification upon cell swelling is mediated by an initial Ca2+ influx via Na+/Ca2+ exchange, which under hyposmotic conditions activates the K+ and Ca2+ mitochondrial exchange systems (K+/H+ and Ca2+/H+).Deceased  相似文献   

3.
Cardiac myocytes isolated and cultured from 11 day chick embryos present a Ca(2+)-dependent regulatory volume decrease (RVD) when exposed to hyposmotic stimulus. The RVD of myocytes from different embryonic stages were analyzed to evaluate their physiological performance through development. Among the several embryonic stages analyzed (6, 11, 16 and 19 days) only 19 day cardiac myocytes present a greater RVD when compared with 11 day (considered as control), the other ages showed no difference in the regulatory response. As it is known that RVD is Ca(2+) dependent, we decided to investigate the transient free Ca(2+) response during the hyposmotic swelling of the 11 and 19 day stages. The 11 day cardiac myocyte showed a transient 40% increase in intracellular free Ca(2+) when submitted to hyposmotic solutions, and the free Ca(2+) returned to baseline levels while the cells remained in hyposmotic buffer. However, the intracellular free Ca(2+) transient in the 19 day cells during hyposmotic challenge increases 100% and instead of returning to baseline levels, declines to 55% above control, well after the 11 day transient has returned to baseline. Also, quantitative fluorescence microscopy revealed that 19 day cardiac myocytes have more sarcoplasmic reticulum (SR) Ca(2+) ATPase sites per cell as compared to the 11 day cells. Our findings suggest that 19 day cells have more developed intracellular Ca(2+) stores (SR). By evoking the mechanism of Ca(2+) induced Ca(2+) release, the cells have more free Ca(2+) available for signaling the RVD during hyposmotic swelling.  相似文献   

4.
The possible role of Ca2+ as a second messenger mediating regulatory volume decrease (RVD) in osmotically swollen cells was investigated in murine neural cell lines (N1E-115 and NG108-15) by means of novel microspectrofluorimetric techniques that allow simultaneous measurement of changes in cell water volume and [Ca2+]i in single cells loaded with fura-2. [Ca2+]i was measured ratiometrically, whereas the volume change was determined at the intracellular isosbestic wavelength (358 nm). Independent volume measurements were done using calcein, a fluorescent probe insensitive to intracellular ions. When challenged with ∼40% hyposmotic solutions, the cells expanded osmometrically and then underwent RVD. Concomitant with the volume response, there was a transient increase in [Ca2+]i, whose onset preceded RVD. For hyposmotic solutions (up to ∼−40%), [Ca2+]i increased steeply with the reciprocal of the external osmotic pressure and with the cell volume. Chelation of external and internal Ca2+, with EGTA and 1,2-bis-(o -aminophenoxy) ethane-N,N,N ′,N ′-tetraacetic acid (BAPTA), respectively, attenuated but did not prevent RVD. This Ca2+-independent RVD proceeded even when there was a concomitant decrease in [Ca2+]i below resting levels. Similar results were obtained in cells loaded with calcein. For cells not treated with BAPTA, restoration of external Ca2+ during the relaxation of RVD elicited by Ca2+-free hyposmotic solutions produced an increase in [Ca2+]i without affecting the rate or extent of the responses. RVD and the increase in [Ca2+]i were blocked or attenuated upon the second of two ∼40% hyposmotic challenges applied at an interval of 30–60 min. The inactivation persisted in Ca2+-free solutions. Hence, our simultaneous measurements of intracellular Ca2+ and volume in single neuroblastoma cells directly demonstrate that an increase in intracellular Ca2+ is not necessary for triggering RVD or its inactivation. The attenuation of RVD after Ca2+ chelation could occur through secondary effects or could indicate that Ca2+ is required for optimal RVD responses.  相似文献   

5.
Shrinkage is the earliest hallmark of cells undergoing apoptosis. This study examines the role of this phenomenon in the onset of vascular smooth muscle cell (VSMC) apoptosis triggered by growth factor withdrawal. In hyperosmotic media, VSMC showed the same amplitude of shrinkage but were more resistant to apoptosis than endothelial, epithelial and immune system cells. As with growth factor withdrawal, apoptosis in hyperosmotically-shrunken VSMC was sharply potentiated by transfection with E1A-adenoviral protein and was suppressed by activation of cAMP signaling as well as by the pan-caspase inhibitor z-VAD.fmk. Both cell shrinkage and apoptosis in VSMC-E1A treated with hyperosmotic medium were potentiated under sustained Na+, K+ pump inhibition with ouabain that was in contrast to inhibition of apoptosis documented in ouabain-treated, serum-deprived cells. After 1-hr incubation in serum-deprived medium, VSMC-E1A volume declined by approximately 15%. Transfer from hypotonic to control medium decreased VSMC-E1A volume by approximately 25% without any induction of apoptosis. Neither swelling in hyposmotic medium nor dissipation of the transmembrane gradient of K+ and major organic osmolytes protected serum-deprived VSMC-E1A from apoptosis. Thus, our results show that similarly to immune system, endothelial and epithelial cells, extensive VSMC shrinkage in hyperosmotic medium leads to the development of apoptosis. In contrast to hyperosmotic medium, the modest cell volume decrease occurring in serum-deprived VSMC does not contribute to triggering of the apoptotic machinery.  相似文献   

6.
Membrane transport changes in human lens epithelial (HLE‐B3) cells under hyposmotic and apoptotic stress were compared. Cell potassium content, Ki, uptake of the K congener rubidium, Rbi, and water content were measured after hyposmotic stress induced by hypotonicity, and apoptotic stress by the protein‐kinase inhibitor staurosporine (STP). Cell water increased in hyposmotic (150 mOsm) as compared to isosmotic (300 mOsm) balanced salt solution (BSS) by >2‐fold at 5 min and decreased within 15 min to baseline values accompanied by a 40% Ki loss commensurate with cell swelling and subsequent cell shrinkage likely due to regulatory volume decrease (RVD). Loss of Ki, and accompanying water, and Rbi uptake in hyposmotic BSS were prevented by clotrimazole (CTZ) suggesting water shifts associated with K and Rb flux via intermediate conductance K (IK) channels, also detected at the mRNA and protein level. In contrast, 2 h after 2 µM STP exposure, the cells lost ~40% water and ~60% Ki, respectively, consistent with apoptotic volume decrease (AVD). Indeed, water and Ki loss was at least fivefold greater after hyposmotic than after apoptotic stress. High extracellular K and 2 mM 4‐aminopyridine (4‐AP) but not CTZ significantly reduced apoptosis. Annexin labeling phosphatidylserine (PS) at 15 min suggested loss of lipid asymmetry. Quantitative PCR revealed significant IK channel expression during prolonged hyposmotic stress. Results suggest in HLE‐B3 cells, IK channels likely partook in and were down regulated after RVD, whereas pro‐apoptotic STP‐activation of 4‐AP‐sensitive voltage‐gated K channels preceded or accompanied PS externalization before subsequent apoptosis. J. Cell. Physiol. 223: 110–122, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
We investigated the role of Ca2+ in generating reactive oxygen species (ROS) induced by hyposmotic stress (Hypo) and its relationship to regulatory volume decrease (RVD) in cardiomyocytes. Hypo-induced increases in cytoplasmic and mitochondrial Ca2+. Nifedipine (Nife) inhibited both Hypo-induced Ca2+ and ROS increases. Overexpression of catalase (CAT) induced RVD and a decrease in Hypo-induced blebs. Nife prevented CAT-dependent RVD activation. These results show a dual role of Hypo-induced Ca2+ influx in the control of cardiomyocyte viability. Hypo-induced an intracellular Ca2+ increase which activated RVD and inhibited necrotic blebbing thus favoring cell survival, while simultaneously increasing ROS generation, which in turn inhibited RVD and induced necrosis.  相似文献   

8.
Cell swelling, regulatory volume decrease (RVD), volume-sensitive Cl (Cl swell) current and taurine efflux after exposure to high concentrations of urea were characterized in fibroblasts Swiss 3T3, and results compared to those elicited by hyposmotic (30%) swelling. Urea 70, 100, and 150 mM linearly increased cell volume (8.25%, 10.6%, and 15.7%), by a phloretin-inhibitable process. This was followed by RVD by which cells exposed to 70, 100, or 150 mM urea recovered 27.6%, 38.95, and 74.1% of their original volume, respectively. Hyposmolarity (30%) led to a volume increase of 25.9% and recovered volume in 32.5%. 3H-taurine efflux was increased by urea with a sigmoid pattern, as 9.5%, 18.9%, 71.5%, and 89% of the labeled taurine pool was released by 70, 100, 150, or 200 mM urea, respectively. Only about 11% of taurine was released by 30% hyposmolarity reduction in spite of the high increase in cell volume. Urea-induced taurine efflux was suppressed by NPPB (100 μM) and markedly reduced by the tyrosine kinase-general blocker AG18. The Cl swell current was more rapidly activated and higher in amplitude in the hyposmotic than in the isosmotic/urea condition (urea 150 mM), but this was not sufficient to accomplish an efficient RVD. These results showed that at similar volume increase, cells swollen by urea showed higher taurine efflux, lower Cl swell current and more efficient RVD, than in those swollen by hyposmolarity. The correlation found between RVD efficiency and taurine efflux suggest a prominent role for organic over ionic osmolytes for RVD evoked by urea in isosmotic conditions.  相似文献   

9.
The response of isolated digestive cells of the digestive gland of Mytilus galloprovincialis to hypotonic shock was studied using videometric methods. The isolated cells exposed to a rapid change (from 1100 to 800 mosmol kg?1) of the bathing solution osmolality swelled but thereafter underwent a regulatory volume decrease (RVD), tending to recover the original size. When the hypotonic stress was applied in the presence of quinine and glibenclamide, known inhibitors of swelling activated ion channels, the cells did not exhibit an RVD response; in addition, they showed a larger increase in size in respect to control cells. These observations suggest that the digestive cells of the digestive gland have the machinery to cope with the hyposmotic shock allowing them to exhibit a small but significant RVD preventing an excessive increase in cell size. The pharmacological treatment of digestive cells during the RVD experiments suggests that cell volume is regulated by K+ and Cl? efflux followed by an obliged water efflux from the cell. The involvement of organic osmolytes such as taurine and betaine seems to be excluded by NMR measurement on digestive cells. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
KCNQ4 channels expressed in HEK 293 cells are sensitive to cell volume changes, being activated by swelling and inhibited by shrinkage, respectively. The KCNQ4 channels contribute significantly to the regulatory volume decrease (RVD) process following cell swelling. Under isoosmotic conditions, the KCNQ4 channel activity is modulated by protein kinases A and C, G protein activation, and a reduction in the intracellular Ca2+ concentration, but these signalling pathways are not responsible for the increased channel activity during cell swelling.  相似文献   

11.
To differentiate whether the primary volume signal in dog red cells arises from a change in cell configuration or the concentration and dilution of cell contents, we prepared resealed ghosts that had the same surface area and hemoglobin concentration as intact cells but less than 1/3 their volume. Shrinkage of both intact cells and resealed ghosts triggered Na/H exchange. Activation of this transporter in the two preparations correlated closely with cytosolic protein concentration but not at all with volume. The Na/H exchanger was more sensitive to shrinkage in albumin-loaded resealed ghosts than in intact cells or ghosts containing only hemoglobin. Similar results were obtained for the swelling-induced [K-Cl] cotransporter. We believe perception of cell volume originates with changes in cytoplasmic protein concentration. We think the kinases and phosphatases that control the activation of membrane transporters in response to cell swelling or shrinkage are regulated by the mechanism of macromolecular crowding.  相似文献   

12.
《Biorheology》1997,34(6):387-403
The response of cells to mechanical forces depends on the rheological properties of their membranes and cytoplasm. To characterize those properties, mechanical and electrical responses to swelling were measured in rat mesangial cells (MC) using electrophysiologic and video microscopic techniques. Ion transport rates during hyposmotic exposures were measured with whole-cell recording electrodes. Results showed that cell swelling varied nonlinearly with positive internal pressure, consistent with a viscoelastic cytoplasm. The extrapolated area expansivity modulus for small deformations was estimated to be 450 dyne/cm. Cell swelling, caused either by positive pipet pressure or hyposmotic exposure (40–60 mOsm Kg−1), rapidly induced an outwardly rectifying membrane conductance with an outward magnitude 4–5 times the baseline conductance of 0.9±0.5 nS (p<.01). Swelling-induced (SI) current was weakly selective for K+ over Na+, partially reversed upon return to iso tonicity, and was antagonized by 0.5 mM GdCl3 (p < 0.02; n = 6). Isolated cells treated with GdCl3 rapidly lysed after hypotonic exposure, in contrast to untreated cells that exhibited regulatory volume decrease (RVD). Our results indicate that volume regulation by MC depends upon a large swelling-induced K+ efflux, and suggest that swelling in MC is a viscoelastic process, with a viscosity dependent on the degree of swelling.  相似文献   

13.
In renalischemia, tubular obstruction induced by swelling of epithelialcells might be an important mechanism for reduction of the glomerularfiltration rate. We investigated ischemic cell swelling byexamining volume regulation of A6 cells during metabolic inhibition(MI) induced by cyanide and 2-deoxyglucose. Changes in cell volume weremonitored by recording cell thickness (Tc). Intracellular pH (pHc) measurements were performed with thepH-sensitive probe 5-chloromethyl-fluoresceine diacetate.Tc measurements showed that MI increases cellvolume. Cell swelling during MI is proportional to the rate ofNa+ transport and is not followed by a volume regulatoryresponse. Furthermore, MI prevents the regulatory volume decrease (RVD) elicited by a hyposmotic shock. MI induces a pronounced intracellular acidification that is conserved during a subsequent hypotonic shock. Atransient acidification induced by a NH4Cl prepulse causes a marked delay of the RVD in response to a hypotonic shock. On theother hand, acute lowering of external pH to 5, simultaneously with thehypotonic shock, allowed the onset of RVD. However, this RVD wascompletely arrested ~10 min after the initiation of the hyposmoticchallenge. The inhibition of RVD appears to be related to thepronounced acidification that occurred within this time period. Incontrast, when external pH was lowered 20 min before the hyposmoticshock, RVD was absent. These data suggest that internal acidificationinhibits cellular volume regulation in A6 cells. Therefore, theintracellular acidification associated with MI might at least partlyaccount for the failure of volume regulation in swollen epithelial cells.

  相似文献   

14.
To accommodate expanding volume (V) during hyposmotic swelling, animal cells change their shape and increase surface area (SA) by drawing extra membrane from surface and intracellular reserves. The relative contributions of these processes, sources and extent of membrane reserves are not well defined. In this study, the SA and V of single substrate-attached A549, 16HBE14o, CHO and NIH 3T3 cells were evaluated by reconstructing cell three-dimensional topology based on conventional light microscopic images acquired simultaneously from two perpendicular directions. The size of SA reserves was determined by swelling cells in extreme 98% hypotonic (∼6 mOsm) solution until membrane rupture; all cell types examined demonstrated surprisingly large membrane reserves and could increase their SA 3.6 ± 0.2-fold and V 10.7 ± 1.5-fold. Blocking exocytosis (by N-ethylmaleimide or 10°C) reduced SA and V increases of A549 cells to 1.7 ± 0.3-fold and 4.4 ± 0.9-fold, respectively. Interestingly, blocking exocytosis did not affect SA and V changes during moderate swelling in 50% hypotonicity. Thus, mammalian cells accommodate moderate (<2-fold) V increases mainly by shape changes and by drawing membrane from preexisting surface reserves, while significant endomembrane insertion is observed only during extreme swelling. Large membrane reserves may provide a simple mechanism to maintain membrane tension below the lytic level during various cellular processes or acute mechanical perturbations and may explain the difficulty in activating mechanogated channels in mammalian cells. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Contrasting cell volume behaviours (swelling vs. shrinkage) are considered as criteria to distinguish necrosis from apoptosis. In this study, we employed a time-lapse, dual-image surface reconstruction technique to assess the volume of single vascular smooth muscle cells transfected with E1A-adenoviral protein (E1A-VSMC) and undergoing rapid apoptosis in the absence of growth factors or in the presence of staurosporine. After 30- to 60-min lag-phase, serum-deprived E1A-VSMC volume was increased by ~40%, which preceded maximal increments of caspase-3 activity and chromatin cleavage. Swollen cells underwent rapid apoptotic collapse, documented by plasma membrane budding, and terminated in 10–15 min by the formation of numerous apoptotic bodies. Suppression of apoptosis by inhibition of Na+,K+-ATPase and activation of cAMP signalling with ouabain and forskolin, respectively, completely abolished the swelling of serum-deprived E1A-VSMC. In contrast to serum deprivation, apoptotic collapse of staurosporine-treated E1A-VSMC preceded attenuation of their volume by ~30%. Neither transient hyposmotic swelling nor isosmtotic shrinkage triggered apoptosis. Our results show that cell shrinkage can not be considered as ubiquitous hallmark of apoptosis. The involvement of stimulus-specific cell volume perturbations in initiation and progression of apoptosis in vascular smooth muscle cells should be examined further.  相似文献   

16.
Human peripheral blood lymphocytes regulate their volumes in hypotonic solutions. In hypotonic media in which Na+ is the predominant cation, an initial swelling phase is followed by a regulatory volume decrease (RVD) associated with a net loss of cellular K+. In media in which K+ is the predominant cation, the rapid initial swelling is followed by a slower second swelling phase. 86Rb+ fluxes increased during RVD and returned to normal when the original volume was approximately regained. Effects similar to those induced by hypotonic stress could also be produced by raising the intracellular Ca++ level. In isotonic, Ca++- containing media cells were found to shrink upon addition of the Ca++ ionophore A23187 in K+-free media, but to swell in K+-rich media. Exposure to Ca++ plus A23187 also increased 86Rb+ fluxes. Quinine (75 microM), an inhibitor of the Ca++-activated K+ pathway in other systems blocked RVD, the associated K+ loss, and the increase in 86Rb+ efflux. Quinine also inhibited the volume changes and the increased 86Rb fluxes induced by Ca++ plus ionophore. The calmodulin inhibitors trifluoperazine, pimozide and chlorpromazine blocked RVD as well as Ca++ plus A23187-induced volume changes. Trifluoperazine also prevented the increase in 86Rb+ fluxes and K+ loss induced by hypotonicity. Chlorpromazine sulfoxide, a relatively ineffective calmodulin antagonist, was considerably less potent as an inhibitor of RVD than chlorpromazine. It is suggested than an elevation in cytoplasmic [Ca++], triggered by cell swelling, increases the plasma membrane permeability to K+, the ensuing increased efflux of K+, associated anions, and osmotically obliged water, leading to cell shrinking (RVD).  相似文献   

17.
Using the human mammary epithelial cell line MCF-7, we have investigated volume-activated changes in response to hyposmotic stress. Switching MCF-7 cells from an isosmotic to a hyposmotic solution resulted in an initial cell swelling response, followed by a regulatory volume decrease (RVD). This RVD response was inhibited by the nonselective K+ channel inhibitors Ba2+, quinine, and tetraethylammonium chloride, implicating K+ channel activity in this volume-regulatory mechanism. Additional studies using chromonol 293B and XE991 as inhibitors of the KCNQ1 K+ channel, and also a dominant-negative NH2-terminal truncated KCNQ1 isoform, showed complete abolition of the RVD response, suggesting that KCNQ1 plays an important role in regulation of cell volume in MCF-7 cells. We additionally confirmed that KCNQ1 mRNA and protein is expressed in MCF-7 cells, and that, when these cells are cultured as a polarized monolayer, KCNQ1 is located exclusively at the apical membrane. Whole cell patch-clamp recordings from MCF-7 cells revealed a small 293B-sensitive current under hyposmotic, but not isosmotic conditions, while recordings from mammalian cells heterologously expressing KCNQ1 alone or KCNQ1 with the accessory subunit KCNE3 reveal a volume-sensitive K+ current, inhibited by 293B. These data suggest that KCNQ1 may play important physiological roles in the mammary epithelium, regulating cell volume and potentially mediating transepithelial K+ secretion. potassium channel; volume regulation; mammary gland  相似文献   

18.
The activity of glycogen phosphorylase (GPase) in the active a-form (GPase a) is dependent on the hydration state of hepatocytes. We establish that GPase a catalysis in catfish (Ameiurus nebulosus) hepatocytes is a function of medium osmolarity and that a linear relationship exists between GPase a activity and osmolarity between 254 mosmol l–1 and 478 mosmol l–1. Exposure of isolated hepatocytes to hyperosmotic media increases enzyme activity up to 7-fold, indicative of covalent phosphorylation. GPase activation associated with cell shrinkage peaks within 10 min of exposure. The average degree of activation (2.7-fold-increase of GPase a) is only slightly less than in hepatocytes exposed to glucagon (3.1-fold-increase) under isosmotic conditions; with glucagon, the maximum is reached within 2 min. Phosphorylation status remains elevated during the entire 40 min experimental period; cells do not undergo regulatory volume increase (RVI) during this period and do not regain pre-exposure volume. We interpret the increased GPase a activity as an inherent response to hyperosmotic stress, likely brought about by molecular crowding. Activation of the enzyme results in increased glucose production from endogenous glycogen. Glucose is not retained in the liver cells, but may act as an oxidative substrate in extrahepatic tissues for the increased metabolic demand of ion regulation. Protein kinase A or intracellular Ca2+ make apparently small contributions to the activation of GPase, leaving us to speculate on alternate routes of enzyme activation. Conversely, hepatocyte swelling in hyposmotic medium leads to significant decreases in GPase a activity and curtailed glucose output. A minimum is attained in 10 min, and pre-insult rates are re-established within 40 min, somewhat lagging behind readjustment in cell volume by regulatory volume decrease (RVD). We conclude that cell swelling and subsequent RVD do not signify stress to the cells and metabolic demand may be decreased under cell swelling conditions. Alteration of GPase phosphorylation with extracellular osmolarity appears to be a general phenomenon, since we also find it in hepatocytes of another freshwater catfish (Clarias batrachus) and a marine scorpaenid (Sebastes caurinus).Abbreviations BAPTA 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid - BSA bovine serum albumin - cAMP adenosine 3',5-cyclic monophosphate - GPase glycogen phosphorylase - MDH malate dehydrogenase - MHM modified Hanks medium - PKA c-AMP dependent protein kinase A - 8-Br-Rp-cAMPS 8-Bromo-Rp-3',5'-cyclic adenosine monophosphorothioate - RT room temperature - RVD regulatory volume decrease - RVI regulatory volume increaseCommunicated by L.C.-H. Wang  相似文献   

19.
Inhibition of autophagic proteolysis by hypoosmotic or amino acid-induced hepatocyte swelling requires osmosignaling toward p38MAPK; however, the upstream osmosensing and signaling events are unknown. These were studied in the intact perfused rat liver with a preserved in situ environment of hepatocytes. It was found that hypoosmotic hepatocyte swelling led to an activation of Src (but not FAK), Erks, and p38MAPK, which was prevented by the integrin inhibitory hexapeptide GRGDSP, but not its inactive analogue GRGESP. Src inhibition by PP-2 prevented hypoosmotic MAP kinase activation, indicating that the integrin/Src system is located upstream in the osmosignaling toward p38MAPK and Erks. Inhibition of the integrin/Src system by the RGD motif-containing peptide or PP-2 also prevented the inhibition of proteolysis and the decrease in autophagic vacuole volume, which is otherwise observed in response to hypoosmotic or glutamine/glycine-induced hepatocyte swelling. These inhibitors, however, did not affect swelling-independent proteolysis inhibition by phenylalanine. In line with a role of p38MAPK in triggering the volume regulatory decrease (RVD), PP-2 and the RGD peptide blunted RVD in response to hypoosmotic cell swelling. The data identify integrins and Src as upstream events in the osmosignaling toward MAP kinases, proteolysis, and RVD. They further point to a role of integrins as osmo- and mechanosensors in the intact liver, which may provide a link between cell volume and cell function.  相似文献   

20.
ATP is omnipresent in biology and acts as an extracellular signaling molecule in mammals. Information regarding the signaling function of extracellular ATP in single-celled eukaryotes is lacking. Here, we explore the role of extracellular ATP in cell volume recovery during osmotic swelling in the amoeba Dictyostelium. Release of micromolar ATP could be detected during cell swelling and regulatory cell volume decrease (RVD) phases during hypotonic challenge. Scavenging ATP with apyrase caused profound cell swelling and loss of RVD. Apyrase-induced swelling could be rescued by 100 μM βγ-imidoATP. N-Ethylmalemide (NEM), an inhibitor of vesicular exocytosis, caused heightened cell swelling, loss of RVD, and inhibition of ATP release. Amoebas with impaired contractile vacuole (CV) fusion (drainin knockout [KO] cells) displayed increased swelling but intact ATP release. One hundred micromolar Gd3+ caused cell swelling while blocking any recovery by βγ-imidoATP. ATP release was 4-fold higher in the presence of Gd3+. Cell swelling was associated with an increase in intracellular nitric oxide (NO), with NO-scavenging agents causing cell swelling. Swelling-induced NO production was inhibited by both apyrase and Gd3+, while NO donors rescued apyrase- and Gd3+-induced swelling. These data suggest extracellular ATP released during cell swelling is an important signal that elicits RVD. Though the cell surface receptor for ATP in Dictyostelium remains elusive, we suggest ATP operates through a Gd3+-sensitive receptor that is coupled with intracellular NO production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号