首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Refugia are key environments in biogeography and conservation. Because of their unique eco‐evolutionary formation and functioning, they should display distinct functional trait signatures. However, comparative trait‐based studies of plants in refugia and non‐refugia are lacking. Here, we provide a comparison between resource‐rich (putative microrefugia for species preferring mesic habitats under increasing aridity) and resource‐impoverished woodlands (non‐refugia) around two granite outcrops in south‐western Australia. We measured and compared six functional traits (bark thickness, foliar δ13C, foliar C:N, leaf dry matter content, plant height, specific leaf area) in four woody species. We performed multiple‐trait, multiple‐species and single‐trait, within‐species analyses to test whether plants in resource‐rich habitats were functionally distinct and more diverse than those in the surrounding resource‐impoverished woodlands. We found that species in resource‐rich woodlands occupied larger and distinct multiple‐trait functional spaces and showed distinct single‐trait values (for specific leaf area and bark thickness). This suggests that plants in resource‐rich woodlands can deploy unique and more diverse ecological strategies, potentially making these putative microrefugia more resilient to environmental changes. These findings suggest that species in microrefugia may be characterised by unique functional signatures, illustrating the utility of comparative trait‐based approaches to improve understanding of the functioning of refugia.  相似文献   

2.
Adaptation of morphological, physiological, or life‐history traits of a plant species to heterogeneous habitats through the process of natural selection is a paramount process in evolutionary biology. We have used a population genomic approach to disentangle selection‐based and demography‐based variation in morphological and life‐history traits in the crucifer Diplotaxis harra (Forssk.) Boiss. (Brassicaceae) encountered in populations along aridity gradients in S Tunisia. We have genotyped 182 individuals from 12 populations of the species ranging from coastal to semidesert habitats using amplified fragment length polymorphism (AFLP) fingerprinting and assessed a range of morphological and life‐history traits from their progeny cultivated under common‐garden conditions. Application of three different statistical approaches for searching AFLP loci under selection allowed us to characterize candidate loci, for which their association with the traits assessed was tested for statistical significance and correlation with climate data. As a key result of this study, we find that only the shape of cauline leaves seems to be under differential selection along the aridity gradient in S Tunisian populations of Diplotaxis harra, while for all other traits studied neutral biogeographical and/or random factors could not be excluded as explanation for the variation observed. The counter‐intuitive finding that plants from populations with more arid habitats produce broader leaves under optimal conditions of cultivation than those from more mesic habitats is interpreted as being ascribable to selection for a higher plasticity in this trait under more unpredictable semidesert conditions compared to the more predictable ones in coastal habitats.  相似文献   

3.
Semi‐natural mountain grasslands are increasingly exposed to environmental stress under climate change. However, which are the environmental factors that limit plants in these grasslands? Also, is the present management effective against these changes? Fitness‐related functional traits may offer a way to detect changes in performance and provide new insights into their vulnerability to climate change. We investigated changes in performance and variability of functional traits of the mountain grassland target species Arnica montana along a climate gradient in Central German low mountain ranges. This gradient represents at its lower end climate conditions that are expected at its upper end under future climate change. We measured vegetative, generative, and physiological traits to account for multiple ways of plant responses to the environment. Using mixed effects and multivariate models, we evaluated changes in trait values among individuals as well as the variability of their populations in order to assess performance under changing summer aridity and different management regimes. Fitness‐related performance of most traits showed strongly positive associations with reduced summer aridity at higher elevations, while only specific leaf area and leaf dry matter content showed no association. This suggests a higher performance level at less arid montane sites and that the physiological traits are less sensitive to this climate change factor. The coefficient of variation of almost all traits declined steadily with decreasing site aridity. We suggest that this reduced variability indicates a lower environmental stress level for A. montana toward its environmental optimum at montane elevations, especially because the trait performance increased simultaneously. Surprisingly, management factors and habitat characteristics had only low influence on both trait performance and variability. In summary, summer aridity had a stronger effect to shape the trait performance and variability of A. montana under increased environmental stress than management and other habitat characteristics.  相似文献   

4.
Water availability is one of the most important factors determining species distribution, plant community structure and ecosystem functioning. We explore how the functional structure of Mediterranean woody plant communities varies along a regional gradient of aridity in the Andalusian region (south Spain). We question whether communities located in more arid sites show more similarity in their functional structure when compared with communities located in wetter sites or whether, instead, there is divergence in their functional spaces. We selected five aridity zones (three sampling sites per zone) and measured 13 traits of different functional dimensions (including leaf, stem and root traits) in 74 woody plant species. We quantified functional space differences using the n-dimensional niche space approach (hypervolume). We found a larger functional space for the wetter communities compared with the more arid communities, which showed greater overlap of the trait space occupation. Our results indicate that aridity acts as a key abiotic filter affecting various metrics of the community trait structure, in accordance with the plant economics spectrum. We have also documented consistent variation in the functional space, supporting lower functional diversity under more harsh climatic conditions. The trend of functional space variation along the aridity gradient was different when considering traits from only one plant organ. Thus, the filtering process driving the functional structure of the communities studied here largely depends on the trait axis considered; for example, the root dimension showed considerable variation in wet environments, whereas the leaf dimension exhibited a larger functional space in the drier habitats.  相似文献   

5.
Background and AimsIn water-limited landscapes, some plants build structures that enable them to survive with minimal water (drought resistance). Instead of making structures that allow survival through times of water limitation, annual plants may invoke a drought escape strategy where they complete growth and reproduction when water is available. Drought escape and resistance each require a unique combination of traits and therefore plants are likely to have a suite of trait values that are consistent with a single drought response strategy. In environments where conditions are variable, plants may additionally evolve phenotypically plastic trait responses to water availability. Invasive annual species commonly occur in arid and semi-arid environments and many will be subject to reduced water availability associated with climate change. Assessing intraspecific trait variation across environmental gradients is a valuable tool for understanding how invasive plants establish and persist in arid environments.MethodsIn this study, we used a common garden experiment with two levels of water availability to determine how traits related to carbon assimilation, water use, biomass allocation and flowering phenology vary in California wild radish populations across an aridity gradient.Key ResultsWe found that populations from arid environments have rapid flowering and increased allocation to root biomass, traits associated with both drought escape and tolerance. Early flowering was associated with higher leaf nitrogen concentration and lower leaf mass per area, traits associated with high resource acquisition. While trait values varied across low- and high-water treatments, these shifts were consistent across populations, indicating no differential plasticity across the aridity gradient.ConclusionsWhile previous studies have suggested that drought escape and drought resistance are mutually exclusive drought response strategies, our findings suggest that invasive annuals may employ both strategies to succeed in novel semi-arid environments. As many regions are expected to become more arid in the future, investigations of intraspecific trait variation within low water environments help to inform our understanding of potential evolutionary responses to increased aridity in invasive species.  相似文献   

6.
Complex processes related to biotic and abiotic forces can impose limitations to assembly and composition of plant communities. Quantifying the effects of these constraints on plant functional traits across environmental gradients, and among communities, remains challenging. We define ecological constraint (Ci) as the combined, limiting effect of biotic interactions and environmental filtering on trait expression (i.e., the mean value and range of functional traits). Here, we propose a set of novel parameters to quantify this constraint by extending the trait‐gradient analysis (TGA) methodology. The key parameter is ecological constraint, which is dimensionless and can be measured at various scales, for example, on population and community levels. It facilitates comparing the effects of ecological constraints on trait expressions across environmental gradients, as well as within and among communities. We illustrate the implementation of the proposed parameters using the bark thickness of 14 woody species along an aridity gradient on granite outcrops in southwestern Australia. We found a positive correlation between increasing environmental stress and strength of ecological constraint on bark thickness expression. Also, plants from more stressful habitats (shrublands on shallow soils and in sun‐exposed locations) displayed higher ecological constraint for bark thickness than plants in more benign habitats (woodlands on deep soils and in sheltered locations). The relative ease of calculation and dimensionless nature of Ci allow it to be readily implemented at various scales and make it widely applicable. It therefore has the potential to advance the mechanistic understanding of the ecological processes shaping trait expression. Some future applications of the new parameters could be investigating the patterns of ecological constraints (1) among communities from different regions, (2) on different traits across similar environmental gradients, and (3) for the same trait across different gradient types.  相似文献   

7.
The leaf economics spectrum (LES) describes a major axis of plant functional trait variation worldwide, defining suites of leaf traits aligned with resource‐acquisitive to resource‐conservative ecological strategies. The LES has been interpreted to arise from leaf‐level trade‐offs among ecophysiological traits common to all plants. However, it has been suggested that the defining leaf‐level trade‐offs of the LES may not hold within specific functional groups (e.g., herbs) nor within many groups of closely related species, which challenges the usefulness of the LES paradigm across evolutionary scales. Here, we examine the evolution of the LES across 28 species of the diverse herbaceous genus Helianthus (the sunflowers), which occupies a wide range of habitats and climate variation across North America. Using a phylogenetic comparative approach, we find repeated evolution of more resource‐acquisitive LES strategies in cooler, drier, and more fertile environments. We also find macroevolutionary correlations among LES traits that recapitulate aspects of the global LES, but with one major difference: leaf mass per area is uncorrelated with leaf lifespan. This indicates that whole‐plant processes likely drive variation in leaf lifespan across Helianthus, rather than leaf‐level trade‐offs. These results suggest that LES patterns do not reflect universal physiological trade‐offs at small evolutionary scales.  相似文献   

8.
Y. Pueyo  S. Kefi  C. L. Alados  M. Rietkerk 《Oikos》2008,117(10):1522-1532
Seed dispersal and establishment are critical stages for plants in arid environments, where vegetation is spatially organized in patches with suitable and unsuitable sites for establishment. Theoretical studies suggest that the ability of vegetation to self‐organize in patchy spatial patterns is a critical property for plant survival in arid environments, and is a consequence of a scale‐dependent feedback between plants and resource availability. Field observations show that plants of arid environments evolved towards short dispersal distance (proxichory) and that the investment in reproduction increases along an aridity gradient. Here, we investigated how plant dispersal strategies affect spatial organization and associated scale‐dependent feedback in arid ecosystems. We addressed this research question using a model where the spatio‐temporal vegetation patterns were driven by scale‐dependent feedbacks between plants and soil water availability. In the model, water availability limited vegetation growth, seed production and establishment ability. Seed dispersal was modelled with an integrodifferential equation that mimicked important plant dispersal characteristics (i.e. fecundity, mean dispersal distance and establishment ability). Results showed that, when the investment in fecundity was relatively high, short seed dispersal helped maintaining higher mean biomass in the system, improving the vegetation efficiency in water use. However, higher fecundity induced a large cost, and high mean biomass could be sustained only with high establishment ability. Considering low establishment ability, intermediate fecundity was more efficient than low fecundity in maintaining high plant biomass under the most arid conditions. Consistently, plant dispersal strategies that maintained more biomass were related to a vegetation spatial organization that allowed the most efficient soil water redistribution, through the strengthening of the scale‐dependent feedback. The efficient dispersal strategies and spatial patterns in the model are commonly observed in plants of arid environments. Thus, dispersal strategies in arid environments might contribute to a favourable spatial organization and associated scale‐dependent feedback.  相似文献   

9.
G. D. Cook 《Austral ecology》2001,26(6):630-636
The ratios of stable nitrogen isotopes expressed as δ15N values can indicate the openness of nitrogen cycles in ecosystems. Southwards through the Northern Territory, values of foliar δ15N in savanna trees increase as mean annual rainfall decreases from approximately 1800 mm to approximately 750 mm, with foliar δ15N thereafter decreasing toward arid central Australia. Recent literature argues that this pattern is caused by higher grazing intensity in semi‐arid savannas, but counter views have attributed the pattern more directly to variations in aridity. In this paper, grazed and ungrazed sites in a semi‐arid savanna are compared, and it is shown that grazing has a relatively small effect on the positive foliar δ15N values of grasses, but no effect on δ15N values of trees. This gives little support to the argument that variations in grazing pressure at the scale of hundreds of kilometres could result in detectable differences in the foliar δ15N values of trees. I then compare the semi‐arid savannas with mesic savannas, where fires are frequent, and with mesic rainforests, which are rarely burnt. Greater foliar δ15N values in rainforest and fire‐excluded mesic savannas than in frequently burnt savannas suggests that fire regimes affect foliar δ15N. The previously observed pattern in δ15N values along the rainfall gradient in the Northern Territory is consistent with trends in fire frequency and possible direct effects of fire, but further work is required to determine the relative impacts of aridity and fire. Within a particular rainfall regime, foliar δ15N values may indicate historical fire frequencies.  相似文献   

10.
Plant traits are fundamental components of the ecological strategies of plants, relating to how plants acquire and use resources. Their study provides insight into the dynamics of species geographical ranges in changing environments. Here, we assessed the variation in trait values at contrasting points along an environmental gradient to provide insight into the flexibility of species response to environmental heterogeneity. Firstly, we identified how commonly measured functional traits of four congeneric species (Banksia baxteri, B. coccinea, B. media and B. quercifolia) varied along a longitudinal gradient in the South Western Australian Floristic Region. This regional gradient provides significant variation in moisture, temperature and soil nutrients: soil nitrogen content decreases with declining rainfall and increasing temperature. We hypothesized that (i) the regional pattern in trait–environment associations across the species would match those observed on a global scale and (ii) that the direction and slopes of the within‐species relationships would be similar to those across species for each of the measured traits. Along the regional gradient we observed strong shifts in trait values, and cross‐species relationships followed the expected trend: specific leaf area was significantly lower, and leaf Narea and seed dry mass significantly higher, at the drier end of the rainfall gradient. However, traits within species were generally not well correlated with habitat factors: we found weak patterns among populations, either due to the small ecological gradient or perhaps because fine‐scale structuring among populations (at a micro‐evolutionary scale) was low due to high gene flow within species. Understanding how species traits shift as a result of climatic influences, both at the regional (across species) and local (within species) scale, provides insight into plant adaptation to the environment. Such studies have important applications for conservation biology and population management in the face of global change.  相似文献   

11.
Sexes of dioecious species may have dimorphic responses to environmental variation due to differences in resource requirements and reproductive costs. We analyzed the effect of aridity/relative shrub cover, and vicinity to shrub patches on morpho-chemical traits of sexes of the dioecious perennial grass Poa ligularis in patchy arid ecosystems in northern-central Patagonia. We hypothesized that sexes of P. ligularis have dimorphic responses in morpho-chemical traits in relation to the environmental variation induced by aridity/relative shrub cover and vicinity to shrub patches. We selected seven sites across a gradient of increasing aridity and relative shrub cover. We randomly collected 5–10 P. ligularis plants per site registering the sex (female or male) and location with respect to shrub patches (shrub patch or inter-patch). For each plant, we assessed morpho-chemical traits (height of the vegetative tillers, length/dry weight/area of blades, specific blade area, nitrogen and soluble phenol concentration in blades). Sexes showed dimorphic responses in height of vegetative tillers, blade length, and blade area with respect to vicinity to shrub patches; and in variation of soluble phenolics in blades in relation to aridity/relative shrub cover. Responses in both sexes were opposite to those expected by aridity, highlighting the role of favorable environments induced by shrub canopies on dimorphic responses of sexes of P. ligularis. Resource-rich microsites associated with shrub canopies promoted increased plant performance of females with high reproductive costs while resource-poor open areas, favorable for pollen dispersal, induced improved chemical defenses of males. These results are consistent with the resource availability hypothesis.  相似文献   

12.
植物叶片功能性状能够响应环境条件的变化,反应了植物对环境的适应策略。当前,针对藤本植物叶片功能性状地理格局及其环境驱动力的研究较少。以国家重点保护植物永瓣藤(Monimopetalum chinense)为研究对象,对其分布区内11个种群的15个叶片功能性状进行测量,并结合气候、土壤因子来解释叶性状变异。比较叶片性状在局域和区域尺度上的种内变异程度,利用多元逐步回归分析环境因子对叶性状的影响。结果表明,在局域尺度上,永瓣藤叶功能性状变异系数介于3.0%-22.5%,其中,叶面积变异程度最大,叶片碳含量变异最小。永瓣藤叶片形状随纬度上升而变得宽且圆。叶片磷含量相对较低,永瓣藤的生长可能受到了磷限制。土壤与气候因子是叶片性状的重要驱动因素,解释了25%-97%的叶片性状变异。在温度和水分充足的情况下,永瓣藤叶片趋向于的慢速生长的保守策略。总体来说,永瓣藤叶片功能性状通过一定的种内变异和性状组合,并与气候、土壤因子相互作用,适应当前的环境条件。  相似文献   

13.
Aridity is an important environmental filter in the assembly of plant communities worldwide. The extent to which root traits mediate responses to aridity, and how they are coordinated with leaf traits, remains unclear. Here, we measured variation in root tissue density (RTD), specific root length (SRL), specific leaf area (SLA), and seed size within and among thirty perennial grass communities distributed along an aridity gradient spanning 190–540 mm of climatic water deficit (potential minus actual evapotranspiration). We tested the hypotheses that traits exhibited coordinated variation (1) among species, as well as (2) among communities varying in aridity, and (3) functional diversity within communities declines with increasing aridity, consistent with the “stress-dominance” hypothesis. Across communities, SLA and RTD exhibited a coordinated response to aridity, shifting toward more conservative (lower SLA, higher RTD) functional strategies with increasing aridity. The response of SRL to aridity was more idiosyncratic and was independent of variation in SLA and RTD. Contrary to the stress-dominance hypothesis, the diversity of SRL values within communities increased with aridity, while none of the other traits exhibited significant diversity responses. These results are consistent with other studies that have found SRL to be independent of an SLA–RTD axis of functional variation and suggest that the dynamic nature of soil moisture in arid environments may facilitate a wider array of resource capture strategies associated with variation in SRL.  相似文献   

14.
Summary In many ecosystems, increases in vegetation density and the resulting closure of forest canopies are threatening the viability of species that depend upon open, sunlight‐exposed habitats. Consequently, we need to develop management strategies that recreate open habitats while minimizing the impacts on non‐target areas. Selective logging creates canopy gaps, but may result in undesirable effects in other respects. Thus, chainsaws have not been a popular tool for conservation. We conducted a landscape‐scale experiment to test whether selective tree removal can restore patch‐level habitat quality for Australia’s most endangered snake (Hoplocephalus bungaroides) and its main prey (the lizard Oedura lesueurii). We selectively removed canopy trees surrounding 25 overgrown rock outcrops and compared the resultant habitat structure and abiotic conditions to 30 overgrown, shady outcrops and 20 open, sunny outcrops. Removing vegetation decreased canopy cover by 19% in experimental plots and increased incident radiation and thermal regimes. These changes increased the availability of suitable shelter sites for our target species by 131%. At the landscape scale, our manipulations had a trivial effect on forest habitat; by increasing the area of sun‐exposed outcrops, we decreased forest cover by <0.1%. Our results show that targeted canopy removal can increase the availability of sun‐exposed habitat patches for endangered species in biologically meaningful ways. Thus, selective tree felling may be an effective conservation tool for open‐habitat specialists threatened by vegetation overgrowth.  相似文献   

15.
  1. Aridity and salinity have a key role in driving physiological and ecological processes in desert ecosystems. However, how community‐scale foliar nutrients respond to aridity and salinity, and how these responses might vary with community composition along aridity and salinity gradients is unclear. We hypothesize that the response will be a shift in community stoichiometric values resulting from nutrient variability of shared species and unique species (site‐specific species), but little research has addressed the relative contribution of either component.
  2. We analyzed the community‐scale stoichiometric response of a desert community of perennial plants along an aridity and salinity transect by focusing on foliar nitrogen (N) and phosphorous (P) concentrations and N:P ratios. After evaluating the shared and unique species variability, we determined their relative contribution to the community stoichiometric response to aridity and salinity, reflected by changes in nonweighted and weighted community‐average values.
  3. Community‐scale stoichiometry decreased significantly under aridity and salinity, with significantly consistent changes in nonweighted and weighted community‐average stoichiometry for most shared and unique species measurements. The relative contribution of unique species shifts to the changes in community stoichiometry was greater (15%–77%) than the relative contribution of shared species shifts (7%–45%), excluding the change in weighted P concentration under aridity. Thus, the shifts of unique species amplified the community stoichiometric response to environmental changes.
  4. Synthesis. These results highlighted the need for a more in‐depth consideration of shared and unique species variability to understand and predict the effects of environmental change on the stoichiometry of plant communities. Although variation in community stoichiometry can be expected under extreme aridity and salinity conditions, changes of unique species could be a more important driver of the stoichiometric response of plant communities.
  相似文献   

16.
Plants adopt a variety of life history strategies to succeed in the Earth's diverse environments. Using functional traits which are defined as “morphological, biochemical, physiological, or phonological” characteristics measurable at the individual level, plants are classified according to their species’ adaptative strategies, more than their taxonomy, from fast growing plant species to slower‐growing conservative species. These different strategies probably influence the input and output of carbon (C)‐resources, from the assimilation of carbon by photosynthesis to its release in the rhizosphere soil via root exudation. However, while root exudation was known to mediate plant‐microbe interactions in the rhizosphere, it was not used as functional trait until recently. Here, we assess whether root exudate levels are useful plant functional traits in the classification of plant nutrient‐use strategies and classical trait syndromes? For this purpose, we conducted an experiment with six grass species representing along a gradient of plant resource‐use strategies, from conservative species, characterized by low biomass nitrogen (N) concentrations and a long lifespans, to exploitative species, characterized by high rates of photosynthesis and rapid rates of N acquisition. Leaf and root traits were measured for each grass and root exudate rate for each planted soil sample. Classical trait syndromes in plant ecology were found for leaf and root traits, with negative relationships observed between specific leaf area and leaf dry matter content or between specific root length and root dry matter content. However, a new root trait syndrome was also found with root exudation levels correlating with plant resource‐use strategy patterns, specifically, between root exudation rate and root dry matter content. We therefore propose root exudation rate can be used as a key functional trait in plant ecology studies and plant strategy classification.  相似文献   

17.
1. Coleoptera species show considerable diversity in life histories and ecological strategies, which makes possible their wide distribution in freshwater habitats, including highly stressed ones such as saline or temporary waterbodies. Explaining how particular combinations of traits allow species to occupy distinctive habitats is a central question in ecology. 2. A total of 212 sites, sampled over a wide range of inland aquatic habitats in the south‐eastern Iberian Peninsula, yielded 272 species belonging to 68 genera and 11 families. The affinities of genera for 11 biological and 11 ecological traits, gathered from literature and the authors’ own expertise, were used to assess the degree of congruence between taxonomic, biological and ecological traits. 3. Taxonomic richness was significantly related to the number of both biological and ecological trait categories, with the richest families also showing the highest functional and ecological diversity. A fuzzy correspondence analysis performed on the abundance‐weighed array of biological traits separated genera according to categories of diet, feeding habits, respiration, reproduction and locomotion. A similar analysis of ecological traits revealed that preferences related to longitudinal distribution (headwater to mouth), local habitat and current velocity best discriminated genera. At the family level, there was a distinctive functional grouping of genera based on biological traits. Only Elmidae showed noticeable homogeneity across genera for both biological and ecological traits. 4. Co‐inertia analysis demonstrated a significant match between biological and ecological traits (Rv‐correlation = 0.35, P < 0.001). Elmidae genera displayed the highest concordance, whereas Hydraenidae demonstrated the lowest. 5. These results indicate that the predominance of habitat filtering processes in headwater streams yields biological trait conservatism (as shown by Elmidae genera), as well as trait convergence for some specific traits (for instance, respiration) among certain Dytiscidae genera and other typical rheophilic taxa, whereas other biotic factors, such as competition among species, appear more prominent in less stressed habitats. Further knowledge of traits, especially regarding physiological capabilities, is needed to better understand water beetle life history strategies.  相似文献   

18.
The roles of photosynthesis‐related traits in invasiveness of introduced plant species are still not well elucidated, especially in nutrient‐poor habitats. In addition, little effort has been made to determine the physiological causes and consequences of the difference in these traits between invasive and native plants. To address these problems, we compared the differences in 16 leaf functional traits related to light‐saturated photosynthetic rate (Pmax) between 22 invasive and native plants in a nutrient‐poor habitat in northeast China. The invasive plants had significantly higher Pmax, photosynthetic nitrogen‐ (PNUE), phosphorus‐ (PPUE), potassium‐ (PKUE) and energy‐use efficiencies (PEUE) than the co‐occurring natives, while leaf nutrient concentrations, construction cost (CC) and specific leaf area were not significantly different between the invasive and native plants. The higher PNUE contributed to higher Pmax for the invasive plants, which in turn contributed to higher PPUE, PKUE and PEUE. CC changed independently with other traits such as Pmax, PNUE, PPUE, PKUE and PEUE, showing two trait dimensions, which may facilitate acclimation to multifarious niche dimensions. Our results indicate that the invasive plants have a superior resource‐use strategy, i.e. higher photosynthesis under similar resource investments, contributing to invasion success in the barren habitat.  相似文献   

19.
Environmental variation often induces shifts in functional traits, yet we know little about whether plasticity will reduce extinction risks under climate change. As climate change proceeds, phenotypic plasticity could enable species with limited dispersal capacity to persist in situ, and migrating populations of other species to establish in new sites at higher elevations or latitudes. Alternatively, climate change could induce maladaptive plasticity, reducing fitness, and potentially stalling adaptation and migration. Here, we quantified plasticity in life history, foliar morphology, and ecophysiology in Boechera stricta (Brassicaceae), a perennial forb native to the Rocky Mountains. In this region, warming winters are reducing snowpack and warming springs are advancing the timing of snow melt. We hypothesized that traits that were historically advantageous in hot and dry, low‐elevation locations will be favored at higher elevation sites due to climate change. To test this hypothesis, we quantified trait variation in natural populations across an elevational gradient. We then estimated plasticity and genetic variation in common gardens at two elevations. Finally, we tested whether climatic manipulations induce plasticity, with the prediction that plants exposed to early snow removal would resemble individuals from lower elevation populations. In natural populations, foliar morphology and ecophysiology varied with elevation in the predicted directions. In the common gardens, trait plasticity was generally concordant with phenotypic clines from the natural populations. Experimental snow removal advanced flowering phenology by 7 days, which is similar in magnitude to flowering time shifts over 2–3 decades of climate change. Therefore, snow manipulations in this system can be used to predict eco‐evolutionary responses to global change. Snow removal also altered foliar morphology, but in unexpected ways. Extensive plasticity could buffer against immediate fitness declines due to changing climates.  相似文献   

20.
Increasing evidence suggests that individuals of the same plant species occurring in different microhabitats often show a degree of phenotypic and phytochemical variation. Consequently, insect herbivores associated with such plant species must deal with environment‐mediated changes or variability in the traits of their host plants. In this study, we examined the effects of habitat condition (shaded vs. full‐sun habitats) on plant traits and leaf characteristics of the invasive alien plant, Chromolaena odorata (L.) King & Robinson (Asteraceae). In addition, the performance was evaluated in two generations of a specialist folivore, Pareuchaetes insulata (Walker) (Lepidoptera: Erebidae: Arctiinae), on leaves obtained from both shaded and full‐sun habitats. The study was done in an area where the insect was introduced as a biological control agent. Leaves growing in shade were less tough, had higher water and nitrogen content, and lower total non‐structural carbohydrate, compared with leaves growing in full sun. Plants growing in shade had longer leaves and were taller, but above‐ground biomass was significantly reduced compared with plants growing in full sun. In both generations (parents and offspring), P. insulata developed faster and had larger pupal mass, increased growth rate, and higher fecundity when reared on shaded foliage compared with full‐sun foliage. Although immature survival and adult longevity did not differ between habitats, Maw's host suitability index indicated that shaded leaves were more suitable for the growth and reproduction of P. insulata. We suggest that the benefits obtained by P. insulata feeding on shaded foliage are associated with reduced toughness and enhanced nitrogen and water content of leaves. These results demonstrate that light‐mediated changes in plant traits and leaf characteristics can affect insect folivore performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号