首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although inbreeding depression is a major genetic phenomena influencing individual fitness, it is difficult to measure in wild populations. An alternative approach is to correlate heterozygosity, measured using highly polymorphic markers, with a fitness-correlated trait. In clonal plants, genet size is predicted to be fitness correlated. Here we test the prediction that the genet size distribution of the marine clonal plant Zostera marina (eelgrass) is influenced by inbreeding depression. We used nine polymorphic microsatellite markers to access the fine scale clonal structure and to measure individual heterozygosity within 4 plots (each corresponds to 256 m2, sampled at 1-m intervals) in two populations along the German Baltic Coast. The same plots were also sampled for flowering and vegetative shoots to obtain estimates for sexual reproductive output at the level of the genetic individual. We found substantial differences in the genet size distribution between the two populations that may be explained by different disturbance frequency. In both populations, clone size was significantly positively correlated with the total number of flowering shoots, indicating that larger clones have a higher reproductive output. Individual heterozygosity was significantly positively associated with clone size. The effect was much stronger in Falkenstein (low disturbance) than in Maasholm (high disturbance). The results indicate that in a low disturbance population the relatively outbred clones occupy a higher proportion of the available space, possibly because they outcompete relatively inbred neighbours.  相似文献   

2.
Rapid evolution challenges the assumption that evolution is too slow to impact short-term ecological dynamics. This insight motivates the study of 'Eco-Evolutionary Dynamics' or how evolution and ecological processes reciprocally interact on short time scales. We tested how rapid evolution impacts concurrent population dynamics using an aphid (Myzus persicae) and an undomesticated host (Hirschfeldia incana) in replicated wild populations. We manipulated evolvability by creating non-evolving (single clone) and potentially evolving (two-clone) aphid populations that contained genetic variation in intrinsic growth rate. We observed significant evolution in two-clone populations whether or not they were exposed to predators and competitors. Evolving populations grew up to 42% faster and attained up to 67% higher density, compared with non-evolving control populations but only in treatments exposed to competitors and predators. Increased density also correlates with relative fitness of competing clones suggesting a full eco-evolutionary dynamic cycle defined as reciprocal interactions between evolution and density.  相似文献   

3.
Muller's ratchet predicts fitness losses in small populations of asexual organisms because of the irreversible accumulation of deleterious mutations and genetic drift. This effect should be enhanced if population bottlenecks intervene and fixation of mutations is not compensated by recombination. To study whether Muller's ratchet could operate in a retrovirus, 10 biological clones were derived from a human immunodeficiency virus type 1 (HIV-1) field isolate by MT-4 plaque assay. Each clone was subjected to 15 plaque-to-plaque passages. Surprisingly, genetic deterioration of viral clones was very drastic, and only 4 of the 10 initial clones were able to produce viable progeny after the serial plaque transfers. Two of the initial clones stopped forming plaques at passage 7, two others stopped at passage 13, and only four of the remaining six clones yielded infectious virus. Of these four, three displayed important fitness losses. Thus, despite virions carrying two copies of genomic RNA and the system displaying frequent recombination, HIV-1 manifested a drastic fitness loss as a result of an accentuation of Muller's ratchet effect.  相似文献   

4.
de Visser JA  Rozen DE 《Genetics》2006,172(4):2093-2100
The conventional model of adaptation in asexual populations implies sequential fixation of new beneficial mutations via rare selective sweeps that purge all variation and preserve the clonal genotype. However, in large populations multiple beneficial mutations may co-occur, causing competition among them, a phenomenon called "clonal interference." Clonal interference is thus expected to lead to longer fixation times and larger fitness effects of mutations that ultimately become fixed, as well as to a genetically more diverse population. Here, we study the significance of clonal interference in populations consisting of mixtures of differently marked wild-type and mutator strains of Escherichia coli that adapt to a minimal-glucose environment for 400 generations. We monitored marker frequencies during evolution and measured the competitive fitness of random clones from each marker state after evolution. The results demonstrate the presence of multiple beneficial mutations in these populations and slower and more erratic invasion of mutants than expected by the conventional model, showing the signature of clonal interference. We found that a consequence of clonal interference is that fitness estimates derived from invasion trajectories were less than half the magnitude of direct estimates from competition experiments, thus revealing fundamental problems with this fitness measure. These results force a reevaluation of the conventional model of periodic selection for asexual microbes.  相似文献   

5.

Background

Fitness recovery of HIV-1 “in vitro” was studied using viral clones that had their fitness decreased as a result of plaque-to-plaque passages.

Principal Findings

After ten large population passages, the viral populations showed an average increase of fitness, although with wide variations among clones. While 5 clones showed significant fitness increases, 3 clones showed increases that were only marginally significant (p<0.1), and 4 clones did not show any change. Fitness recovery was not accompanied by an increase in p24 production, but was associated with an increase in viral titer. Few mutations (an average of 2 mutations per genome) were detected in the consensus nucleotide sequence of the entire genome in all viral populations. Five of the populations did not fix any mutation, and three of them displayed marginally significant fitness increases, illustrating that fitness recovery can occur without detectable alterations of the consensus genomic sequence. The investigation of other possible viral factors associated with the initial steps of fitness recovery, showed that viral quasispecies heterogeneity increased between the initial clones and the passaged populations. A direct statistical correlation between viral heterogeneity and viral fitness was obtained.

Conclusions

Thus, the initial fitness recovery of debilitated HIV-1 clones was mediated by an increase in quasispecies heterogeneity. This observation, together with the invariance of the consensus sequence despite fitness increases demonstrates the relevance of quasispecies heterogeneity in the evolution of HIV-1 in cell culture.  相似文献   

6.

Background  

Outcrossing between populations can exert either positive or negative effects on offspring fitness. Cyclically parthenogenetic rotifers, like other continental zooplankters, show high genetic differentiation despite their high potential for passive dispersal. Within this context, the effects of outcrossing may be relevant in modulating gene flow between populations through selection for or against interpopulation hybrids. Nevertheless, these effects remain practically unexplored in rotifers. Here, the consequences of outcrossing on the rotifer Brachionus plicatilis were investigated. Cross-mating experiments were performed between a reference population and three alternative populations that differed in their genetic distance with regard to the former. Two offspring generations were obtained: F1 and BC ('backcross'). Fitness of the outcrossed offspring was compared with fitness of the offspring of the reference population for both generations and for three different between-population combinations. Four fitness components were measured throughout the rotifer life cycle: the diapausing egg-hatching proportion, clone viability (for the clones originating from diapausing eggs), initial net growth rate R for each viable clone, and the proportion of male-producing clones. Additionally, both the parental fertilisation proportion and a compound fitness measure, integrating the complete life cycle, were estimated.  相似文献   

7.
Genetic variation in fitness is required for the adaptive evolution of any trait but natural selection is thought to erode genetic variance in fitness. This paradox has motivated the search for mechanisms that might maintain a population''s adaptive potential. Mothers make many contributions to the attributes of their developing offspring and these maternal effects can influence responses to natural selection if maternal effects are themselves heritable. Maternal genetic effects (MGEs) on fitness might, therefore, represent an underappreciated source of adaptive potential in wild populations. Here we used two decades of data from a pedigreed wild population of North American red squirrels to show that MGEs on offspring fitness increased the population''s evolvability by over two orders of magnitude relative to expectations from direct genetic effects alone. MGEs are predicted to maintain more variation than direct genetic effects in the face of selection, but we also found evidence of maternal effect trade-offs. Mothers that raised high-fitness offspring in one environment raised low-fitness offspring in another environment. Such a fitness trade-off is expected to maintain maternal genetic variation in fitness, which provided additional capacity for adaptive evolution beyond that provided by direct genetic effects on fitness.  相似文献   

8.
根据样地每木栓尺和林缘扩散效应调查以及无性系跟踪挖掘材料,分析了毛乌素沙地中国沙棘无性系各上群年龄结构动态及其遗传后果,结果表明,中国沙棘无性系种群年龄结构由增长型经过稳定型发展到衰退型,在衰退的种群中,中国沙棘能够通过无性系生长实验林窗更新恢复其稳定性或依靠林缘扩散使种群在更大的空间尺度上进行自我维持。同时,随着种群的自疏,无性系种群的组成由较多拥有较少分株的无性系向较少拥有较多分株的无性系转变,从而降低了无性系种群的基株多样性。  相似文献   

9.
Evolution of fitness values upon replication of viral populations is strongly influenced by the size of the virus population that participates in the infections. While large population passages often result in fitness gains, repeated plaque-to-plaque transfers result in average fitness losses. Here we develop a numerical model that describes fitness evolution of viral clones subjected to serial bottleneck events. The model predicts a biphasic evolution of fitness values in that a period of exponential decrease is followed by a stationary state in which fitness values display large fluctuations around an average constant value. This biphasic evolution is in agreement with experimental results of serial plaque-to-plaque transfers carried out with foot-and-mouth disease virus (FMDV) in cell culture. The existence of a stationary phase of fitness values has been further documented by serial plaque-to-plaque transfers of FMDV clones that had reached very low relative fitness values. The statistical properties of the stationary state depend on several parameters of the model, such as the probability of advantageous versus deleterious mutations, initial fitness, and the number of replication rounds. In particular, the size of the bottleneck is critical for determining the trend of fitness evolution.  相似文献   

10.
Egg production and individual genetic diversity in lesser kestrels   总被引:3,自引:2,他引:1  
Fecundity is an important component of individual fitness and has major consequences on population dynamics. Despite this, the influence of individual genetic variability on egg production traits is poorly known. Here, we use two microsatellite-based measures, homozygosity by loci and internal relatedness, to analyse the influence of female genotypic variation at 11 highly variable microsatellite loci on both clutch size and egg volume in a wild population of lesser kestrels (Falco naumanni). Genetic diversity was associated with clutch size, with more heterozygous females laying larger clutches, and this effect was statistically independent of other nongenetic variables such as female age and laying date, which were also associated with fecundity in this species. However, egg volume was not affected by female heterozygosity, confirming previous studies from pedigree-based breeding experiments which suggest that this trait is scarcely subjected to inbreeding depression. Finally, we explored whether the association between heterozygosity and clutch size was due to a genome-wide effect (general effect) or to single locus heterozygosity (local effect). Two loci showed a stronger influence but the correlation was not fully explained by these two loci alone, suggesting that a main general effect underlies the association observed. Overall, our results underscore the importance of individual genetic variation for egg production in wild bird populations, a fact that could have important implications for conservation research and provides insights into the study of clutch size evolution and genetic variability maintenance in natural populations.  相似文献   

11.
Most founding events entail a reduction in population size, which in turn leads to genetic drift effects that can deplete alleles. Besides reducing neutral genetic variability, founder effects can in principle shift additive genetic variance for phenotypes that underlie fitness. This could then lead to different rates of adaptation among populations that have undergone a population size bottleneck as well as an environmental change, even when these populations have a common evolutionary history. Thus, theory suggests that there should be an association between observable genetic variability for both neutral markers and phenotypes related to fitness. Here, we test this scenario by monitoring the early evolutionary dynamics of six laboratory foundations derived from founders taken from the same source natural population of Drosophila subobscura. Each foundation was in turn three‐fold replicated. During their first few generations, these six foundations showed an abrupt increase in their genetic differentiation, within and between foundations. The eighteen populations that were monitored also differed in their patterns of phenotypic adaptation according to their immediately ancestral founding sample. Differences in early genetic variability and in effective population size were found to predict differences in the rate of adaptation during the first 21 generations of laboratory evolution. We show that evolution in a novel environment is strongly contingent not only on the initial composition of a newly founded population but also on the stochastic changes that occur during the first generations of colonization. Such effects make laboratory populations poor guides to the evolutionary genetic properties of their ancestral wild populations.  相似文献   

12.
Evidence for temperature adaptation in Daphnia magna was inferred from variation in the shape of temperature reaction norms for somatic growth rate, a fitness‐related trait. Ex‐ephippial clones from eight populations across Europe were grown under standardized conditions after preacclimation at five temperatures (17–29 °C). Significant variation for grand mean growth rates occurred both within populations (among clones) and between populations. Genetic variation for reaction norm shape was found within populations, with temperature‐dependent trade‐offs in clone relative fitness. However, the population average responses to temperature were similar, following approximately parallel reaction norms. The among‐population variation is not evidence for temperature adaptation. Lack of temperature adaptation at the population level may be a feature of intermittent populations where environmentally terminated diapause can entrain the planktonic stage of the life‐history within a similar range of temperatures.  相似文献   

13.
Muller's ratchet is a principle of evolutionary genetics describing mutant accumulation in populations that are repeatedly subjected to genetic bottleneck. The immediate effect of Muller's ratchet, overall loss of fitness, has been confirmed in several viral systems belonging to different groups. This report shows that in addition to fitness loss, genetic bottlenecks also have longer-term effects, namely changes in the capacity of viral populations to adapt. Thus, vesicular stomatitis virus strains with a history of genetic bottleneck have lower adaptability than strains maintained at relatively large population sizes. This lower adaptability is illustrated by their reduced ability to regain fitness and by their inability to outcompete wild-type populations in situations where the initial fitness of the bottlenecked mutant is the same or even higher than the initial fitness of the wild-type.  相似文献   

14.
We used a quantitative trait locus (QTL) approach to study the genetic basis of population differentiation in wild barley, Hordeum spontaneum. Several ecotypes are recognized in this model species, and population genetic studies and reciprocal transplant experiments have indicated the role of local adaptation in shaping population differences. We derived a mapping population from a cross between a coastal Mediterranean population and a steppe inland population from Israel and assessed F3 progeny fitness in the natural growing environments of the two parental populations. Dilution of the local gene pool, estimated as the proportion of native alleles at 96 marker loci in the recombinant lines, negatively affected fitness traits at both sites. QTLs for fitness traits tended to differ in the magnitude but not in the direction of their effects across sites, with beneficial alleles generally conferring a greater fitness advantage at their native site. Several QTLs showed fitness effects at one site only, but no opposite selection on individual QTLs was observed across the sites. In a common-garden experiment, we explored the hypothesis that the two populations have adapted to divergent nutrient availabilities. In the different nutrient environments of this experiment, but not under field conditions, fitness of the F3 progeny lines increased with the number of heterozygous marker loci. Comparison of QTL-effects that underlie genotype x nutrient interaction in the common-garden experiment and genotype x site interaction in the field suggested that population differentiation at the field sites may have been driven by divergent nutrient availabilities to a limited extent. Also in this experiment no QTLs were observed with opposite fitness effects in contrasting environments. Our data are consistent with the view that adaptive differentiation can be based on selection on multiple traits changing gradually along ecological gradients. This can occur without QTLs showing opposite fitness effects in the different environments, that is, in the absence of genetic trade-offs in performance between environments.  相似文献   

15.
Evolution as a critical component of plankton dynamics   总被引:9,自引:0,他引:9  
Microevolution is typically ignored as a factor directly affecting ongoing population dynamics. We show here that density-dependent natural selection has a direct and measurable effect on a planktonic predator-prey interaction. We kept populations of Brachionus calyciflorus, a monogonont rotifer that exhibits cyclical parthenogenesis, in continuous flow-through cultures (chemostats) for more than 900 days. Initially, females frequently produced male offspring, especially at high population densities. We observed rapid evolution, however, towards low propensity to reproduce sexually, and by 750 days, reproduction had become entirely asexual. There was strong selection favouring asexual reproduction because, under the turbulent chemostat regime, males were unable to mate with females, produced no offspring, and so had zero fitness. In replicated chemostat experiments we found that this evolutionary process directly influenced the population dynamics. We observed very specific but reproducible plankton dynamics which are explained well by a mathematical model that explicitly includes evolution. This model accounts for both asexual and sexual reproduction and treats the propensity to reproduce sexually as a quantitative trait under selection. We suggest that a similar amalgam of ecological and evolutionary mechanisms may drive the dynamics of rapidly reproducing organisms in the wild.  相似文献   

16.
Although trait evolution over contemporary timescales is well documented, its influence on ecological dynamics in the wild has received much less attention particularly compared to traditional ecological and environmental factors. For example, evolution over ecologically relevant timescales is expected in populations that colonize new habitats, where it should theoretically enhance fitness, associated vital rates of survival and reproduction, and population growth potential. Nonetheless, success of exotic species is much more commonly attributed to ecological aspects of habitat quality and 'escape from enemies' in the invaded range. Here, we consider contemporary evolution of vital rates in introduced Chinook salmon (Oncorhynchus tshawytscha) that quickly colonized New Zealand and diverged over c. 26 generations. By using experimental translocations, we partitioned the roles of evolution and habitat quality in modifying geographical patterns of vital rates. Variation in habitat quality within the new range had the greatest influence on broad geographical patterns of vital rates, but locally adapted salmon still exhibited more than double the vital rate performance, and hence fitness, of nonlocal counterparts. The scope of this fitness evolution far exceeds the scale of divergence in trait values for these populations, or even the expected fitness effects of particular traits. These results suggest that contemporary evolution can be an important part of the eco-evolutionary dynamics of invasions and highlight the need for studies of the emergent fitness and ecological consequences of such evolution, rather than just changes in trait values.  相似文献   

17.
The importance of contingency versus predictability in evolution has been a long-standing issue, particularly the interaction between genetic background, founder effects, and selection. Here we address experimentally the effects of genetic background and founder events on the repeatability of laboratory adaptation in Drosophila subobscura populations for several functional traits. We found disparate starting points for adaptation among laboratory populations derived from independently sampled wild populations for all traits. With respect to the subsequent evolutionary rate during laboratory adaptation, starvation resistance varied considerably among foundations such that the outcome of laboratory evolution is rather unpredictable for this particular trait, even in direction. In contrast, the laboratory evolution of traits closely related to fitness was less contingent on the circumstances of foundation. These findings suggest that the initial laboratory evolution of weakly selected characters may be unpredictable, even when the key adaptations under evolutionary domestication are predictable with respect to their trajectories.  相似文献   

18.
Demographic noise, the change in the composition of a population due to random birth and death events, is an important driving force in evolution because it reduces the efficacy of natural selection. Demographic noise is typically thought to be set by the population size and the environment, but recent experiments with microbial range expansions have revealed substantial strain-level differences in demographic noise under the same growth conditions. Many genetic and phenotypic differences exist between strains; to what extent do single mutations change the strength of demographic noise? To investigate this question, we developed a high-throughput method for measuring demographic noise in colonies without the need for genetic manipulation. By applying this method to 191 randomly-selected single gene deletion strains from the E. coli Keio collection, we find that a typical single gene deletion mutation decreases demographic noise by 8% (maximal decrease: 81%). We find that the strength of demographic noise is an emergent trait at the population level that can be predicted by colony-level traits but not cell-level traits. The observed differences in demographic noise from single gene deletions can increase the establishment probability of beneficial mutations by almost an order of magnitude (compared to in the wild type). Our results show that single mutations can substantially alter adaptation through their effects on demographic noise and suggest that demographic noise can be an evolvable trait of a population.Subject terms: Bacterial evolution, Population genetics, Population dynamics, Population genetics, Biofilms  相似文献   

19.
Aneuploidy is a hallmark of tumor cells, and yet the precise relationship between aneuploidy and a cell’s proliferative ability, or cellular fitness, has remained elusive. In this study, we have combined a detailed analysis of aneuploid clones isolated from laboratory-evolved populations of Saccharomyces cerevisiae with a systematic, genome-wide screen for the fitness effects of telomeric amplifications to address the relationship between aneuploidy and cellular fitness. We found that aneuploid clones rise to high population frequencies in nutrient-limited evolution experiments and show increased fitness relative to wild type. Direct competition experiments confirmed that three out of four aneuploid events isolated from evolved populations were themselves sufficient to improve fitness. To expand the scope beyond this small number of exemplars, we created a genome-wide collection of >1,800 diploid yeast strains, each containing a different telomeric amplicon (Tamp), ranging in size from 0.4 to 1,000 kb. Using pooled competition experiments in nutrient-limited chemostats followed by high-throughput sequencing of strain-identifying barcodes, we determined the fitness effects of these >1,800 Tamps under three different conditions. Our data revealed that the fitness landscape explored by telomeric amplifications is much broader than that explored by single-gene amplifications. As also observed in the evolved clones, we found the fitness effects of most Tamps to be condition specific, with a minority showing common effects in all three conditions. By integrating our data with previous work that examined the fitness effects of single-gene amplifications genome-wide, we found that a small number of genes within each Tamp are centrally responsible for each Tamp’s fitness effects. Our genome-wide Tamp screen confirmed that telomeric amplifications identified in laboratory-evolved populations generally increased fitness. Our results show that Tamps are mutations that produce large, typically condition-dependent changes in fitness that are important drivers of increased fitness in asexually evolving populations.  相似文献   

20.
The trait for somatic embryogenesis is being introduced sexually into alfalfa (Medicago sativa) breeding populations to facilitate genetic transformation of this crop. Cocultivation experiments were conducted with an agronomically-improved embryogenic clone from one such population as well as with two other embryogenic clones, one of which was the source of the embryogenic trait in the breeding populations. Transgenic plants were produced from the agronomically-improved clone whereas none were produced from the other two clones. Among the 16 transgenic plants analyzed there was a range in both copy number and number of integration sites for the NPT-II gene; those plants regenerated after a prolonged selection phase in vitro generally had the highest numbers in both respects. There was no evidence of sectoral chimerism of the transgene in a subsample of transgenic plants analyzed by PCR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号