首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Eastern Grey Kangaroo (Macropus giganteus) occurs mostly in the wetter regions of eastern Australia. However, in the past 30–40 years it has moved into more arid regions (rainfall<250 mm), thus increasing its overlap zone with the xeric adapted Red Kangaroo (Macropus rufus). An increased access to water (supplied for domestic stock) may explain this range extension, but changes in the availability of preferred feed could also be involved. The water use, drinking patterns and thermoregulatory behaviour of these two species of kangaroo have been examined in a semi-free range study, during summer at an arid rangeland site. Foraging was largely nocturnal in both species and during the day they behaved to reduce heat loads. This was especially so for M. giganteus, which showed greater shade seeking. However, it still used more water (72±2.6 mL kg−1 day−1, mean ± SE) than M. rufus (56±7.6 mL kg−1 day−1) and drank twice as frequently. Although M. giganteus produced a less concentrated urine (1422±36 mosmol kg−1) than M. rufus (1843±28 mosmol kg−1), kidney physiology did not explain all of the differences in water metabolism between the species. Water from the feed and faecal water retention also appear to be involved. Broadly, a better access to reliable water and the utilisation of mesic microhabitats has enabled M. giganteus to make inroads into the changing rangelands of eastern Australia. However, changes in the vegetation, due to stock grazing, have also favoured M. giganteus, which is a grass eating specialist.  相似文献   

2.
Abstract An unusually high diversity of macropods inhabit the rocky areas in the monsoon tropics of the Northern Territory, Australia, yet the mechanisms that allow their niche separation are not clear. Previous studies suggest that the nabarlek, Petrogale concinna, may have a more grazing diet than the short‐eared rock‐wallaby, Petrogale brachyotis, with whom it coexists. Thus, diet may be an important mechanism of niche separation between these species. We examined the diet of the four sympatric species (the black wallaroo Macropus bernardus, common wallaroo Macropus robustus, P. brachyotis and P. concinna) to determine whether there are differences in the dominant plant groups eaten by the species across the landscape and with season. Diets were determined with a macroscopic analysis of the seed and fruit content of scats and an analysis of the 12C to 13C isotope ratios of scats using mass spectrometry. In the dry season the rock‐wallaby species predominantly consumed browse and/or forbs, and the larger wallaroos predominantly consumed grass. However, there was large variation across the landscape in the dry season diets of P. brachyotis, M. bernardus and M. robustus; including high proportions of grass eaten at some sites and high proportions of browse at other sites. In the wet season, greater proportions of grass were eaten by P. brachyotis and M. bernardus than in the dry season. Generally, there was little evidence to support the previous suggestion that P. concinna is more of a grazer than P. brachyotis, but there was some evidence than M. bernardus consumes greater amounts of browse and/or forbs than M. robustus.  相似文献   

3.
Body size affects key life‐history parameters including dietary requirements and predation risk. We examined these effects on diel habitat use in a community of three sexually‐dimorphic macropodid marsupial species: western grey kangaroo Macropus fuliginosus, red‐necked wallaby M. rufogriseus and swamp wallaby Wallabia bicolor. In particular, our study seeks evidence of these effects operating concurrently at the intra‐ and interspecific levels. We used radio‐tracking to quantify habitat use and characterised each used location by recording the cover of plant functional groups and the presence of plant species. During nocturnal foraging periods we predicted that smaller animals (between and within species) should use habitats with higher‐quality forage, which is often less abundant, than larger animals, as metabolic demand scales with body size. During diurnal resting periods we predicted that smaller animals (between and within species), being more vulnerable to predation, should use greater concealment cover than larger animals. Western grey kangaroos and swamp wallabies behaved as predicted during foraging periods, but red‐necked wallabies did not, using more open, poorer‐quality habitats than expected. Only western grey kangaroos showed a within‐species effect on habitat use: the relatively smaller females foraged in higher‐quality patches. Habitats used by animals during the resting period generally offered greater concealment cover than those used during the foraging period, but there were no clear body size effects on the density of vegetation used. In our system, body size alone could not explain all of the observed patterns, suggesting that there may also be individual differences in habitat requirements influenced by factors such as reproductive costs, predation risk and social facilitation.  相似文献   

4.
Aim Climatic fluctuations during the Pleistocene have shaped the population structure of many extant taxa. However, few studies have examined widespread species inhabiting the Australian continent, where periods of increased aridity characterized the Pleistocene. Here we investigate the phylogeography and population history of a widespread and vagile southern Australian marsupial, the western grey kangaroo (Macropus fuliginosus). Location Southern Australia. Methods We examined the variation of the mitochondrial DNA (mtDNA) control region from 511 individuals of M. fuliginosus sampled throughout their transcontinental distribution. Maximum likelihood and Bayesian analyses were used to investigate the phylogeography and coalescence analyses were then used to test hypothesized biogeographical scenarios. Results The combined results of the phylogeographical and coalescence analyses revealed a complex evolutionary history. Macropus fuliginosus originated in the south‐west of the continent, with north‐western and south‐western populations subsequently diverging as a result of vicariance events during the mid‐Pleistocene. Subsequent arid phases affected these populations differently. In the north‐west, the expansion and contraction of the arid zone resulted in repeated vicariance events and multiple divergent north‐western mtDNA subclades. In contrast, the south‐western population was less impacted by climatic oscillations but gave rise to a major transcontinental eastward expansion. Main conclusions Macropus fuliginosus exhibits the genetic signature of divergence due to unidentified barriers in south‐western Western Australia, while previously identified barriers across southern Australia appear to have had little impact despite evidence of a broad‐scale range expansion prior to the Last Glacial Maximum (LGM). This pattern of localized expansion and contraction is comparable to unglaciated regions in both the Northern and Southern Hemispheres. Furthermore, this study indicates that despite the potential similarities between Northern Hemisphere glaciation and the activation of dune systems in the Australian arid zone, both of which rendered large areas inhospitable, the biotic responses and resultant phylogeographical signatures are dissimilar. Whereas a limited number of major geographically concordant refugia are observed in glaciated areas, the Southern Hemisphere arid zone appears to be associated with multiple species‐specific idiosyncratic refugia.  相似文献   

5.
The distribution of antilopine wallaroo, Macropus antilopinus, is marked by a break in the species’ range between Queensland and the Northern Territory, coinciding with the Carpentarian barrier. Previous work on M. antilopinus revealed limited genetic differentiation between the Northern Territory and Queensland M. antilopinus populations across this barrier. The study also identified a number of divergent lineages in the Northern Territory, but was unable to elucidate any geographic structure. Here, we re‐examine these results to (1) determine phylogeographic patterns across the range of M. antilopinus and (2) infer the biogeographic barriers associated with these patterns. The tropical savannahs of northern Australia: from the Cape York Peninsula in the east, to the Kimberley in the west. We examined phylogeographic patterns in M. antilopinus using a larger number of samples and three mtDNA genes: NADH dehydrogenase subunit 2, cytochrome b, and the control region. Two datasets were generated and analyzed: (1) a subset of samples with all three mtDNA regions concatenated together and (2) all samples for just control region sequences that included samples from the previous study. Analysis included generating phylogenetic trees based on Bayesian analysis and intraspecific median‐joining networks. The contemporary spatial structure of M. antilopinus mtDNA lineages revealed five shallow clades and a sixth, divergent lineage. The genetic differences that we found between Queensland and Northern Territory M. antilopinus samples confirmed the split in the geographic distribution of the species. We also found weak genetic differentiation between Northern Territory samples and those from the Kimberley region of Western Australia, possibly due to the Kimberley Plateau–Arnhem Land barrier. Within the Northern Territory, two clades appear to be parapatric in the west, while another two clades are broadly sympatric across the Northern Territory. MtDNA diversity of M. antilopinus revealed an unexpectedly complex evolutionary history involving multiple sympatric and parapatric mtDNA clades across northern Australia. These phylogeographic patterns highlight the importance of investigating genetic variation across distributions of species and integrating this information into biodiversity conservation.  相似文献   

6.
A high diversity of rock‐dwelling macropod species inhabit the tropics of the Northern Territory, Australia. Within this region, individual species have varied distributions, with ranges variously being widespread, restricted, or geographically disjunct with variable levels of sympatry between them. The cause of these patterns is unknown and little is known of the ecology of these rock‐dwelling macropods. We hypothesized that differences in the habitat requirements is the key to understanding the biogeography and sympatry of the species. We examined this hypothesis at both regional and local scales. We analysed records of occurence of Petrogale brachyotis, P. concinna, Macropus bernardus and M. robustus and environmental correlates (such as geology type, vegetation type, distance to drainage and distance to ‘rugged’ terrain) throughout the monsoon tropics using geographic information systems and generalized linear modelling. We surveyed 80 sites across the tropics of the Northern Territory and collected presence‐absence data using scats and environmental correlates to examine fine‐scale habitat requirements. From the regional scale analysis, it was clear that distance to rugged terrain strongly influences presence of all four species. Responses to this variable suggest M. bernardus and P. concinna have greater requirements for rugged terrain, whereas M. robustus and P. brachyotis are found across a broader range of habitats. The local scale analysis suggested presence of M. robustus is primarily driven by vegetation type, M. bernardus by the cover of outcrops, boulders and large rocks, and P. brachyotis by the density of caves. Although these species overlap in their use of habitats, there are also differences in their habitat requirements that are likely to play a role in their niche separation and in some cases their biogeography. However, it is apparent that the distributions of the species have also been influenced by historical factors given the absence of these species from some apparently suitable sites.  相似文献   

7.
Tropical savannas cover 20–30% of the world's land surface and exhibit high levels of regional endemism, but the evolutionary histories of their biota remain poorly studied. The most extensive and unmodified tropical savannas occur in Northern Australia, and recent studies suggest this region supports high levels of previously undetected genetic diversity. To examine the importance of barriers to gene flow and the environmental history of Northern Australia in influencing patterns of diversity, we investigated the phylogeography of two closely related, large, vagile macropodid marsupials, the antilopine wallaroo (Macropus antilopinus; n = 78), and the common wallaroo (Macropus robustus; n = 21). Both species are widespread across the tropical savannas of Australia except across the Carpentarian Barrier (CB) where there is a break in the distribution of M. antilopinus. We determined sequence variation in the hypervariable Domain I of the mitochondrial DNA control region and genotyped individuals at 12 polymorphic microsatellite loci to assess the historical and contemporary influence of the CB on these species. Surprisingly, we detected only limited differentiation between the disjunct Northern Territory and Queensland M. antilopinus populations. In contrast, the continuously distributed M. robustus was highly divergent across the CB. Although unexpected, these contrasting responses appear related to minor differences in species biology. Our results suggest that vicariance may not explain well the phylogeographic patterns in Australia's dynamic monsoonal environments. This is because Quaternary environmental changes in this region have been complex, and diverse individual species’ biologies have resulted in less predictable and idiosyncratic responses.  相似文献   

8.
Summary We investigated the effects of thorns and spines on the feeding of 5 herbivore species in arid Australia. The herbivores were the rabbit (Oryctolagus cuniculus), euro kangaroo (Macropus robustus), red kangaroo (Macropus rufus), sheep (Ovis aries), and cattle (Bos taurus). Five woody plants without spines or thorns and 6 woody plants with thorns were included in the study. The spines and thorns were not found to affect the herbivores' rates of feeding (items ingested/min), but they did reduce the herbivores' rates of biomass ingestion (g-dry/item). The reduction in biomass ingested occurred in two ways: at a given diameter, twigs with spines and thorns had less mass than undefended plants, and the herbivores consumed twigs with smaller diameters on plants with spines and thorns. The relative importance of the two ways that twigs with spines and thorns provided less biomass varied with herbivore body mass. Reduced twig mass was more important for small herbivores, while large herbivores selected smaller diameters. The effectiveness of spines and thorns as anti-herbivore defenses did not vary with the evolutionary history of the herbivores (i.e. native vs. introduced). Spines and thorns mainly affected the herbivores' selection of maximum twig sizes (reducing diameter and mass), but the minimum twig sizes selected were also reduced.  相似文献   

9.
Summary Standard microelectrode techniques were used to record action potentials from single atrial, ventricular and Purkinje fibers of hearts taken from three species of marsupial (Macropus rufus, Macropus robustus andMacropus eugenii) and from dogs, sheep and guinea-pigs. The major electrophysiological parameters of marsupial potentials were qualitatively similar to the values for placental mammals. The grouped data for ventricular action potentials from studies on 6 adult male red kangaroos (Macropus rufus) were (mean ±SD): Resting potential –69.5±5.0 mV; action potential amplitude 92.7±5.7 mV; action potential duration (to 90% repolarization): 182.5±17.5 ms; maximum rate of depolarization: 196.5±80.1 V/s. The major point of difference was the short duration of the red kangaroo ventricular action potential compared to those of the placental mammals, and compared to atrial cells from the kangaroos. It is suggested that this explains the short QT interval reported by others for kangaroo electrocardiograms, and that it may also be implicated in the high frequency of sudden death previously noted in these animals.  相似文献   

10.
Introduced deer occur in many forests and woodlands in Australia and potentially play an important role in influencing the floristics and structure of these landscapes through eating plants and disseminating seeds. In a glasshouse trial, we tested whether field‐collected scats of Fallow Deer (Dama dama) contained viable plant seeds. Scats of deer obtained from a woodland study area in Kosciuszko National Park, New South Wales, produced seedlings from a range of native and introduced plant species. Forbs and herbs were dominant in these samples, confirming the grazing behaviour of deer at the time scats were collected. Samples of scats from Eastern Grey Kangaroos (Macropus giganteus), collected contemporaneously from the same sites as deer scats, also produced plant germinants. By volume, deer scats produced a greater diversity of plant germinants, including native and weed species, than did kangaroo scats. Although no weed species emanating from deer or kangaroo scats were of national significance, several species were of regional environmental significance, including Common Mullein (Verbascum thapsis), which was only found germinating out of deer scat, Stinkgrass (Eragrostis cilianensis) and Purpletop (Verbena bonariensis). In addition to dispersing viable seeds, Fallow Deer may also influence vegetation structure through their browsing. Further research is necessary to elucidate their respective role in dispersing native and introduced plants as well as any impacts that foraging behaviour might be having on woodland landscapes, to better inform management of the resident deer population.  相似文献   

11.
12.
Samples of foregut content were collected from 86 macropodid marsupials and examined for the presence of endosymbiotic ciliates. Four host species were examined: Macropus giganteus (eastern grey kangaroo), M. fuliginosus (western grey kangaroo), M. robustus (common wallaroo) and Thylogale billardierii (Tasmanian pademelon). Ciliate morphology was determined by microscopical examination of live and silver-impregnated specimens. Isotrichid ciliates were detected in 51 (59%) of the 86 animals examined. Five new species and one new genus are described. Three of the species belong to the genus Dasytricha Schuberg, 1888: D. dehorityi n. sp. from M. giganteus, D. dogieli n. sp. from M. robustus and D. mundayi n. sp. from T. billardierii. Bitricha n. g. is characterised by the possession of two fields of somatic ciliation, a transverse ventral and a longitudinal dorsal field. B. oblata n. sp. is described from M. giganteus and M. fuliginosus and B. tasmaniensis n. sp. is described from T. billardierii. The occurrence of isotrichid ciliates in both metatherian and eutherian mammals suggests that the family either evolved prior to the divergence of the mammalian lineages or switched hosts from one group to the other following host diversification.  相似文献   

13.
Mistletoes offer a unique model to study interactions among Al and nutrients in vascular plants, because they grow and reproduce on hosts with distinct Al uptake strategies. We investigated Al distribution and nutrient relations of mistletoes on Al‐accumulating and non‐accumulating hosts. We hypothesised that mistletoes would exhibit similar leaf nutrient and Al concentrations as their host plants, but a strong compartmentalisation of Al when growing on Al‐accumulators. We measured concentrations of N, P, K, Ca, Mg, Cu, Fe, Mn, Zn in leaves and Al in leaves, seeds and branches of Phthirusa ovata and Psittacanthus robustus infecting Miconia albicans, an Al‐accumulator, and Ph. ovata infecting Byrsonima verbascifolia, a non‐Al‐accumulator. High leaf concentrations of Al in Ph. ovata only occurred while parasitizing the Al‐accumulating host; there was no accumulation in branches or seeds. In P. robustus, large concentrations of Al were found in leaves, branches and seeds. Mistletoe seed viability and leaf nutrient concentrations were not affected by Al accumulation. Passive uptake of Al, Ca, Mg, Mn and Cu in mistletoes was evidenced by significant correlations between mistletoes and host leaf concentrations, but not of N, P and K. Al was retranslocated to different plant organs in P. robustus, whereas it was mostly restricted to leaves in Ph. ovata. We suggest that Al might have some specific function in P. robustus, which only parasitizes Al‐accumulator hosts, while the host generalist Ph. ovata can be considered a facultative Al‐accumulator.  相似文献   

14.
Eastern grey kangaroos (Macropus giganteus) are generally regarded as mesic inhabitants. Even though access to drinking water in permanent stock watering troughs is commonly available, these animals are still found in only low densities in arid pastoral areas. We hypothesised that the differential success of red and grey kangaroos in the arid zone may be due to higher energy requirements of M. giganteus with a concomitant need for increased food, rather than limitations imposed by inadequate water access. We set out to test this by indirectly measuring energy expenditure through the monitoring of heart rate by radio telemetry in semi-free-ranging eastern grey and red kangaroos (Macropus rufus). Radio telemetry measurements of heart rate were calibrated against oxygen consumption and were used in the assessment of energy expenditure of animals maintained in an 8-ha enclosure in the arid zone of southeast Australia. Heart rate provided a reliable estimate of oxygen consumption. This well-correlated relationship was curvilinear and was established for each individual. Behavioural observations revealed that both kangaroo species spent most of the day in low energy demanding activities. M. rufus were more active at night whilst M. giganteus were more active in the early mornings and late afternoons. Like other marsupials, both species had low field metabolic rates (FMRs). However, M. giganteus in keeping with their mesic history had higher FMRs than the more arid-adapted M. rufus, particularly during water restriction. Body temperature telemeters revealed a further species difference in that under hot conditions when water is freely available, M. rufus exhibits a higher and more labile daytime body temperature than M. giganteus. During the hottest part of the day M. giganteus maintain body temperature, relying upon increased evaporative cooling mechanisms, such as licking. Indeed, only when access to drinking water was restricted was thermolability evident in M. giganteus. Differences in behaviour and concomitant energy expenditure may thus contribute substantially to the divergent distribution and abundance of these two kangaroo species.  相似文献   

15.
Inheritance of Glucose-6-phosphate Dehydrogenase Variation in Kangaroos   总被引:9,自引:0,他引:9  
THE production of glucose-6-phosphate dehydrogenase (EC 11149, G6PD) in human1, horse and donkey2 and brown and blue hare3 cells is governed by genes carried by the X chromosome. Two electrophoretic forms of G6PD have been found in wallaroos and euros (Macropus robustus Gould) and one in red kangaroos (Macropus rufus (Desm.)); members of the marsupial family Macropodidae (kangaroos). This analysis used electrophoresis of red blood cell haemolysates on cellulose acetate4. No polymorphic populations were found5 but electrophoretic phenotypes of euros (Macropus robustus erubescens Sclater) were characterized by a single slow moving band (G6PD-S) while those of wallaroos (Macropus r. robustus Gould) had a single fast moving band (G6PD-F). Red kangaroo populations were uniformly G6PD-S.  相似文献   

16.
Trophic interactions and disturbance events can shape the structure and function of ecosystems. However, the effects of drivers such as predation, fire and climatic variables on species distributions are rarely considered concurrently. We used a replicated landscape‐scale predator management experiment to compare the effects of red fox Vulpes vulpes control, time‐since‐fire, vegetation type and other environmental variables on native herbivore distributions. Occurrence data for four native herbivores and an invasive predator – the red fox – were collected from 240 sites across three baited (for lethal fox control) and three unbaited forest blocks (4659–9750 ha) in south‐western Victoria, Australia, and used to build species distribution models. The herbivore taxa were as follows: red‐necked wallaby Macropus rufogriseus, black wallaby Wallabia bicolour, grey kangaroo Macropus fuligenosus and Macropus giganteus and common brushtail possum Trichosurus vulpecula. Fox control and fire had little effect on herbivore occurrence, despite the literature suggesting it can influence abundance, while climate, proximity to farmland and topography were more influential. This may be because the region’s high productivity and agricultural pastures subsidise food resources for both predators and prey within the forest blocks and so dampen trophic interactions. Alternatively, these drivers may affect herbivore abundance, but not herbivore occurrence. Understanding the drivers of herbivore distributions is an important step in predicting the effects of herbivory on other species, particularly after management interventions such as predator control and prescribed burns.  相似文献   

17.
Granivorous rodent populations in deserts are primarily regulated through precipitation‐driven resource pulses rather than pulses associated with mast‐seeding, a pattern more common in mesic habitats. We studied heteromyid responses to mast‐seeding in the desert shrub blackbrush (Coleogyne ramosissima), a regionally dominant species in the Mojave–Great Basin Desert transition zone. In a 5‐year study at Arches National Park, Utah, USA, we quantified spatiotemporal variation in seed resources in mast and intermast years in blackbrush‐dominated and mixed desert vegetation and measured responses of Dipodomys ordii (Ord's kangaroo rat) and Perognathus flavescens (plains pocket mouse). In blackbrush‐dominated vegetation, blackbrush seeds comprised >79% of seed production in a mast year, but 0% in the first postmast year. Kangaroo rat abundance in blackbrush‐dominated vegetation was highest in the mast year, declined sharply at the end of the first postmast summer, and then remained at low levels for 3 years. Pocket mouse abundance was not as strongly associated with blackbrush seed production. In mixed desert vegetation, kangaroo rat abundance was higher and more uniform through time. Kangaroo rats excluded the smaller pocket mice from resource‐rich patches including a pipeline disturbance and also moved their home range centers closer to this disturbance in a year of low blackbrush seed production. Home range size for kangaroo rats was unrelated to seed resource density in the mast year, but resource‐poor home ranges were larger (< 0.001) in the first postmast year, when resources were limiting. Blackbrush seeds are higher in protein and fat but lower in carbohydrates than the more highly preferred seeds of Indian ricegrass (Achnatherum hymenoides) and have similar energy value per unit of handling time. Kangaroo rats cached seeds of these two species in similar spatial configurations, implying that they were equally valued as stored food resources. Blackbrush mast is a key resource regulating populations of kangaroo rats in this ecosystem.  相似文献   

18.
Size variation of body and skull of five species of Australian mammals (echidna, Tachyglossus aculeatus ; brush-tail possum, Trichosurus vulpecula ; eastern grey kangaroo, Macropus giganteus ; western grey kangaroo, M. fuliginosus ; red kangaroo, M. rufus ), is related to climatic factors. All five species show trends in body size that conform with Bergmann's rule, individuals from colder environments being larger than those from warmer areas. The western and eastern grey kangaroos also conform with Allen's rule, the relative size of their extremities being large in warmer areas. In four of the five species (not the red kangaroo) body size is also correlated with indices of biomass productivity. However, since biomass productivity and ambient temperature are related to some extent, it is difficult to separate the effects of these factors.  相似文献   

19.
Harvesting is often size‐selective, and in species with sexual size dimorphism, it may also be sex‐selective. A powerful approach to investigate potential consequences of size‐ and/or sex‐selective harvesting is to simulate it in a demographic population model. We developed a population‐based integral projection model for a size‐ and sex‐structured species, the commonly exploited pike (Esox lucius). The model allows reproductive success to be proportional to body size and potentially limited by both sexes. We ran all harvest simulations with both lower size limits and slot limits, and to quantify the effects of selective harvesting, we calculated sex ratios and the long‐term population growth rate (λ). In addition, we quantified to what degree purely size‐selective harvesting was sex‐selective, and determined when λ shifted from being female to male limited under size‐ and sex‐selective harvesting. We found that purely size‐selective harvest can be sex‐selective, and that it depends on the harvest limits and the size distributions of the sexes. For the size‐ and sex‐selective harvest simulations, λ increased with harvest intensity up to a threshold as females limited reproduction. Beyond this threshold, males became the limiting sex, and λ decreased as more males were harvested. The peak in λ, and the corresponding sex ratio in harvest, varied with both the selectivity and the intensity of the harvest simulation. Our model represents a useful extension of size‐structured population models as it includes both sexes, relaxes the assumption of female dominance, and accounts for size‐dependent fecundity. The consequences of selective harvesting presented here are especially relevant for size‐ and sex‐structured exploited species, such as commercial fisheries. Thus, our model provides a useful contribution toward the development of more sustainable harvesting regimes.  相似文献   

20.
Abstract Population density estimates and patterns of habitat selection by sympatric red‐bellied pademelons (Thylogale billardierii (Marsupialia: Macropodidae)) and red‐necked wallabies (Macropus rufogriseus rufogriseus (Marsupialia: Macropodidae)) were examined within a patchy forestry environment in north‐west Tasmania. Population density of both species was relatively high. Selection indices from both population surveys and animal movement data showed that T. billardierii and M. rufogriseus had similar patterns of habitat selection at two spatio‐temporal scales; home range within the study area and habitats selected while foraging at night. Both species selected for young Eucalyptus nitens plantation with high weed‐cover within their home range. At night, T. billardierii and M. rufogriseus selected for open habitats (young plantation and grassland) and avoided closed habitats (native forest and 5–7 years old E. nitens plantation). There was no evidence for resource partitioning between species at these scales. In contrast, the two species differed in their selection for daytime sheltering habitat; T. billardierii selected native forest while M. rufogriseus selected older plantation. This may reflect differences in their predator avoidance strategies; that is, crypsis versus flight, rather than resource partitioning as a result of interspecific competition. The environment appears to be of high quality for both species, with patches of feeding and shelter habitats within close proximity of one another.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号