首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abscisic acid (10–5 M) was fed via their petioles to leavesdetached from well watered plants of Xanthium strumartum, whilethe intercellular spaces were flushed with air of known CO2content. A closing response to ABA occurred in the presenceor absence of CO2, and the stomata responded to CO2 whetheror not ABA was supplied to the leaves. A factorial experimentrevealed no interaction between CO2 and ABA, and suggested thattheir effect on the rate of closure was purely additive. Theonly evidence of interdependence between the two corn poundswas a delay in the response to ABA in C0 air, which was moremarked in a high light intensity. A hypothesis which is consistentwith the data is that ABA induces stomatal closure by interferingwith the energy supply required for the active transport processeson which guard cell turgor depends. The inhibitory action ofABA takes longer in CO2-free air because, in the absence ofCO2 fixation, energy is available from chioroplasts as wellas mitochondria.  相似文献   

2.
Sensitivity of Stomata to Abscisic Acid (An Effect of the Mesophyll)   总被引:13,自引:3,他引:13       下载免费PDF全文
Trejo CL  Davies WJ  Ruiz L 《Plant physiology》1993,102(2):497-502
The effects of added abscisic acid (ABA) on the stomatal behavior of Commelina communis L. were tested using three different systems. ABA was applied to isolated epidermis or to leaf pieces incubated in the light in bathing solutions perfused with CO2-free air. ABA was also fed to detached leaves in a transpiration bioassay. The apparent sensitivity of stomata to ABA was highly dependent on the method used to feed ABA. Stomata of isolated epidermis were apparently most sensitive to ABA, such that a concentration of 1 [mu]M caused almost complete stomatal closure. When pieces of whole leaves were floated on solutions of ABA of the same concentration, the stomata were almost completely open. The same concentration of ABA fed through the midrib of transpiring detached leaves caused an intermediate response. These differences in stomatal sensitivity to added ABA were found to be a function of differences in the ABA concentration in the epidermes. Comparison of the three application systems suggested that, when leaf pieces were incubated in ABA or fed with ABA through the midrib, accumulation of ABA in the epidermes was limited by the presence of the mesophyll. Even bare mesophyll incubated in ABA solution did not accumulate ABA. Accumulation of radioactivity by leaf pieces floated on [3H]ABA confirmed ABA uptake in this system. Experiments with tetcyclacis, an inhibitor of phaseic acid formation, suggested that rapid metabolism of ABA in mesophyll can have a controlling influence on ABA concentration in both the mesophyll and the epidermis. Inhibition of ABA catabolism with tetcyclacis allows ABA accumulation and increases the apparent sensitivity of stomata to applied ABA. The results are discussed in the context of an important role for ABA metabolism in the regulation of stomatal behavior.  相似文献   

3.
Some Effects of Abscisic Acid and Water Stress on Stomata of Vicia faba L.   总被引:2,自引:0,他引:2  
Vicia faba seedlings grown under a plastic tent in the laboratorywere either watered well throughout their growth period or weresubjected to a water stress treatment for several days priorto an experimental treatment. The effects of a further waterstress treatment or an application of an aqueous solution ofabscisic acid (ABA) on the stomata of these plants were determined.Stomata of previously water-stressed plants proved to be moresensitive than stomata of well watered plants to ABA appliedthrough the petiole via the transpiration stream and sprayedonto leaf surfaces. Stomata of previously water-stressed plantsclosed more rapidly and to a greater degree than stomata ofwell watered plants. The hormone had only a small effect whenapplied directly to epidermal fragments removed from both groupsof plants. Stomata of plants which had received a water stresspretreatment were less sensitive to a subsequent period of waterstress than were stomata of previously well watered plants.It is proposed that stomatal adaptation to water stress maybe related to changes in the hormonal balance of the plant.  相似文献   

4.
SAMMES  P. G.; MER  C. L. 《Annals of botany》1973,37(2):369-370
The product of IAA decomposition which gives the pink colourin the Salkowski reaction is not N-hydroxy-IAA and its identityis still unknown, as is also that of other substances foundduring metabolism of IAA by pea seedlings.  相似文献   

5.
6.
7.
8.
Mitotic activity was studied in the root apices of aeroponicallygrown sunflower seedlings (Helianthus annum L. var. RussianGiant) which were draughted or treated with abscisic acid (ABA)over a 7 d period. Labelling index (LI) and mitotic index (MI)were scored from autoradiographs of median longitudinal sectionsof [3H] methyl-thymidine treated root apices. Both drought stressand ABA-treatment (at a concentration of 10–2 mol m–3inhibited DNA synthesis and mitosis within the first 6 h oftreatment. The depression of mitotic activity was first evidentin the proximal regions of the meristem (1000–1500 µmfrom the cap junction). This was followed by a general depressionof mitotic activity throughout the meristem which was, in turn,followed by a partial recovery of mitotic activity in the distalregions of the meristem. The beginning of this partial recoverywas concurrent with the activation of the quiescent centre (QC).Treatment with lower concentrations of ABA (10–3 mol m–3and 10–4 mol m–3) also inhibited mitotic activity.Exogenous supplements of sucrose to the plant did not alleviatethe inhibition of mitotic activity by drought or ABA. Thesefindings support the hypothesis that ABA mediates drought-inducedchanges in the primary development of sunflower roots. Key words: Abscisic acid, drought, mitotic activity  相似文献   

9.
Two experiments indicate that abscisic acid (ABA) may influencestomatal behaviour of Commelina communis L. Stomatal conductancecould not be correlated with bulk leaf ABA content but whenthe abaxial epidermis was assayed for ABA, small increases inABA content correlated well with limitations of leaf conductance.Restricted conductance of the abaxial surface of leaves wasassociated with an increase of approximately 40 amole ABA perstomatal complex. This agrees with previously published figures. When roots of individual plants were split between two containers,drying the soil around one part of the root system restrictedleaf conductance, even though leaf water relations were notaffected. Increased ABA content of the epidermis coincided withincreased ABA content of the roots in drying soil. Other rootsof the same plant in moist soil did not show increased ABA content.These results suggest that in drying soil, ABA can move fromthe roots to the epidermis and restrict stomatal aperture evenwhen leaf water potentials and turgors remain constant. Theimportance of this mechanism in providing a sensitive foliarresponse to decreasing soil moisture is discussed. Key words: Soil drying, ABA, roots, stomata, water relations  相似文献   

10.
We report the effects of abscisic acid and auxin (α-naphthalene acetic acid) on regulation of enzyme synthesis during senescence of leaf sections of Rhoeo discolor Hance. Abscisic acid always accelerates the onset of and enhances the magnitude of the increase in activity of acid phosphatase; this is followed by an acceleration of the onset of a rapid increase in free space.  相似文献   

11.
Preparations of citrate condensing enzyme (citrate oxaloacetate-lyase(CoA-acetylating) E. C. 4. 1. 3. 7) from root and shoot tissueof 5-day-old bean seedlings (Phaseolus vulgaris L., var. Burpee'sStringless Greenpod) had different activities, expressed asreaction rate per unit of fresh tissue. Activity per mg proteinwas increased when protein concentrations of the preparationswere reduced by dilution. Addition of indol-3yl acetic acid(IAA) enhanced activity of both root and shoot preparations.The effect was optimal at a concentration of 1.25x10-4 M andthe enzyme was inhibited at 1.25x10-3 M. Enhanement was greaterin root than in shoot preparations and in mixtures of equalamounts of each prepartion activity was intermediate betweenthose of the separte enzymes in absence of IAA but in its presenceapproached that of the shoot preparation. Apparent citrate synthesis in vivi was increased in shoots by application of IAA but therewas no such effect in roots.  相似文献   

12.
长期喷施ABA对云杉幼苗生长和生理特性的影响   总被引:1,自引:0,他引:1  
采用单因素盆栽实验,通过叶面喷施5、10、15和20mg·L^-1 4个浓度的ABA溶液,研究了长期外源ABA处理对云杉(Piceaasperata)幼苗生长及生理特性的影响。5年的研究结果表明:长期不同浓度ABA处理显著影响了云杉幼苗的多种生长及生理生化指标。当ABA浓度为5、10和15mg·L^-1叫时有利于云杉幼苗根重、茎重和总生物量的积累,并且提高了叶片中可溶性蛋白和脯氨酸的含量,降低了MDA含量:20mg·L^-1 ABA处理使幼苗的叶重、总生物量、脯氨酸及可溶性糖含量显著下降,明显增加了叶片中MDA含量。此外,各浓度ABA处理均显著降低了云杉幼苗的株高、叶绿素含量以及SOD和APX活性。本研究结果显示,长期ABA处理对云杉幼苗生长和生理特性的影响与所喷施的ABA浓度有关,长期高浓度ABA(20mg·L^-1)处理不利于云杉幼苗生长。  相似文献   

13.
Plots of reaction rate versus substrate concentration of the enzymatic decarboxylation of IAA yield sigmoid, rather than the usual, hyperbolic curves, suggesting that the IAA oxidase of cabbage roots is an allosteric enzyme. The quantity of this enzyme in roots is so high that the IAA concentration is likely to limit IAA degradation in intact cells. Thus, variations in the level of this enzyme seem not to be essential for the regulation of the endogenous IAA concentration. Cabbage roots contain substances that can inhibit IAA oxidase. These substances are spatially separated from IAA oxidase in intact cells, but the same inhibitors are able to reach the enzyme when added exogenously to tissue segments. The possibility that added IAA is treated by tissue segments in another manner than endogenous IAA is discussed.  相似文献   

14.
Responses of Commelina communis L. Guard Cell Protoplasts to Abscisic Acid   总被引:1,自引:0,他引:1  
Fitzsimons, P. J. and Weyers, J. D. B. 1987. Responses of Commelinacommunis L. guard cell protoplasts to abscisic acid.—J.exp. Bot. 38: 992–1001. Guard cell protoplasts (GCPs) isolated from the leaf epidermisof Commelina communis L. responded to abscisic acid (ABA) ina manner which was qualitatively and quantitatively similarto that of intact stomata. ABA inhibited swelling of GCPs underlow-CO2 conditions and swollen GCPs responded to the hormoneby shrinking. Both the absolute volume decrease and the initialrate of shrinking were commensurate with the extent and ratesof solute loss computed for ABA-treated intact, open stomata.This indicates that GCPs represent a suitable experimental systemfor studies of ABA-mediated solute fluxes. A radiotracer equilibrationmethod was developed for the rapid estimation of GCP osmoticvolume changes. Using this technique it was found that, on average,82% of the reduction in solute content caused by ABA treatmentwas due to the loss of K+. It is envisaged that electroneutralitymight be maintained during ABA-induced shrinkage of GCPs bynet inward proton movement leading to acidification of the vacuole. Key words: Abscisic acid, Commelina communis L., guard cells, protoplasts  相似文献   

15.
16.
The effects of anion-channel blockers on light-mediated stomatal opening, on the potassium dependence of stomatal opening, on stomatal responses to abscisic acid (ABA), and on current through slow anion channels in the plasma membrane of guard cells were investigated. The anion-channel blockers anthracene-9-carboxylic acid (9-AC) and niflumic acid blocked current through slow anion channels of Vicia faba L. guard cells. Both 9-AC and niflumic acid reversed ABA inhibition of stomatal opening in V. faba L. and Commelina communis L. The anion-channel blocker probenecid also abolished ABA inhibition of stomatal opening in both species. Additional tests of 9-AC effects on stomatal aperture in Commelina revealed that application of this anion-channel blocker allowed wide stomatal opening under low (1 mM) KCI conditions and increased the rate of stomatal opening under both low and high (100 mM) KCI conditions. These results indicate that anion channels can function as a negative regulator of stomatal opening, presumably by allowing anion efflux and depolarization, which prohibits ion up-take in guard cells. Furthermore, 9-AC prevented ABA induction of stomatal closure. A model in which ABA activation of anion channels contributes a rate-limiting mechanism during ABA-induced stomatal closure and inhibition of stomatal opening is discussed.  相似文献   

17.
Regulation of Soybean Embryogenesis by Abscisic Acid   总被引:7,自引:0,他引:7  
Abscisic Acid (ABA) stimulates growth and protein accumulationin soybean (Glycine max. L. Merr.) embryos during the earlyphases of embryogenesis. Growth of mid-stage embryos is suppressedby ABA, but protein accumulation is not impaired. Metabolitedistribution studies indicate that ABA alters partitioning ofsucrose in older embryos such that protein accumulation is sustainedat the expense of lipid accumulation. The responses of in vitrocultured embryos to ABA is consistent with the normal patternof ABA accumulation and disappearance that occurs during embryogenesisin situ. A close correlation exists between ABA levels and embryogrowth rates in situ in three cultivars of soybeans. Dependingon the age or stage of the developing embryo, ABA either servesto promote or inhibit embryo growth. Key words: Embryogenesis, ABA, Seeds, Soybean.  相似文献   

18.
Abscisic acid (ABA) is a phytohormone recently identified as a new endogenous pro-inflammatory hormone in human granulocytes. Here we report the functional activation of human monocytes and vascular smooth muscle cells by ABA. Incubation of monocytes with ABA evokes an intracellular Ca2+ rise through the second messenger cyclic ADP-ribose, leading to NF-κB activation and consequent increase of cyclooxygenase-2 expression and prostaglandin E2 production and enhanced release of MCP-1 (monocyte chemoattractant protein-1) and of metalloprotease-9, all events reportedly involved in atherogenesis. Moreover, monocytes release ABA when exposed to thrombin-activated platelets, a condition occurring at the injured vascular endothelium; monocyte-derived ABA behaves as an autocrine and paracrine pro-inflammatory hormone-stimulating monocyte migration and MCP-1 release, as well as vascular smooth muscle cells migration and proliferation. These results, and the presence of ABA in human arterial plaques at a 10-fold higher concentration compared with normal arterial tissue, identify ABA as a new signal molecule involved in the development of atherosclerosis and suggest a possible new target for anti-atherosclerotic therapy.  相似文献   

19.
Ethylene and abscisic acid (ABA) act synergistically or antagonistically to regulate plant growth and development. ABA is derived from the carotenoid biosynthesis pathway. Here, we analyzed the interplay among ethylene, carotenoid biogenesis, and ABA in rice (Oryza sativa) using the rice ethylene response mutant mhz5, which displays a reduced ethylene response in roots but an enhanced ethylene response in coleoptiles. We found that MHZ5 encodes a carotenoid isomerase and that the mutation in mhz5 blocks carotenoid biosynthesis, reduces ABA accumulation, and promotes ethylene production in etiolated seedlings. ABA can largely rescue the ethylene response of the mhz5 mutant. Ethylene induces MHZ5 expression, the production of neoxanthin, an ABA biosynthesis precursor, and ABA accumulation in roots. MHZ5 overexpression results in enhanced ethylene sensitivity in roots and reduced ethylene sensitivity in coleoptiles. Mutation or overexpression of MHZ5 also alters the expression of ethylene-responsive genes. Genetic studies revealed that the MHZ5-mediated ABA pathway acts downstream of ethylene signaling to inhibit root growth. The MHZ5-mediated ABA pathway likely acts upstream but negatively regulates ethylene signaling to control coleoptile growth. Our study reveals novel interactions among ethylene, carotenogenesis, and ABA and provides insight into improvements in agronomic traits and adaptive growth through the manipulation of these pathways in rice.  相似文献   

20.
Cells of root meristems of Vicia faba were labelled with tritiatedthymidine and treated with colchicine or IAA or both. The effectsof these compounds on the duration of the mitotic cycle andits constituent phases have been determined using the labelledmitoses wave method of Quastler and Sherman. Colchicine shortensthe mitotic cycle of the cells in interphase at the time oftreatment; it appears to stimulate cells in G1 or early S tocomplete interphase faster than untreated cells. The affectedcells arrive at mitosis 9–12 h after the beginning oftreatment and contribute to the increase in mitotic index seenafter treatment with colchicine. Treatment with IAA did notaffect cells in G2 but it delayed cells in S; this results ina temporary fall in M.I. The effect of IAA in prolonging interphasewas also seen in roots treated with colchicine and IAA; thetetraploid cells induced by colchicine take longer to reachmetaphase than cells treated only with colchicine. The resultssuggest that colchicine and IAA affect different phases of thecell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号