首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1 Saproxylic insects, a functional group dominated by beetles, are dependent on dead or moribund trees as habitat elements. 2 Although there are few studies of saproxylic insects from the North American boreal zone, European studies demonstrate that forest harvest can lead to a biologically significant decrease in saproxylic beetle diversity. 3 We studied saproxylic beetles in the North American boreal mixedwood forest using flight intercept traps established on naturally dead and girdled trembling aspen and spruce trees along a successional gradient of undisturbed stands from deciduous to coniferous overstory trees. 4 Composition and diversity of beetle assemblages differed among forest successional types. 5 Snag age class was an important determinant of composition for saproxylic beetle assemblages. 6 Multivariate regression analysis of these data indicated that saproxylic beetles are responding to changes in coarse woody debris, and not to the relative densities of canopy tree species, although these variables are strongly correlated. 7 Coarse woody debris management should be a primary concern in forest management plans seeking to conserve saproxylic organisms and the critical ecosystem functions (i.e. nutrient cycling) in which they participate.  相似文献   

2.
森林生态系统粗死木质残体碳储量研究进展   总被引:2,自引:0,他引:2  
曹彦  游巍斌  王方怡  巫丽芸  何东进 《生态学报》2021,41(20):7913-7927
粗死木质残体(CWD)是森林生态系统重要的结构性与功能性单元,作为连接植被碳库与土壤碳库的关键纽带,对全球森林生态系统碳循环发挥着重要而独特的作用,越来越多的学者开始关注CWD碳储量相关研究。系统阐述了国内外CWD碳储量研究的发展历程、研究范围与基本特征等内容,总结概括了CWD体积测算、CWD碳浓度估算等碳计量相关方法的研究进展。通过梳理发现:国内外学者对CWD碳储量的研究仍处于初级阶段,主要集中于探讨不同树种、不同林龄、不同腐解等级、不同海拔、不同存在形式的森林CWD碳储量分布特征,而较少关注CWD碳库对土壤碳库和植被碳库的作用机制以及对未来气候变化的响应和反馈机制;CWD碳计量方法较为单一,普遍采用的是传统的"生物量-碳浓度法",而运用机器学习算法对CWD碳储量进行估算的研究尚不多见。此外,相对国外研究而言,国内研究主要局限于小尺度范围。文章据此提出未来CWD碳储量研究的发展方向:(1)拓展研究尺度,建立CWD碳储量长期观测体系;(2)深入开展不同森林生态系统CWD碳储量对气候变化的响应机制研究;(3)探索更加多元化的CWD碳储量计量方法;(4)深入探讨CWD碳库对土壤碳库与植被碳...  相似文献   

3.
Abstract.  1. Determinants of host-use patterns in plant-feeding insects have been extensively studied, usually within the framework of optimality theory. Comparatively, factors driving host selection in saprophagous insects have received little attention.
2. In this study, mechanisms creating occurrence peaks of saprophagous wood-borers (Cerambycidae: Coleoptera) in standing dead aspen in the middle and late stages of decay were investigated by correlating insect occurrence with variations in substrate-related nutritional and physical parameters. Twenty-four snags at four decay stages were dissected from a mature stand in western Quebec, Canada. Wood samples were taken to measure levels of nitrogen, non-structural carbohydrates, phenols, wood density, water content and snag age.
3. Several nutritional and physical parameters varied significantly along the decay gradient and were correlated with insect occurrence, but all significant parameters were also strongly correlated with snag age and wood density. Model selection using Akaike's second order information criteria was used to rank the different models; the model including snag age only performed best, with a wi of 0.873.
4. This importance of snag age gives support to a proposed hypothesis of host selection in which temporal autocorrelation in probability of insect occurrence explains peaks observed in the middle and late stages of decay. However, further studies will be needed to confirm the prevalence of such neutral mechanisms over active selection in the determination of host-use patterns in decaying aspen.  相似文献   

4.
We re-visited a seven-stand boreal chronosequence west of Thompson, Manitoba, Canada, in which coarse woody debris (CWD) and its instantaneous decomposition were measured in 2000. New CWD measurements were performed in 2007, and tree inventories updated to provide mortality and snag failure data. These data were used to model CWD changes, compare methods of estimating decomposition, and infer possible fragmentation rates. Measured CWD was between 9.7 (in both the 77- and 43-year-old stands) and 80.4 (in the 18-year-old stand) Mg ha−1 in 2007. Spatial variability was high; at most stands CWD levels had not changed significantly from 2000 to 2007. Tree mortality was a significant flux only in older stands, whereas snag fall rate varied by an order of magnitude, from 2.9% y−1 (0.2 Mg ha−1 y−1) in the 9-year-old stand to 9.8% y−1 (2.3 Mg ha−1 y−1) in the 12-year-old stand. A one-pool model based on these inputs underestimated actual 2000–2007 CWD decomposition in the younger stands, suggesting that fragmentation could be an important part of the carbon flux exiting the CWD pool. We compared three independent measures of annual decomposition (k): direct measurements of CWD respiration, rates based on the 7-year re-sampling effort described here, and rates inferred from the chronosequence design itself. Mean k values arrived at via these techniques were 0.06 ± 0.03, 0.05 ± 0.04, and 0.05 ± 0.05 y−1, respectively. The four-pool model suggested that the transition rate between decay classes was 0.14–0.19 y−1; the model was most sensitive to initial CWD values. Although the computed k values implied a problem with chronosequence site selection for at least one site, the overall CWD trend was consistent with a larger number of sites surveyed in the region.  相似文献   

5.
We evaluated the status of coarse woody debris (CWD, fallen wood) on floodplains of the southern Murray‐Darling basin of southeastern Australia. The floodplains are dominated floristically by the river red gum Eucalyptus camaldulensis. Aerial survey techniques were used to estimate the amounts of woody debris within 200 m of the channels along 2,442 km of 11 rivers of the system, including the Murray and Darling Rivers and the Darling Anabranch. Aerially based indices were converted into wood volumes by using ground‐truthing at a selection of sites; there was a strong correlation between index values and measured wood volume densities. For thickly forested sites such as Barmah, Gunbower Island, and the Ovens floodplains, the aerial method was not useful, so ground measurements at randomly positioned sites within the forests were used. Volumes were translated into mass by using conversion factors drawn from the literature. We estimated that total tonnage on approximately 221,000 ha of floodplain forests was 4.175 ± 0.579 × 106 tonne. In the larger forested blocks (>7,000 ha), mean wood densities ranged between approximately 12 tonne/ha on the lower Goulburn up to approximately 24 tonne/ha at Barmah State Forest. The area‐weighted mean for the entire area was approximately 19 tonne/ha. A main purpose of the research was to place these figures into an historical perspective to evaluate implications for restoration. A thorough search of historical documentation revealed that there are no extant data upon which to estimate pre‐European settlement levels. We used information from an apparently undisturbed “unmanaged” site in the Millewa forests of southern New South Wales as a basis. Wood density there corresponded to a mean figure of 125 tonne/ha wood‐mass density. By using this figure we estimate that CWD levels on the southern Murray‐Darling basin may be of the order of 15% of pre‐European settlement levels. Full restoration of the 221,000 ha surveyed would require 23.5 ± 0.579 × 106 tonne, which is equivalent to about 600,000 mature (1 m diameter at breast height) river red gum trees or the amount of timber derived from clear felling about 115,000 ha of river red gum forest at current stocking levels. We discuss the implications of this massive deficit and possible short‐ and long‐term solutions.  相似文献   

6.
Compared to natural forests, coarse woody debris (CWD) is typically scarce in restored forests due to the long time it takes to develop naturally. In post‐mining restored forests in the Jarrah forest of south western Australia, CWD is returned at densities of one log pile per hectare. We tested the adequacy of these densities for meeting the micro‐habitat requirements of Napoleon's skink (Egernia napoleonis), a species rarely found within restored sites. Home range size and overlap, and micro‐habitat densities used by skinks, were measured by radio‐tracking 12 individuals in natural, unmined forest. Napoleon's skinks had small home ranges (0.08 ± 0.02 ha), based on 8 individuals with sufficient fixes. All skinks overlapped in home ranges, with average overlaps of 43.5 ± 8.6%. Ten of the 12 skinks shared micro‐habitats and 4 shared them simultaneously, which indicates some social tolerance. This will influence as to how many micro‐habitats are required. Micro‐habitats were used at high densities: logs at 49.2 ± 8.8 ha?1 and woody debris piles at 12.4 ± 4.8 ha?1. Based on these densities, it is recommended that CWD is returned to restored forests at densities of 60 ha?1, which should provide sufficient micro‐habitats for multiple skinks. Due to the infeasibility of returning such CWD densities across large areas of restored forest, CWD could be preferentially returned as patches, large enough for numerous home ranges, adjacent to unmined forest, or as corridors between unmined forest. These recommendations for returning micro‐habitats should be tested for effectiveness in encouraging recolonization of restored forest by Napoleon's skink and other species.  相似文献   

7.
Ants (Hymenoptera: Formicidae) are known to be a thermophilic group with fewer species at higher latitudes. They are ubiquitous in the sub‐boreal forests of west‐central British Columbia (Canada) in the early seral ages of forest succession, nesting almost exclusively in woody debris. Individual species begin to disappear with advancing seral ages as the canopy closes, suggesting the hypothesis that heat gain from insolation is critical to many species. We experimentally manipulated shading of two wood‐nesting ant species –Leptothorax muscorum (Nylander) and Formica aserva Forel – to emulate advancing seral age, in an environment documented to support their normal habitation. Shaded down woody debris (DWD) was found to be ca. 2 °C cooler than unshaded DWD, whereas stumps were ca. 1.5 °C cooler when shaded than when unshaded. We found significantly fewer colonies of both L. muscorum and F. aserva in shaded wood, as compared to unshaded, in a pattern consistent with how each species has been observed to respond to advancing seral age. Temperature monitoring during the experiment indicated that soil was cooler than either stumps or DWD, possibly explaining the absence of soil‐nesting ant species in these forests. The species‐specific differences in ant colony abundance in response to small temperature differences, found in this study, support other research on the significance of temperature in structuring ant assemblages.  相似文献   

8.
9.
10.
11.
Stand Structural Dynamics of North American Boreal Forests   总被引:1,自引:0,他引:1  
Stand structure, the arrangement and interrelationships of live and dead trees, has been linked to forest regeneration, nutrient cycling, wildlife habitat, and climate regulation. The objective of this review was to synthesize literature on stand structural dynamics of North American boreal forests, addressing both live tree and coarse woody debris (CWD) characteristics under different disturbance mechanisms (fire, clearcut, wind, and spruce budworm), while identifying regional differences based on climate and surficial deposit variability. In fire origin stands, both live tree and CWD attributes are influenced initially largely by the characteristics of the stand replacing fire and later increasingly by autogenic processes. Differences in stand structure have also been observed between various stand cover types. Blowdown and insect outbreaks are two significant non-stand replacing disturbances that can alter forest stand structure through removing canopy trees, freeing up available growing space, and creating microsites for new trees to establish. Climate and surficial deposits are highly variable in the boreal forest due to its extensive geographic range, influencing stand and landscape structure by affecting tree colonization, stand composition, successional trajectories, CWD dynamics, and disturbance regimes including regional fire cycles. Further, predicted climate change scenarios are likely to cause regional-specific alterations in stand and landscape structure, with the implications on ecosystem components including wildlife, biodiversity, and carbon balance still unclear. Some stand structural attributes are found to be similar between clearcut and fire origin stands, but others appear to be quite different. Future research shall focus on examining structural variability under both disturbance regimes and management alternatives emulating both stand replacing and non-stand replacing natural disturbances.

  相似文献   


12.
Microbes are the unseen majority in soil and comprise a large portion of life's genetic diversity. Despite their abundance, the impact of soil microbes on ecosystem processes is still poorly understood. Here we explore the various roles that soil microbes play in terrestrial ecosystems with special emphasis on their contribution to plant productivity and diversity. Soil microbes are important regulators of plant productivity, especially in nutrient poor ecosystems where plant symbionts are responsible for the acquisition of limiting nutrients. Mycorrhizal fungi and nitrogen-fixing bacteria are responsible for c. 5–20% (grassland and savannah) to 80% (temperate and boreal forests) of all nitrogen, and up to 75% of phosphorus, that is acquired by plants annually. Free-living microbes also strongly regulate plant productivity, through the mineralization of, and competition for, nutrients that sustain plant productivity. Soil microbes, including microbial pathogens, are also important regulators of plant community dynamics and plant diversity, determining plant abundance and, in some cases, facilitating invasion by exotic plants. Conservative estimates suggest that c. 20 000 plant species are completely dependent on microbial symbionts for growth and survival pointing to the importance of soil microbes as regulators of plant species richness on Earth. Overall, this review shows that soil microbes must be considered as important drivers of plant diversity and productivity in terrestrial ecosystems.  相似文献   

13.
土壤有机碳和氮分解对温度变化的响应趋势与研究方法   总被引:2,自引:0,他引:2  
吴建国 《应用生态学报》2007,18(12):2896-2904
总结了土壤中碳和氮贮量与温度的关系、土壤碳和氮分解对温度时空差异和直接加热升温的响应,以及土壤碳和氮分解对低温冻结及冻融循环的响应趋势,讨论了其研究方法的误差和不确定性,并对今后的研究提出了一些建议.气候变暖在短期内将使土壤碳和氮分解加速并引起CO2释放量增加,而长期过程中却并不一定会引起土壤碳和氮分解加速.合理解释不同研究结果的差异,除了需要系统分析土壤碳和氮分解对温度变化响应的机制外,还需要充分认识土壤碳和氮分解对温度变化响应的长期过程和短期过程的差异,以及研究方法、植被、土壤和气候等因素的影响.  相似文献   

14.
Although there is substantial evidence that Northern Hemisphere species have responded to climatic change over the last few decades, there is little documented evidence that Southern Hemisphere species have responded in the same way. Here, we report that Australian migratory birds have undergone changes in the first arrival date (FAD) and last date of departure (LDD) of a similar magnitude as species from the Northern Hemisphere. We compiled data on arrival and departure of migratory birds in south‐east Australia since 1960 from the published literature, Bird Observer Reports, and personal observations from bird watchers. Data on the FAD for 24 species and the LDD for 12 species were analyzed. Sixteen species were short‐ to middle‐distance species arriving at their breeding grounds, seven were long‐distance migrants arriving at their nonbreeding grounds, and one was a middle‐distance migrant also arriving at its nonbreeding ground. For 12 species, we gathered data from more than one location, enabling us to assess the consistency of intraspecific trends at different locations. Regressions of climate variables against year show that across south‐east Australia average annual maximum and minimum temperatures have increased by 0.17°C and 0.13°C decade?1 since 1960, respectively. Over this period there has been an average advance in arrival of 3.5 days decade?1; 16 of the 45 time‐series (representing 12 of the 24 species studied) showed a significant trend toward earlier arrival, while only one time‐series showed a significant delay. Conversely, there has been an average delay in departure of 5.1 days decade?1; four of the 21 departure time‐series (four species) showed a significant trend toward later departure, while one species showed a significant trend toward earlier departure. However, differences emerge between the arrival and departure of short‐ to middle‐distance species visiting south‐east Australia to breed compared with long‐distance species that spend their nonbreeding period here. On average, short‐ to middle‐distance migrants have arrived at their breeding grounds 3.1 days decade?1 earlier and delayed departure by 8.1 days decade?1, thus extending the time spent in their breeding grounds by ~11 days decade?1. The average advance in arrival at the nonbreeding grounds of long‐distance migrants is 6.8 days decade?1. These species, however, have also advanced departure by an average of 6.9 days decade?1. Hence, the length of stay has not changed but rather, the timing of events has advanced. The patterns of change in FAD and LDD of Australian migratory birds are of a similar magnitude to changes undergone by Northern Hemisphere species, and add further evidence that the modest warming experienced over the past few decades has already had significant biological impacts on a global scale.  相似文献   

15.
Aim To investigate the differential effects of position within gaps, coarse woody debris and understorey cover on tree seedling survival in canopy gaps in two old‐growth Nothofagus pumilio (Poepp. & Endl.) Krasser forests and the response of this species to gaps in two forests located at opposite extremes of a steep rainfall gradient. Location Nahuel Huapi National Park, at 41° S in north‐western Patagonia, Argentina. Methods In both study sites, seedlings were transplanted to experimental plots in gaps in three different positions, with two types of substrate (coarse woody debris or forest floor), and with and without removal of understorey vegetation. Survival of seedlings was monitored during two growing seasons. Soil moisture and direct solar radiation were measured once in mid‐summer. Seedling aerial biomass was estimated at the end of the experiment. Results Mid‐summer soil water potential was lowest in the centre of gaps, in plots where the understorey had been removed, and highest at the northern edges of gaps. Direct incoming radiation was highest in gap centres and southern edges, and lowest at northern edges. Seedling mortality was highest in gap centres, in both sites. Coarse woody debris had a positive effect on seedling survival during summer in the mesic forest and during winter in the xeric forest. The removal of understorey cover had negative effects in gap centres during summer. Seedling final aerial biomass was positively affected by understorey removal and by soil substrate in both sites. In the dry forest gaps, seedling growth was highest in northern edges, whereas it was highest in gap centres in the mesic forest. Overall growth was positively related to survival in the xeric forest, and negatively related in the mesic forest. Main conclusions Survival and growth were facilitated by the shade of gap‐surrounding trees only in the xeric forest. Understorey vegetation of both forests facilitated seedling survival in exposed microsites but competed with seedling growth. Nurse logs were an important substrate for seedling establishment in both forests; however, causes of this pattern differed between forests. Water availability positively controls seedling survival and growth in the xeric forest while in the mesic forest, survival and growth are differentially controlled by water and light availability, respectively. These two contrasting old‐growth forests, separated by a relatively short distance along a steep rainfall gradient, had different yet unexpected microenvironmental controls on N. pumilio seedling survival and growth. These results underscore the importance of defining microscale limiting factors of tree recruitment in the context of large‐scale spatial variation in resources.  相似文献   

16.
Mangroves have a global distribution within coastal tropical and subtropical climates, and have even expanded to some temperate locales. Where they do occur, mangroves provide a plethora of goods and services, ranging from coastal protection from storms and erosion to direct income for human societies. The mangrove literature has become rather voluminous, prompting many subdisciplines within a field that earlier in the 20th century received little focus. Much of this research has become diffuse by sheer numbers, requiring detailed syntheses to make research results widely available to resource managers. In this review, we take an inclusive approach in focusing on eco-physiological and growth constraints to the establishment and early development of mangrove seedlings in the intertidal zone. This is a critical life stage for mangroves, i.e., the period between dispersal and recruitment to the sapling stage. We begin with some of the research that has set the precedent for seedling-level eco-physiological research in mangroves, and then we focus on recent advances (circa. 1995 to present) in our understanding of temperature, carbon dioxide, salinity, light, nutrient, flooding, and specific biotic influences on seedling survival and growth. As such, we take a new approach in describing seedling response to global factors (e.g., temperature) along with site-specific factors (e.g., salinity). All variables will strongly influence the future of seedling dynamics in ways perhaps not yet documented in mature forests. Furthermore, understanding how different mangrove species can respond to global factors and regional influences is useful for diagnosing observed mortality within mangrove wetlands, managed or natural. This review provides an updated eco-physiological knowledge base for future research and reforestation activity, and for understanding important links among climate change, local physico-chemical condition, and establishment and early growth of mangrove seedlings.  相似文献   

17.
The statistical analysis of Bowman et al. ( Journal of Biogeography , 2008, 35 , 1976–1988) revealed the weak relationship between the rate of woody cover encroachment onto the freshwater floodplains in the central section of Kakadu National Park (KNP) over a 40-year period and estimates of proximate water buffalo ( Bubalus bubalis ) density. The analysis relied on detailed mapping of buffalo tracks, the best historical record of spatial variation of buffalo density in KNP. In their reply, Petty & Werner ( Journal of Biogeography , 2009, doi: [DOI link] ) prefer to privilege an amalgam of historical sources to claim that buffalo removal is the primary driver of the woody expansion on floodplains. The contrasting weight placed on data analysis and differences of interpretation underscore a tension between statistically based historical ecology approaches and environmental history narratives, a tension that forms part of the broader cultural clash between the Sciences and Humanities.  相似文献   

18.
Few data sets have characterized carbon (C) and nitrogen (N) pools in woody debris at sites where other aspects of C and N cycling are studied and histories of land use and disturbance are well documented. We quantified pools of mass, C, and N in fine and coarse woody debris (CWD) in two contrasting stands: a 73-year-old red pine plantation on abandoned agricultural land and a naturally regenerated deciduous forest that has experienced several disturbances in the past 150 years. Masses of downed woody debris amounted to 40.0 Mg ha−1 in the coniferous stand and 26.9 Mg ha−1 in the deciduous forest (20.4 and 13.8 Mg C ha−1, respectively). Concentrations of N were higher and C:N ratios were lower in the deciduous forest compared to the coniferous. Pools of N amounted to 146 kg N ha−1 in the coniferous stand and 155 kg N ha−1 in the deciduous forest; both are larger than previously published pools of N in woody debris of temperate forests. Woody detritus buried in O horizons was minimal in these forests, contrary to previous findings in forests of New England. Differences in the patterns of mass, C, and N in size and decay classes of woody debris were related to stand histories. In the naturally regenerated deciduous forest, detritus was distributed across all size categories, and most CWD mass and N was present in the most advanced decay stages. In the coniferous plantation, nearly all of the CWD mass was present in the smallest size class (less than 25 cm diameter), and a recognizable cohort of decayed stems was evident from the stem-exclusion phase of this even-aged stand. These results indicate that heterogeneities in site histories should be explicitly included when biogeochemical process models are used to scale C and N stocks in woody debris to landscapes and regions. Received 27 April 2001; accepted 4 January 2002.  相似文献   

19.
1 This study compares the structural characteristics of 12 old‐growth and six postfire second‐growth hemlock–northern hardwood stands in north central Adirondack Park, New York, in order to test the null hypothesis that there are no differences in species composition, size structure, age structure and attributes such as dead wood and canopy gaps between old‐growth stands and this type of second‐growth forest. 2 The second‐growth forests of this study regenerated following widespread logging‐related fires in either 1903 or 1908; the old growth and second growth have similar environmental settings. 3 Estimates of stand ages, derived from an increment core of the oldest tree in each stand, range from 88 to 390 years. 4 Structural attributes are related to stand age (i.e. stage of development). In comparison with the second‐growth forests of this study, older stands are characterized as (a) a larger average diameter of canopy trees; (b) a greater basal area of trees; (c) a lower density of canopy trees and of all trees ≥ 10 cm d.b.h.; (d) a higher density of eastern hemlock (Tsuga canadensis (L.) Carrière) trees; (e) a higher density of large trees (≥ 50 cm d.b.h.); (f) larger canopy gaps; and (g) a greater volume of coarse woody debris (both logs ≥ 20 cm d.b.h. and snags ≥ 10 cm d.b.h.). 5 Despite differences between old growth and second growth, especially in species composition, it appears from observations of the 18 stands that second‐growth forests are developing some structural characteristics of old growth. 6 Structural attributes of the old‐growth forests are similar to characteristics of the same forest type in geographically distant areas in eastern USA.  相似文献   

20.
The purpose of this study was to relate regional variation in litter mass-loss rates (first year) in pine forests to climate across a large, continental-scale area. The variation in mass-loss rate was analyzed using 39 experimental sites spanning climatic regions from the subarctic to subtropical and Mediterranean: the latitudinal gradient ranged from 31 °N to 70 °N and may represent the the largest geographical area that has ever been sampled and observed for the purpose of studying biogeochemical processes. Because of unified site design and uniform laboratory procedures, data from all sites were directly comparable and permitted a determination of the relative influence of climateversus substrate quality viewed from the perspective of broad regional scales. Simple correlation applied to the entire data set indicated that annual actual evapotranspiration (AET) should be the leading climatic constraint on mass-loss rates (Radj 2 = 0.496). The combination of AET, average July temp. and average annual temp. could explain about 70% of the sites' variability on litter mass-loss. In an analysis of 23 Scots pine sites north of the Alps and Carpatians AET alone could account for about 65% of the variation and the addition of a substrate-quality variable was sufficiently significant to be used in a model. The influence of litter quality was introduced into a model, using data from 11 sites at which litter of different quality had been incubated. These sites are found in Germany, the Netherlands, Sweden and Finland. At any one site most ( ≫ 90%) of the variation in mass-loss rates could be explained by one of the litter-quality variables giving concentration of nitrogen, phosphorus or water solubles. However, even when these models included nitrogen or phosphorus even small changes in potential evapotranspiration resulted in large changes in early-phase decay rates. Further regional subdivision of the data set, resulted in a range of strength in the relationship between loss rate and climatic variables, from very weak in Central Europe to strong for the Scandinavian and Atlantic coast sites (Radj 2 = 0.912; AETversus litter mass loss). Much of the variation in observed loss rates could be related to continentalversus marine/Atlantic influences. Inland locations had mass-loss rates lower than should be expected on the basis of for example AET alone. Attempts to include seasonality variables were not successful. It is clear that either unknown errors and biases, or, unknown variables are causing these regional differences in response to climatic variables. Nevertheless these results show the powerful influence of climate as a control of the broad-scale geography of mass-loss rates and substrate quality at the stand level. Some of these relationships between mass-loss rate and climatic variables are among the highest ever reported, probably because of the care taken to select uniform sites and experimental methods. This suggest that superior, base line maps of predicted mass-loss rates could be produced using climatic data. These models should be useful to predict the changing equilibrium litter dynamics resulting from climatic change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号