首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of a water stress or foliar ABA spraying pretreatmenton stomatal responses to water loss, exogenous ABA, IAA, Ca2+,and CO2 were studied using excised leaves of Solanum melongena.Both pretreatments increased stomatal sensitivity of water loss,in the presence and absence of CO2, but decreased stomatal sensitivityto exogenous ABA. CO2 greatly reduced the effect of exogenouslyapplied ABA. IAA decreased leaf diffusion resistance for controland ABA sprayed leaves, but did not influence the LDR of previouslywater-stressed leaves. CA2+ did not influence LDR of any leavesof any treatments. Key words: Water stress, stomatal response, pretreatments  相似文献   

2.
Willmer, C. M., Wilson, A. B. and Jones, H. G. 1988. Changingresponses of stomata to abscisic acid and CO2 as leaves andplants age.—J. exp. Bot. 39: 401–410. Stomatal conductances were measured in ageing leaves of Commelinacommunis L. as plants developed; stomatal responses to CO2 andabscisic acid (ABA) in epidermal strips of C. communis takenfrom ageing leaves of developing plants and in epidermal stripsfrom the same-aged leaves (the first fully-expanded leaf) ofdeveloping plants were also monitored. Stomatal behaviour wascorrelated with parallel measurements of photosynthesis andleaf ABA concentrations. Stomatal conductance in intact leavesdecreased from a maximum of 0-9 cm s– 1 at full leaf expansionto zero about 30 d later when leaves were very senescent. Conductancesdeclined more slowly with age in unshaded leaves. Photosynthesisof leaf slices also declined with age from a maximum at fullleaf expansion until about 30 d later when no O2 exchange wasdetectable. Exogenously applied ABA (0.1 mol m– 3) didnot affect respiration or photosynthesis. In epidermal stripstaken from ageing leaves the widest stomatal apertures occurredabout 10 d after full leaf expansion (just before floweringbegan) and then decreased with age; this decrease was less dramaticin unshaded leaves. The inhibitory effects of ABA on stomatalopening in epidermal strips decreased as leaves aged and wasgreater in the presence of CO2 than in its absence. When leaveswere almost fully-senescent stomata were still able to open.At this stage, guard cells remained healthy-looking with greenchloroplasts while mesophyll cells were senescing and theirchloroplasts were yellow. Similar data were obtained for stomatain epidermal strips taken from the same-aged leaves of ageingplants. The inhibitory effects of ABA on stomatal opening alsodecreased with plant age. In ageing leaves both free and conjugated ABA concentrationsremained low before increasing dramatically about 30 d afterfull leaf expansion when senescence was well advanced. Concentrationsof free and conjugated ABA remained similar to each other atall times. It is concluded that the restriction of stomatal movements inintact leaves as the leaves and plants age is due mainly toa fall in photosynthetic capacity of the leaves which affectsintracellular CO2 levels rather than to an inherent inabilityof the stomata to function normally. Since stomatal aperturein epidermal strips declines with plant and leaf age and stomatabecome less responsive to ABA (while endogenous leaf ABA levelsremain fairly constant until leaf senescence) it is suggestedthat some signal, other than ABA, is transmitted from the leafor other parts of the plant to the stomata and influences theirbehaviour. Key words: Abscisic acid, CO2, Commelina, leaf age, senescence, stomatal sensitivity  相似文献   

3.
Abscisic acid (10–5 M) was fed via their petioles to leavesdetached from well watered plants of Xanthium strumartum, whilethe intercellular spaces were flushed with air of known CO2content. A closing response to ABA occurred in the presenceor absence of CO2, and the stomata responded to CO2 whetheror not ABA was supplied to the leaves. A factorial experimentrevealed no interaction between CO2 and ABA, and suggested thattheir effect on the rate of closure was purely additive. Theonly evidence of interdependence between the two corn poundswas a delay in the response to ABA in C0 air, which was moremarked in a high light intensity. A hypothesis which is consistentwith the data is that ABA induces stomatal closure by interferingwith the energy supply required for the active transport processeson which guard cell turgor depends. The inhibitory action ofABA takes longer in CO2-free air because, in the absence ofCO2 fixation, energy is available from chioroplasts as wellas mitochondria.  相似文献   

4.
In the chilling sensitive (C.S.) species Phaseolus vulgarisit was found that at 22 ?C ABA induced stomatal closure butthis effect was dependent on the presence of CO2. In the absenceof CO2 the effect of ABA was completely lost. In contrast toABA, the effect of IAA at 22 ?C was to increase stomatal openingas the IAA concentration increased from 10–2 to 10 molm–3, and this effect was dependent upon the presence ofCO2. However, at 5 ?C the action of ABA was reversed and itwas found to induce stomatal opening when fed via the transpirationstream in excised leaves. Similarly, the CO2 response characteristicswere reversed at low temperatures as removal of CO2 from theatmosphere caused stomatal closure. However, the effect of IAAat 5 ?C in the presence of CO2 and with or without ABA was toincrease stomatal aperture with increasing IAA concentration.Significantly, ABA was found to have no effect upon aperturein the presence of CO2 when IAA was added. The interactive effectsof ABA, IAA, CO2 and low temperature are discussed in relationto a model proposed by the authors. Key words: IAA, ABA, CO2, Stomata  相似文献   

5.
HENSON  I. E. 《Annals of botany》1983,52(2):247-255
The effects of a period of water stress (drought conditioning)on responses to a second (challenge) stress were examined inyoung vegetative rice (Oryza sativa L.) plants. Drought conditioningdid not affect the rate of subsequent stress development, nor,in a first experiment, did it influence relations between turgor(p) and total () leaf water potential. However, conditioningdid extend the range of p over which stomata remained open andsignificantly reduced the amount of ABA which accumulated inthe leaf at a given p. The change in stomatal behaviour (stomataladjustment) was quantitatively accounted for by the change inleaf ABA accumulation. The reduction in ABA accumulation due to conditioning did notinvolve a change in the potential capacity to produce ABA, asABA accumulation in partially dehydrated detached leaves wasnot reduced by conditioning. It is suggested that effects ofconditioning on leaf ABA content in the intact plant involvechanges in the rate of ABA export from the leaf. Oryza sativa L, rice, drought conditioning, stomata, water stress, abscisic acid  相似文献   

6.
Stomatal responses of Vicia faba L. to indole acetic acid and abscisic acid   总被引:1,自引:0,他引:1  
Evidence is presented that stomata in isolated epidermal peelsof Vicia faba L. open in darkness in response to the externalpresence of indole acetic acid (IAA) in the incubation medium.The effect of IAA is found to be overcome completely in thepresence of either TRIS or MES buffers. In the absence of buffer,V. faba stomata are shown to be influenced by IAA in a concentration-dependenttrend which reached a maximum at an [IAA] of 10–3 molm–3. Further investigations reveal that stomata in thisspecies can be shown to respond to the presence of IAA and anotherphytohormone, abscisic acid (ABA). IAA and ABA are demonstratedto be antagonistic in their effects provided the incubationconditions are suitable. The data are discussed in relationto stomatal responses of other species in different treatmentconditions. Recommendations are made with respect to standardizationof incubation media during epidermal peel experiments. Key words: Vicia faba, stomata, indole acetic acid, abscisic acid, buffers  相似文献   

7.
The characteristics of ABA-induced changes in the fluxes ofCO2 and water vapour from whole leaves of spring wheat (Triticumaestivum cv. Wembley) were examined. Aqueous solutions of ABAwere supplied via the transpiration stream to intact leavesof different ages mounted within a gas exchange cuvette. ABA caused a reduction in stomatal conductance (g) that wasproportional to the concentration in the solution fed to theleaf. For the maintenance of a reduction in g there was a requirementfor a continual supply of ABA. At concentrations greater than10–2 mol m–3 ABA reduced g by at least 50% of thecontrol value, while 1.0 mol m–3 closed stomata within2 h. Concentrations as low as 10–3 mol m–3 produceda 20% reduction in g. As leaves aged they became less responsiveto applied ABA. The possibility that the stomatal response may change aftera leaf has previously experienced a pulse of ABA was exploredby repeating the exposure of a leaf to 10–2 mol m–3ABA. The first pulse of ABA produced a greater reduction ing than a subsequent exposure the following day. This declinein response of g to ABA on repeated exposure was maintainedwith leaves of different ages. The characteristics of the stomatal response to ABA are discussedin the context of what is known about the location of receptorsfor the hormone. It seems likely that a failure to respond toABA that has previously accumulated in the guard cells shouldbe viewed by means of maximizing the sensitivity to the currentsupply of ABA. It is suggested that the smaller response ofthe stomata of older leaves to ABA makes them more susceptibleto water stress, so that they can act as sensors for decliningwater potentials to give early protection to younger, metabolicallyactive leaves. Key words: Abscisic acid, leaf age, stomatal conductance, Triticum aestivum  相似文献   

8.
Age-related Changes in Stomatal Response to Cytokinins and Abscisic Acid   总被引:2,自引:0,他引:2  
Kinetin and zeatin(100 mmol m–3)reversald the ABA-mediated(100mmol m-2)closure of stomata of young maize leaves but did notaffect stomatal apertures of these leaves when applied alone.As leaves aged, kinetin or zeatin alone promoted increased stomatalapertures, while abscisic acid (ABA) applied alone had a reducedeffect on stomata. Even with older leaves, cytokinins reversadthe effect of ABA on stomata. Maize, stomata, abscisic acid, kineusc, zeatin, Zea mays  相似文献   

9.
Further Evidence in Support of an Interactive Model in Stomatal Control   总被引:2,自引:0,他引:2  
The interaction between CO2 IAA, ABA, and temperature in thecontrol of stomatal behaviour, was investigated in the chill-resistantPisum sativum and chill-hardened Phaseolus vulgaris. It wasfound that the ability of kBA to induce stomatai closure wasdependent upon the presence of CO2 in both species, at bothtemperatures (22 ?C, 5?C) Similarly, the ability of IAA to decreasestomatal resistance, was dependent upon the presence of CO2in both species, at both temperatures. Chilling at 5?C in thelight did not influence the response characteristics of stomatato CO2 ABA or IAA, in either species. These results are discussedin relation to a model of the interactions of these regulatorsof stomatal aperture. Key words: Stomata, modelling, chilling  相似文献   

10.
Morphological and physiological characteristics of micropropagatedplants of Delphinium cv. Princess Caroline were studied. Leavesproduced in vitro showed poor control of water loss which appearsto result from restricted responses by stomata and not frompoor cuticular development. Stomata of leaves produced in vitrowere larger and more frequent than those produced during acclimatization.Despite the fact that stomata from isolated epidermis of leavesproduced in vitro reduced their apertures when exposed to turgor-reducingtreatments, they did not close fully. This, together with highstomatal frequencies might explain the poor control of waterloss shown by intact leaves produced in culture when exposedto dry air. While leaves from acclimatized plants showed almostcomplete closure with ABA, low water potentials, darkness andCO2, stomata from leaves produced in vitro reduced their apertureswhen exposed to those factors, but only to a limit. Therefore,stomata from leaves cultured in vitro seem to be partially functional,but some physiological or anatomical alteration prevents themfrom closing fully. Stomata from leaves produced in vitro wereparticularly insensitive to ABA which appears to be partly associatedwith the high cytokinin concentration in the culture medium.In the long-term, this stomatal insensitivity to ABA might contributeto plant losses when micropropagated plantlets are transferredto soil. Key words: Micropropagation, stomatal physiology, dehydration, PEG, ABA, BAP, darkness, CO2, Delphinium  相似文献   

11.
The effects of abscisic acid (ABA) on photosynthesis in leavesof Helianthus annuus L. were compared with those in leaves ofVicia faba L. After the ABA treatment, the response of photosyntheticCO2 assimilation rate, A, to calculated intercellular partialpressure of CO2, Pi, (A(pi) relationship) was markedly depressedin H. annuus. A less marked depression was also observed inV.faba. However, when the abaxial epidermes were removed fromthese leaves, neither the maximum rate nor the CO2 responseof photosynthetic oxygen evolution was affected by the applicationof ABA. Starch-iodine tests revealed that photosynthesis was not uniformover the leaves of H. annuus treated with ABA. The starch contentwas diffferent in each bundle sheath extension compartment (thesmallest subdivision of mesophyll by veins with bundle sheathextensions, having an area of ca. 0.25 mm2 and ca. 50 stomata).In some compartments, no starch was detected. The distributionof open stomata, examined using the silicone rubber impressiontechniques, was similar to the pattern of starch accumulation.In V.faba leaves, which lack bundle sheath extensions, distributionof starch was more homogeneous. These results indicate that the apparent non-stomatal inhibitionof photosynthesis by ABA deduced from the depression of A(pi)relationship is an artifact which can be attributed to the non-uniformdistribution of transpiration and photosynthesis over the leaf.Intercellular gaseous environment in the ABA-treated leavesis discussed in relation to mesophyll anatomy. 1 Present address: Department of Botany, Duke University, Durham,NC 27706, U.S.A. (Received September 30, 1987; Accepted January 13, 1988)  相似文献   

12.
We isolated a mutant from Vicia faba L. cv. House Ryousai. Itwilts easily under strong light and high temperature conditions,suggesting that its stomatal movement may be disturbed. We determinedresponses of mutant guard cells to some environmental stimuli.Mutant guard cells demonstrated an impaired ability to respondto ABA in 0.1 mM CaCl2 and stomata did not close in thepresence of up to 1 mM ABA, whereas wild-type stomata closedwhen exposed to 10 µM ABA. Elevating external Ca2+caused a similar degree of stomatal closure in the wild typeand the mutant. A high concentration of CO2 (700 µlliter–1) induced stomatal closure in the wild type, butnot in the mutant. On the basis of these results, we proposethe working hypothesis that the mutation occurs in the regiondownstream of CO2 and ABA sensing and in the region upstreamof Ca2+ elevation. The mutant is named fia (fava bean impairedin ABA-induced stomatal closure). 3 Corresponding author: E-mail, smoiwai{at}agri.kagoshima-u.ac.jp;Fax, +81-99-285-8556.  相似文献   

13.
HARTUNG  W.; FUNFER  C. 《Annals of botany》1981,47(3):371-375
Abscisic acid (ABA) applied to the decapitated second internodeof runner bean plants enhanced outgrowth of lateral buds onlywhen internode stumps were no longer elongating. Applied toelongating internodes of slightly younger plants, ABA causesinhibition of bud outgrowth. Together with 10–4 M indol-3-ylacetic acid (IAA), ABA stimulated internode elongation and interactedadditively in the inhibition of bud outgrowth. A mixture of10–5 M ABA and 10–6 M gibberellic acid (GA3 ) causedsimilar effects on internode growth as IAA + ABA, but was mutuallyantagonistic in effect on growth of the lateral buds. Abscisic acid, apical dominance, gibberellic acid, indol-3yl acetic acid, Phaseolus coccineus, bean  相似文献   

14.
Leaves from in vitro and greenhouse cultured plants of Malusdomestica (Borkh.) cv. Mark were subjected to 4 h of darkness;4 h of 1 M mannitol induced water stress; 1 h of 10–4M to 10–7 M cis-trans abscisic acid (ABA) treatment; 1h of 0.12% atmospheric CO2. Stomatal closure was determinedby microscopic examination of leaf imprints. In all treatments,less than 5% of the stomata from leaves of in vitro culturedplants were closed. The diameter of open stomata on leaves fromin vitro culture remained at 8 µm. In contrast, an averageof 96% of the stomata on leaves of greenhouse grown plants wereclosed after 4 h in darkness; 56% after 4 h of mannitol inducedwater stress; 90% after 1 h of 10–4 M ABA treatment; 61%after 1 h in an atmosphere of 0.12% CO2. Stomata of in vitroapple leaves did not seem to have a closure mechanism, but acquiredone during acclimatization to the greenhouse environment. Thelack of stomatal closure in in vitro plants was the main causeof rapid water loss during transfer to low relative humidity.  相似文献   

15.
Responses of Commelina communis L. Guard Cell Protoplasts to Abscisic Acid   总被引:1,自引:0,他引:1  
Fitzsimons, P. J. and Weyers, J. D. B. 1987. Responses of Commelinacommunis L. guard cell protoplasts to abscisic acid.—J.exp. Bot. 38: 992–1001. Guard cell protoplasts (GCPs) isolated from the leaf epidermisof Commelina communis L. responded to abscisic acid (ABA) ina manner which was qualitatively and quantitatively similarto that of intact stomata. ABA inhibited swelling of GCPs underlow-CO2 conditions and swollen GCPs responded to the hormoneby shrinking. Both the absolute volume decrease and the initialrate of shrinking were commensurate with the extent and ratesof solute loss computed for ABA-treated intact, open stomata.This indicates that GCPs represent a suitable experimental systemfor studies of ABA-mediated solute fluxes. A radiotracer equilibrationmethod was developed for the rapid estimation of GCP osmoticvolume changes. Using this technique it was found that, on average,82% of the reduction in solute content caused by ABA treatmentwas due to the loss of K+. It is envisaged that electroneutralitymight be maintained during ABA-induced shrinkage of GCPs bynet inward proton movement leading to acidification of the vacuole. Key words: Abscisic acid, Commelina communis L., guard cells, protoplasts  相似文献   

16.
The decrease in diffusive conductance of a leaf exposed to waterstress or to exogenous abscisic acid (ABA) was smaller in leavesof sunflower plants (Helianthus annuus L. cv. NK285) that hadbeen grown in a phytotron in humid air than in leaves of sunflowersgrown outdoors. Stomata of the phytotron-grown plants were slowerto close after detachment of a leaf than those of the outdoorplants. When stomata closed rapidly, as they did in detachedleaves and after treatment with ABA, the extent of closure wasvaried over the leaf's surface, in particular in the case ofphytotron-grown plants, and the extent of the heterogeneitywas greater in the phytotrongrown plants than in the outdoorplants. When stomata closed gradually, for example, under conditionsof limited moisture in the soil, closure occurred uniformlyover leaves of plants of both types. The smaller decrease indiffusive conductance of leaves from phytotron-grown plantsafter treatment with ABA resulted from the presence of patcheson the surface in which stomata remained open. The smaller decreaseof diffusive conductance in the phytotron-grown plants underconditions of limited moisture in the soil resulted from theuniformly lower responsiveness of stomata on a leaf to the decreasein water potential. When estimates are made of the intercellularconcentration of CO2 (Ci) from gas-exchange measurements, heterogeneityin stomatal closure should be monitored when stomata close rapidly,in particular in plants grown in humid air, because heterogeneousstomatal closure can lead to overestimates of Ci. (Received April 18, 1994; Accepted May 25, 1995)  相似文献   

17.
Ward, D. A. and Drake, B. G. 1988. Osmotic stress temporarilyreverses the inhibitions of photosynthesis and stomatal conductanceby abscisic acid—evidence that abscisic acid induces alocalized closure of stomata in intact, detached leaves.—J.exp. Bot 39: 147–155. The influence of osmotic stress on whole leaf gas exchange wasmonitored in detached leaves of Glycine max supplied with anexogenous concentration (10–5 mol dm–3) of ±abscisicacid (ABA) sufficient to inhibit net photosynthesis and stomatalconductance by 60% and 70%, respectively, under a saturatingirradiance and normal air. Raising the osmotic (sorbitol) concentrationof the ABA solutions feeding leaves elicited rapid and synchronousreversals of the ABA-dependent inhibitions of net photosynthesisand conductance. These reversals reached a peak simultaneously,after which photosynthesis and conductance declined. The magnitudeof the transient stimulations at peak height was dependent uponthe sorbitol concentration of the ABA feeding solution, althoughthe time-course of the transients (half time, 4–6 min)was similar for the different osmotic concentrations applied.Irrespective of transient size the relative changes of photosynthesisand conductance were comparable; consequently the calculatedpartial pressure of CO2 in the substomatal space (Ci) remainedrelatively constant during the transient phase. In contrastto the ABA-treated leaves, elevating the osmotic concentrationof the distilled water supply feeding control leaves stimulatedconductance to a much greater relative extent than photosynthesis.The co-stimulations of photosynthesis and conductance inducedin ABA-treated leaves by osmotic shock were not due to a restrictionin the transpirational uptake of ABA and occurred irrespectiveof the source osmoticum applied. These data are consistent with the hypothesis that the ABA-dependentinhibition of photosynthesis at constant Ci is an artifact causedby the spatially heterogeneous closure of stomata in responseto ABA. Alternative explanations for the responses are, however,considered. Key words: Abscisic acid, photosynthesis, osmotic stress, Glycine max, stomatal conductance  相似文献   

18.
The level of benzoic acid was measured in Lemna gibba G3 grownon M and E media under inductive and non-inductive daylengths.Benzoic acid was slightly higher in plants grown on M mediumbut there was no difference in the benzoic acid levels in floweringand vegetative plants. When L. gibba G3 was grown under continuouslight on 1/10 M medium or 1/2 H medium there was virtually noflowering, but addition of benzoic acid to either medium ledto a substantial flowering response. In both cases this floweringresponse was inhibited by the plant hormones IAA, GA3, ABA andzeatin, with IAA and GA3 being the least inhibitory and ABAbeing the most inhibitory. This same pattern of inhibition wasseen when L. gibba G3 was grown on M medium under continuouslight, conditions that lead to photoinduction of flowering.These results leave open the possibility that endogenous benzoicacid may interact with other factors to influence the floweringresponse in L. gibba G3. (Received November 13, 1984; Accepted February 27, 1985)  相似文献   

19.
Effects of plant hormones were examined on the dark- and light-inducedmovements of Cassia fasciculata. Indole-3-acetic acid (IAA),gibberellic acid (GA3) and 6-benzylaminopurine (6-BAP) inhibitedthe scotonastic movement whereas abscisic acid (ABA) enhancedit. After brief treatments (5 to 30 min), the ABA effect wasinhibitory rather than promotional. Hormonal treatment in theacidic range gave the best physiological response for ABA, butthe greatest efficiency of IAA, GA3 and 6-BAP was obtained withpH values close to neutrality. Three to 5 h were needed beforeexpression of the physiological effect triggered by GA3 and6-BAP, while 5 min treatments were sufficient for IAA and ABA.Light-induced movements were largely enhanced by IAA and slightlyby GA3 but inhibited by 6-BAP and ABA. The results are discussedin relation to the ionic changes in the pulvinar motor cells,regulating leaflet movements. Key words: Abscisic acid, auxins, cytokinins, gibberellic acid, pulvinar movements  相似文献   

20.
Plants of ryegrass (Lolium perenne L. cv. Melle) were grownfrom the early seedling stage in growth cabinets at a day/nighttemperature of 20/15 °C, with a 12-h photoperiod, and aCO2 concentration of either 340 or 680 ± 15 µl1–1 CO2. Young, fully-expanded, acclimated leaves fromprimary branches were sampled for length of stomata, and ofepidermal cells between stomata, numbers of stomata and epidermalcells per unit length of stomatal row, numbers of stomatal rowsacross the leaf and numbers of stomatal rows between adjacentvein ridges. Elevated CO2 had no significant effect on any ofthe measured parameters. Elevated CO2, Lolium perenne, ryegrass, stomatal distribution, stomatal size  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号