首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: RNA interference (RNAi) is a powerful and widely used gene silencing strategy for studying gene function in mammalian cells. Transient or constitutive expression of either small interfering RNA (siRNA) or short hairpin RNA (shRNA) results in temporal or persistent inhibition of gene expression, respectively. A tightly regulated and reversibly inducible RNAi-mediated gene silencing approach could conditionally control gene expression in a temporal or spatial manner that provides an extremely useful tool for studying gene function involved in cell growth, survival and development. MATERIAL AND METHODS: In this study, we have developed a lactose analog isopropyl thiogalactose (IPTG)-responsive lac repressor-operator-controlled RNA polymerase III (Pol III)-dependent human RNase P RNA (H1) promoter-driven inducible siRNA expression system. To demonstrate its tight regulation, efficient induction and reversible inhibition, we have used this system to conditionally control the expression of firefly luciferase and human tumor suppressor protein p53 in both transient transfection cells and established stable clones. RESULTS: The results showed that this inducible siRNA expression system could efficiently induce conditional inhibition of these two genes in a dose- and time-dependent manner by administration of the inducing agent IPTG as well as being fully reverted after withdrawal of IPTG. In particular, this system could conditionally inhibit the expression of both the genes in not only established stable clones but also transient transfection cells, which should greatly increase its usefulness and convenience. CONCLUSIONS: The results presented in this study clearly indicate that this inducible siRNA expression system could efficiently, conditionally and reversibly inhibit gene expression with only very low or undetectable background silencing effects under non-inducing condition. Thus, this inducible siRNA expression system provides an ideal genetic switcher allowing the inducible and reversible control of specific gene activity in mammalian cells.  相似文献   

2.
3.
4.
5.
Core promoter types differ in the extent to which RNA polymerase II (Pol II) pauses after initiation, but how this affects their tissue‐specific gene expression characteristics is not well understood. While promoters with Pol II pausing elements are active throughout development, TATA promoters are highly active in differentiated tissues. We therefore used a genomics approach on late‐stage Drosophila embryos to analyze the properties of promoter types. Using tissue‐specific Pol II ChIP‐seq, we found that paused promoters have high levels of paused Pol II throughout the embryo, even in tissues where the gene is not expressed, while TATA promoters only show Pol II occupancy when the gene is active. The promoter types are associated with different chromatin accessibility in ATAC‐seq data and have different expression characteristics in single‐cell RNA‐seq data. The two promoter types may therefore be optimized for different properties: paused promoters show more consistent expression when active, while TATA promoters have lower background expression when inactive. We propose that tissue‐specific genes have evolved to use two different strategies for their differential expression across tissues.  相似文献   

6.
7.
8.
9.
Lebbink RJ  Lowe M  Chan T  Khine H  Wang X  McManus MT 《PloS one》2011,6(10):e26213
Since the discovery of RNAi and microRNAs more than 10 years ago, much research has focused on the development of systems that usurp microRNA pathways to downregulate gene expression in mammalian cells. One of these systems makes use of endogenous microRNA pri-cursors that are expressed from polymerase II promoters where the mature microRNA sequence is replaced by gene specific duplexes that guide RNAi (shRNA-miRs). Although shRNA-miRs are effective in directing target mRNA knockdown and hence reducing protein expression in many cell types, variability of RNAi efficacy in cell lines has been an issue. Here we show that the choice of the polymerase II promoter used to drive shRNA expression is of critical importance to allow effective mRNA target knockdown. We tested the abundance of shRNA-miRs expressed from five different polymerase II promoters in 6 human cell lines and measured their ability to drive target knockdown. We observed a clear positive correlation between promoter strength, siRNA expression levels, and protein target knockdown. Differences in RNAi from the shRNA-miRs expressed from the various promoters were particularly pronounced in immune cells. Our findings have direct implications for the design of shRNA-directed RNAi experiments and the preferred RNAi system to use for each cell type.  相似文献   

10.
11.
12.
13.
14.
15.
RNA silencing in plants by the expression of siRNA duplexes   总被引:4,自引:0,他引:4  
  相似文献   

16.
RNA干扰分子的制作   总被引:3,自引:0,他引:3  
小干扰RNA是一种能够在各种生物体和细胞(包括蠕虫、果蝇、植物、哺乳动物)中减弱基因表达的有效工具。在哺乳动物中转染的siRNA能够抑制特殊基因的表达,这已经证明是探索基因功能、基因敲除、抗病毒研究、基因治疗的有效方法。简单、有效、特异性地抑制基因的表达具有巨大的科学、商业和医学治疗价值。如何设计和制作siRNA是影响RNA干扰效率的一个很重要的方面。本文就siRNA的设计和制作等方面作扼要的介绍。  相似文献   

17.
18.
The expression of 4 pluripotency genes (Oct4, Sox2, c-Myc and Klf4) in mouse embryonic fibroblasts can reprogramme them to a pluripotent state. We have investigated the expression of these pluripotency genes when human somatic 293T cells are permeabilized and incubated in extracts of mouse embryonic stem (ES) cells. Expression of all 4 genes was induced over 1–8 h. Gene expression was associated with loss of repressive histone H3 modifications and increased recruitment of RNA polymerase II at the promoters. Lamin A/C, which is typically found only in differentiated cells, was also removed from the nuclei. When 293T cells were returned to culture after exposure to ES cell extract, the expression of the pluripotency genes continued to rise over the following 48 h of culture, suggesting that long-term reprogramming of gene expression had been induced. This provides a methodology for studying the de-differentiation of somatic cells that can potentially lead to an efficient way of reprogramming somatic cells to a pluripotent state without genetically altering them.  相似文献   

19.
20.
将目前高表达水平强大的原核表达系统之一T7 RNA聚合酶/启动子表达系统通过一系列改进引入真核细胞.通过转染真核细胞实验表明,采用真核启动子CMV调控T7 RNA聚合酶的表达和在T7启动子下游插入EMCV IRES序列两种解决方案能使该原核表达系统在真核细胞高效表达目的基因,且能适应不同的真核细胞环境,是一良好的细胞类型非依赖的表达体系.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号