首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
For studying, in vivo, chromosomal damage in bone-marrow cells of CD mice the following compounds were used: Trenimon®; Endoxanm® (cyclophosphamide); triethylenemelamine (TEM); methyl methanesulfonate (MMS); ethyl methanesulfonate (EMS); mitomycin C; colchicine; N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) and caffeine. In a first set of experiments the compounds were given twice intraperitoneally with an interval of 24 h. In a second set, effects on bone marrow were studied after 2 i.v. or p.o. administrations of TEM or EMS. All compounds except MNNG and caffeine produced bone-marrow depression and micronuclei, depending on the dose. For the active compounds an interesting difference was revealed by a comparison of the lowest effective dose (as measured by micronuclei formation) with the lethal dose. Trenimon, TEM, cyclophosphamide and MMS (some of which are used in human chemotherapy in similar mg/kg doses) were active on mouse bone-marrow at very low doses compared with their lethal doses. On the other hand, colchicine, mitomycin C and EMS exhibited an effect only at doses very close to, or within, the toxic range. Different routes of administration of either TEM or EMS produced similar effects.The results indicate that the test is especially suitable for initial large-scale screening of suspected chromosomal mutagens and spindle poisons. In addition, the use of the relationship between doses required to induce micronuclei and lethal doses in mice provides a practical measure of the relative potencies of such compounds.  相似文献   

2.
3.
The BrdU-Hoechst staining technique has been used in analyzing the effect of caffeine (CAF) on chromosome aberrations and sister-chromatid exchanges (SCEs) induced by mitomycin C (MC). CAF increased the frequency of SCE in MC-treated chromosomes in all specimens. The combination of MC and CAF caused a remarkable increase in all types of chromosome aberrations, but the most startling effect was the appearance of many cells with multiple aberrations (shattered chromosomes). The BrdU-Hoechst technique showed that the shattered chromosomes did not appear in cells that had replicated only once, but did occur in cells which replicated twice in the presence of MC and CAF. The large majority of chromatid breaks observed did not involve areas common to SCE; and the SCE frequency significantly increased in spite of the existence of multiple breaks. This indicates that very few of the breaks are incomplete exchanges and that the mechanism for formation of SCE might be different from that of chromosome breaks. In another experiment, monofunctional-MC (M-MC) had a small effect on SCE rates, though it induced shattered chromosomes with CAF post-treatment. Possible differences in the mechanisms leading to SCE and chromosome breaks are discussed.  相似文献   

4.
A cell-kinetic model for the application of the micronucleus test to polychromatic erythrocytes in mouse fetal liver, fetal blood, and maternal bone marrow after exposure to clastogenic agents is described. The time of expression and dose-response relationships obtained with γ-radiation, methyl methanesulphonate, procarbazine, mitomycin C and benzo[a]pyrene are analysed in terms of this model. The numbers of target cells damaged per unit dose has been calculated and the dose equivalents obtained. Maternal and fetal cells show similar sensitivity to γ-radiation, but fetal cells are markedly more sensitive to MMS and procarbazine. This probably due to differences in tissue distribution and metabolism. Maternal and fetal erythroid tissues can show linear and exponential dose-response relationships, which may not coincide (e.g. with MMS). It is concluded that risks from fetal exposure to genotoxic agents cannot be reliably predicted from in vivo tests restricted to adult animals. However, the micronucleus technique appled to fetal erythroid cells proveds a rapid and reliable short-term test, appropriate to minimising risks of genome damage during prenatal development.  相似文献   

5.
6.
Chlorate-resistant mutants of Arabidopsis thaliana were isolated in order to find nitrate reductase-less mutants. It appeared that chlorate resistance in higher plants can arise by mutations concerning two different mechanisms: (1) a lower reduction rate of chlorate due to a lower level of nitrate reductase activity; (2) a lower increase in content of chlorate and/or chlorite and of chloride after chlorate treatment. One mutant of the first type and two mutants of the second type are described. The nitrate reductase-less mutant grows poorly on a medium with nitrate as the only nitrogen source but is not blocked in the uptake of nitrate. Both the other mutants exhibit a nitrate reductase activity equal to or higher than that of the wild type, but probably have a much lowered uptake of chlorate. The latter two mutants belong to the same complementation group, whereas the nitrate reductase-less mutant belongs to a different group.  相似文献   

7.
The genetic effects of MNNG, 4NQO and ICR-170 have been compared on 5 different UV-sensitive strains and a standard wild-type strain of Neurospora crassa with regard to inactivation and the induction of forward-mutations at the ad-3A and ad-3B loci. Whereas all UV-sensitive strains (upr-1, uvs-2, uvs-3, uvs-5 and uvs-6) are more sensitive to inactivation by MNNG and ICR-170 than wild-type, only uvs-5 shows survival comparable to wild-type after 4NQO treatment, all other strains are more sensitive to 4NQO. In contrast to the effects on inactivation, a wide variety of effects were found for the induction of ad-3A and ad-3B mutations: higher forward-mutation frequencies than were found in wild-type were obtained after treatment with MNNG or 4NQO for upr-1 and uvs-2, no significant increase over the spontaneous mutation frequency was found with uvs-3 after MNNG, 4NQO or ICR-170 treatment; mutation frequencies comparable to that found in wild-type were obtained with uvs-6 after MNNG, 4NQO or ICR-170 treatment and with upr-1 after ICR-170 treatment. Lower forward-mutation frequencies than were found in wild-type were obtained with uvs-2 after ICR-170 treatment and with uvs-5 after MNNG, 4NQO or ICR-170 treatment. These data clearly show that the process of forward-mutation at the ad-3A and ad-3B loci is under genetic control by mutations at other loci (e.g. upr-1, uvs-2, uvs-3, uvs-5 and uvs-6) and that the effect is markedly mutagen-dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号