首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SUMMARY 1. The development of bream populations, water transparency, chlorophyll‐a concentration, extent of submerged vegetation and densities of the zebra mussel, Dreissena polymorpha, were analysed in three shallow eutrophic lake systems subject to different fish management. 2. In Lake Veluwemeer, the bream population was reduced from c. 100 to 20 kg ha?1 after 5 years of fishing. The mortality caused by the fishery was estimated at 38% of bream >15 cm in addition to a 13% natural mortality of bream >17 cm. The decline was followed by an expansion of the Chara beds present in the shallow parts, an increase in water transparency in the open‐water zone, an increase in the density of zebra mussels and a decrease in chlorophyll‐a concentrations. 3. The newly created Lake Volkerak showed trends opposite to those in Lake Veluwemeer. Bream colonised the lake in 1988 and reached a biomass of c. 140 kg ha?1 in 1998. The water transparency decreased from a maximum of 3 m to c. 1 m and the chlorophyll‐a concentration increased from 5 to 45 μg L?1. Submerged vegetation colonised up to 20% of the total lake area in the first 5 years after creation of the lake in 1987 but decreased to 10% as turbidity increased. 4. Seine fishery in the Frisian lake system did not appear to affect the bream population despite annual catches as high as 40–50 kg ha?1. The estimated natural mortality of fish >15 cm was 15% and mortality by fishery was 26%. The high loss was apparently compensated by good recruitment and high growth rates resulting from a c. 1 °C higher water temperature during the years when bream were removed by fishing. There was only a slight decrease in chlorophyll‐a concentrations and a slight increase in water transparency. 5. The results of this study suggest that the effects of bream exploitation in eutrophic lakes can vary depending on the efficiency of the fishery, recruitment success and temperature regime. In the absence of fishery, bream dominated the fish community in the study lakes and apparently prevented D. polymorpha and submerged vegetation from establishing because of physical disturbance, enhanced internal P‐loading and resettling of resuspended sediments.  相似文献   

2.
Biomanipulation was carried out in order to improve the water quality of the small hypertrophic Lake Zwemlust (1.5 ha; mean depth 1.5 m). In March 1987 the lake was drained to facilitate the elimination of fish. Fish populations were dominated by planktivorous and benthivorous species (total stock c. 1500 kg) and were collected by seine- and electro-fishing. The lake was subsequently re-stocked with 1500 northern pike fingerlings (Esox lucius L.) and a low density of adult rudd (Scardinius erythrophthalmus). The offspring of the rudd served as food for the predator pike. Stacks of Salix twigs, roots of Nuphar lutea and plantlets of Chara globularis were brought in as refuge and spawning grounds for the pike, as well as shelter for the zooplankton.The impact of this biomanipulation on the light penetration, phytoplankton density, macrophytes, zooplankton and fish communities and on nutrient concentrations was monitored from March 1987 onwards. This paper presents the results in the first year after biomanipulation.The abundance of phytoplankton in the first summer (1987) after this biomanipulation was very low, and consequently accompanied by increase of Secchi-disc transparency and drastic decline of chlorophyll a concentration.The submerged vegetation remained scarce, with only 5 % of the bottom covered by macrophytes at the end of the season.Zooplankters became more abundant and there was a shift from rotifers to cladocerans, comprised mainly of Daphnia and Bosmina species, the former including at least 3 species.The offspring of the stocked rudd was present in the lake from the end of August 1987. Only 19% of the stocked pike survived the first year.Bioassays and experiments with zooplankton community grazing showed that the grazing pressure imposed by the zooplankton community was able to keep chlorophyll a concentrations and algal abundance to low levels, even in the presence of very high concentrations of inorganic N and P. The total nutrient level increased after biomanipulation, probably due to increased release from the sediment by bioturbation, the biomass of chironomids being high.At the end of 1987 Lake Zwemlust was still in an unstable stage. A new fish population dominated by piscivores, intended to control the planktivorous and benthivorous fish, and the submerged macrophytes did not yet stabilize.  相似文献   

3.
Enclosures, open to the bottom sediments and to the atmosphere, containing about 17 m3 of lake water in the mesotrophic area of Lake Balaton, were used to elucidate the role of the benthivorous fish bream (Ambramis brama L.) in the lake during 1984–1986.Throughout the whole period water was less transparent in the enclosure containing fish, which strongly influenced the concentrations of suspended solids and chlorophyll a.Both phytoplankton biomass and production readily responded to nutrient increase in the enclosure with fish. In 1985 diatoms were replaced by cyanobacteria whereas in 1986, at a lower fish stocking, a shift in algal structure towards chlorophytes was observed.Egested organic substances and the resuspension of sediment particles by fish increased bacterial production.  相似文献   

4.
The effects of planktivorous and benthivorous fish on benthic fauna, zooplankton, phytoplankton and water chemistry were studied experimentally in two eutrophic Swedish lakes using cylindrical enclosures. In enclosures in both lakes, dense fish populations resulted in low numbers of benthic fauna and planktonic cladocerans, high concentration of chlorophyll, blooms of blue-green, algae, high pH and low transparency. In the soft-water Lake Trummen, total phosporus increased in the enclosure with fish, but in the hard-water Lake Bysjön total phosphorus decreased simultaneously with precipitation of calcium carbonate. Enclosures without fish had a higher abundance of benthic fauna and large planktonic cladocerans, lower phytoplankton biomass, lower pH and higher transparency.The changes in enclosures with fish can be described as eutrophication, and those in enclosures without fish as oligotrophication. The possibility of regulation of fish populations as a lake restoration method is discussed.This paper was presented at the XXth SIL Congress in Copenhagen in 1977.  相似文献   

5.
SUMMARY 1. Piscivores (annual stocking of 1000 individuals ha?1 of 0+ pike and a single stocking of 30 kg ha?1 of large 20–30 cm perch) were stocked in seven consecutive years in a shallow eutrophic lake in Denmark. The stocking programme aimed at changing food‐web structure by reducing zooplanktivorous and benthivorous fish, with resultant effects on lower trophic levels and ultimately water quality. 2. The fish community and water quality parameters (Secchi depth, concentrations of total phosphorus, chlorophyll a and suspended solids) were monitored between 1996 and 2000 and relationships were evaluated between predatory fish and potential prey and between zooplanktivorous or benthivorous fish and water quality parameters. In addition, potential consumption of piscivorous fishes was calculated. 3. The density of fish feeding on larger zooplankton or benthos (roach >15 cm, crucian carp >15 cm) declined distinctly during the study period. This effect was attributed to predation by large (>50 cm) pike. Based on scale readings, we cautiously suggest that the stocking of 0+ pike boosted the adult pike population to produce an unexpected impact in later years. Conversely, no direct impact of stocked 0+ pike was detected on 0+ roach. 4. A major decline in the recruitment strength of 0+ roach was observed in 2000. A combination of (i) the indirect effect of large pike preying on adult roach, with negative effect on roach reproduction and (ii) the direct predation effect of 0+ pike and/or 1+ and 2+ perch recruited in the lake, provides the most likely explanation of this phenomenon. 5. A marked increase in Secchi depth in 2000 and declining trends in suspended solids, chlorophyll‐a and total phosphorus concentrations were observed. These changes may also be attributable to changes in the fish community, although the relationships were not straightforward. 6. This 7‐year study indicates that piscivorous fish may be a significant structuring force in shallow eutrophic lakes, suggesting that stocking piscivores can increase predation pressure on cyprinids. However, the general lack of impact of 0+ pike points to the need of refining current stocking practices in several countries across Europe.  相似文献   

6.
The aim of this study was to examine the combined effect of water transparency and narrow macrophyte belts on zooplankton assemblages in two oxbow lakes (Krapina River, Croatia). Samples were collected in open water and among helophytes in the littoral zone from April until September 2008. Rotifers were the most abundant group of zooplankton in both lakes, and dominated in the Krapina oxbow lake 1 (KO1). Lake KO1 had significantly lower transparency, lower percentage macrophyte cover and higher chlorophyll a concentration than Krapina oxbow lake 2 (KO2). In lake KO1, variation in the horizontal distribution of cladocerans and rotifers in terms of their abundance seemed to be determined by competition between Bosmina longirostris and Keratella cochlearis, initiated by oscillation in transparency and detritus availability. In lake KO2, with higher transparency and higher percentage macrophyte cover, the abundance of small‐ and large‐bodied cladocerans increased in the littoral zone simultaneously with higher transparency, suggesting fish predation. Results of this study indicated that small differences in transparencies between the two lakes caused significant differences in horizontal distribution of the zooplankton assemblage. Even narrow helophyte belts offered a refuge to zooplankton, although lower transparencies reduced the effectiveness of macrophytes as a refuge from predators. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
8.
Response of a eutrophic, shallow subtropical lake to reduced nutrient loading   总被引:11,自引:1,他引:10  
1. Lake Apopka (FL, U.S.A.) was subjected to decades of high nutrient loading from farms developed in the 1940s on converted riparian wetlands. Consequences included perennially high densities of cyanobacteria, low water transparency, elimination of submerged vegetation, modified fish community, and deposition of nutrient‐rich, flocculent sediments. 2. Initial steps were taken to reduce phosphorus (P) loading. Through strengthened regulation and purchase of farms for restoration, external P loading was reduced on average from 0.56 to 0.25 g P m?2 year?1 (55%) starting in 1993. The P loading target for the lake is 0.13 g P m?2 year?1. 3. For the first 6 years of P loading reduction the annual sedimentation coefficient (σ) averaged 13% less than the prior long‐term value (0.97 versus 1.11 year?1). The sedimentation coefficient, σ, was lower in the last 3 years of the study, but this period included extreme low‐water conditions and may not be representative. Annual σ was negative (net P flux to the water column) only 1 year. 4. Wind velocity explained 43% of the variation in σ during the period before reductions in total phosphorus (TP) concentration of lake water, but this proportion dropped to 6% after TP reductions. 5. Annual mean TP concentrations differed considerably from values predicted from external loading and hydraulic retention time using the Vollenweider–Organization for Economic Co‐operation and Development relationship. Reductions in lake water TP concentration fit model predictions better when multiyear (3‐year) mean values were used. 6. Evidence available to date indicates that this shallow, eutrophic lake responded to the decrease in external P loading. Neither recycling of sediment P nor wind‐driven resuspension of sediments prevented improvements in water quality. Reductions in TP concentration were evident about two TP‐resident times (2 × 0.9 year) after programmes began to reduce P loading. Improvements in concentrations of chlorophyll a and total suspended solids as well as in Secchi transparency lagged changes in lake‐water TP concentration but reached similar magnitudes during the study.  相似文献   

9.
10.
In this paper we analyze a long-term dataset on the recovery from eutrophication of Lake Veluwe (The Netherlands). Clear hysteresis was observed in a number of ecosystem variables: the route to recovery differed significantly from the route that led to loss of clear water. The macrophyte dominated state disappeared in the late 1960s at TP above 0.20 mg l−1, whereas its return occurred at less than 0.10 mg TP l−1. Several regime shifts resulting in the occurrence of three alternative stable states were observed over a period of 30 years. The turbid state showed resistance to change, despite a strong and prompt reduction in Chl-a following reduction of external P-loading. The most important component that determined hysteresis in the return to clear water was not internal P-loading, but a high level of nonalgal light attenuation (through sediment resuspension) maintained by the interaction between wind and benthivorous fish. Although Chara was able to re-colonize the most shallow parts of the lake, recovery stalled and for a number of years clear (above charophyte beds) and turbid (deeper parts of the lake) water co-existed, as a separate alternative state on route to full recovery. Lake-wide clear water was re-established after bream density had been reduced substantially. This allowed a return of zebra mussels to the lake, whose high filtration capacity helped in maintaining clear water. In this study, we were able to identify the main drivers of hysteresis and regime shifts, although formal demonstration of cause and effect was not possible on the basis of field data alone. We argue that resilience of the present clear water state of Lake Veluwe very much depends on sizable populations of a few keystone species, especially Chara (stoneworts) and Dreissena (zebra mussels), and that careful management of these species is equally important as control of nutrients. Lake management should strive to maintain and strengthen resilience of the ecosystem, and this should offer protection against a renewed collapse of the clear state.  相似文献   

11.
1. The effect of benthivorous bream and carp on sediment resuspension and the concentrations of nutrients and chlorophyll a were studied in sixteen experimental ponds (mean depth 1m, mean area 0.1 ha, sandy clay/clay sediment), stocked with bream or carp at densities varying from 0 to 500 kg ha?1. Planktivorous perch (Perca fluviatilis L.) were added to some ponds to suppress zooplankton. 2. Suspended sediment concentrations increased linearly with biomass of benthivorous fish. Bream caused an increase of 46 g sediment m?2 day?1 per 100kg bream ha?1 and a reduction of 0.38m?1 in reciprocal Secchi disc depth, corresponding to an increase in the extinction coefficient of 0.34m?1. 3. No relationship was found between size of fish and amount of resuspension, but the effect of bream was twice as great as that of carp. Benthivorous feeding was reduced in May because alternative food (zooplankton) was available. 4. Assuming a linear relationship, chlorophyll a level increased by 9.0 μgI?1, total P by 0.03mgl?1 and Kjeldahl-N by 0.48mgl?1 per 100kg bream ha?1. Silicate, chlorophyll a, total P and total N were all positively correlated with fish biomass, but orthophosphate showed no correlation.  相似文献   

12.
As a result of high nutrient loading Lake Veluwe suffered from an almost permanent bloom of the blue-green algaOscillatoria agardhii Gomont. In 1979, the phosphorus loading of the lake was reduced from approx. 3 to 1 g P.m–2.a–1. Moreover, since then the lake has been flushed during winter periods with water low in phosphorus. This measure aimed primarily at interrupting the continuous algal bloom. The results of these measures show a sharp decline of total-phosphorus values from 0.40–0.60 mg P.l–1 (before 1980) to 0.10–0.20 mg P.l–1 (after 1980). Summer values for chlorophylla dropped from 200–400 mg.m–3 to 50–150 mg.m–3.The increase in transparency of the lake water was relatively small, from summer values of 15–25 cm before the implementation of the measures to 25–45 cm afterwards. The disappointing transparency values may be explained by the decreasing chlorophylla and phosphorus content of the algae per unit biovolume. Blue-green algae are gradually loosing ground. In the summer of 1985 green algae and diatoms dominated the phytoplankton for the first time since almost 20 years. To achieve the ultimate water quality objectives (transparency values of more than 100 cm in summer), the phosphorus loading has to be reduced further.  相似文献   

13.
Responses to food web manipulation in a shallow waterfowl lake   总被引:4,自引:4,他引:0  
Hanson  Mark A.  Butler  Malcolm G. 《Hydrobiologia》1994,275(1):457-466
The effects of fish stock reduction have been studies in 3 Dutch lakes (Lake Zwemlust, Lake Bleiswijkse Zoom and Lake Noorddiep) and 1 Danish lake (Lake Væng) during 4–5 years. A general response id described. The fish stock reduction led in general to a low fish stock, low chlorophyii-a, high transparency and high abunuance of macrophytes. Large Daphnia became abundant, but their density decreased, due to food limitation and predation by fish. The total nitrogen concentration became low due to N-uptake by macrophytes and enhanced denitrification. In Lake Bleiswijkse Zoom the water transparency deteriorated and the clear water state was not stable. The fish stock increased and the production of young fish in summer was high. lear water occurred only in spring. Large daphnids were absent in summer and the macrophytes decreased.In Lake Zwemlust, Lake Væng and Lake Noorddiep the water remained clear during the first five years. In summer of the sixth year (1992) transparency decreased in Lake Zwemlust (with high P-concentration of 1.0 mg P l-1). Also in Lake Væng (with a low nutrient concentration of 0.15 mg P.-1) a short term turbid stage (1.5 month) occurred in summer 1992 after a sudden collapse of the macrophytes. Deterioration of the water quality seems to start in summer and seems related to a collapse in macrophytes. At a low planktivorous fishstock (e.g. Lake Væng)thhe duration of the turbid state is shorter. than in presence of a high planktivorous fish biomass (e.g. Lake Zwemlust, and later years of Lake Bleiswijkse Zoom).  相似文献   

14.
M. Beklioglu  O. Ince  I. Tuzun 《Hydrobiologia》2003,490(1-3):93-105
Nutrient loading in lakes is recognized as a serious threat to water quality. Over 25 years of raw sewage effluent discharge shifted Lake Eymir from a state dominated by submerged plants to a turbid water state. Successful effluent diversion undertaken in 1995 achieved 88% and 95% reductions in the areal loading of total phosphorus (TP) and dissolved inorganic nitrogen (DIN), respectively. Furthermore, the reduced load of TP was very close to the suggested threshold areal load (0.6 g m–2 yr–1) to attain recovery. Even though diversion also reduced the in-lake TP level by half, the poor water clarity and low submerged plant coverage (112 ± 43 cm and 2.5% coverage of the lake total surface area, respectively) persisted. Domination of the fish stock by planktivorous tench (Tinca tinca L.) and the benthivorous common carp (Cyprinus carpio L.) (66 ± 0.7 and 31 ± 1 kg CPUE, respectively) appeared to perpetuate the poor water condition. A substantial fish removal effort over 1 year achieved a 57% reduction in the fish stock which led to a 2.5-fold increase in Secchi disk transparency. This increase occurred largely because of a 4.5-fold decrease in the inorganic suspended solid concentration, and to some extent, a decrease in chlorophyll-a concentration. A strong top-down effect of fish on the large-sized grazers was evident as density and the body size of Daphnia pulexde Geer increased significantly after the fish removal. Even though the spring and annual euphotic depths occurred well above the maximum and mean depths of the lake, respectively, re-development of submerged plants was poor (6.2% coverage). A weak re-establishment of submerged plants might be attributed to an insufficiently viable seed bank, inappropriate chemical conditions of the sediment (severe oxygen deficiency), or to the high coot (Fulica atra L.) density. However, the top-down effect of fish appeared to be of great importance in determining water clarity, and in turn, conditions for submerged plant development in a warm temperate lake as recorded in the north temperate lakes. Furthermore, this study provides evidence for the importance of top-down control of fish, which, in turn, can be effectively utilised as a restoration strategy in warm-temperate lakes as well. More applications, along with long monitoring programs, are needed to develop a better understanding about requirements for biomanipulation success in this climate.  相似文献   

15.
Impacts of internal nutrient loading and the role of biota in phosphorus (P) dynamics were studied in a shallow, hypertrophic, biomanipulated lake. Reduced fish stock resulted in clearing water and the development of a dense submerged vegetation by 2005. However, an abrupt shift occurred in 2007, seven years after the fish manipulation. Simultaneously, water quality deteriorated which became obvious in elevated chlorophyll‐a concentration in lake water, associated with increased biomass of fish and decay of a previously extended macrophyte cover. There were no significant differences in lake water P concentrations between the two periods (2005–2006 and 2007); however, peaks of different P forms were markedly higher in 2007 than in 2005–2006. At the same time, P content of sediment pore water declined considerably in 2007. Our mesocosm experiment, carried out in the manipulated lake, emphasize the positive role of the dominant fish species (roach) in P regeneration. We suggest that fish manipulation should be carried out every 5 year to maintain clear water conditions permanent, until the total removal of redundant nutrients accumulated in the lake ecosystem. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
The eutrophication model Delwaq-Bloom-Switch is developed to be a functional tool for water management. Therefore it includes nutrients, algal biomass and composition as well as water transparency. A module describing the interaction between water and bottom gives the model the flexibility to deal with measures, such as a decrease of the external phosphorus loading and flushing with water differing in composition from the lake water. This paper focuses on the functional aspects of the model, the results of an application on Lake Veluwe, The Netherlands, and the implications for water management.With one set of coefficients DBS reproduces the most important characteristics of Lake Veluwe for a period of two years before measures (reduction of the external loading and flushing during the winter months) and eight years after the measures. The phosphorus concentration decreased and became growth limiting for algae instead of nitrogen and light. Both in measurements and modelling results, the algal composition changed from blue-green algae dominance to green algae and diatom dominance. Lake Veluwe had a relatively short transient phase after reduction of external loading, because high nitrate concentrations in the flushing water inhibited a long period with high phosphorus releases from the bottom.Model calculations were carried out to investigate the effects of fish stock management and optimization of flushing. Both measures are promising.  相似文献   

17.
1. Periods with clear water and abundant submerged vegetation have alternated with periods of turbid water and sparse vegetation during recent decades in Lake Tåkern and Lake Krankesjön, two shallow, calcium-rich, moderately eutrophic lakes in southern Sweden, Between 1983 and 1991, submerged vegetation (predominant species: Chara tomentosa, Nitellopsis obtusa, Myriophyllum spicatum) covered about 50% of the open lake area in Lake Tåkern. In Lake Krankesjön, submerged vegetation was sparse during 1983–84, but increased continuously in the following years and covered about 50% of the open lake area by 1990 and 1991. Potamogeton pectinatus was the first species to expand in Lake Krankesjön, but was later replaced by C. tomentosa. 2. During 1983–84, turbidity was high in Lake Krankesjön, which indicated that submerged macrophytes were light-limited. During 1986–91, there was a negative correlation between the areal coverage of charophytes and angiosperms, indicating that competition for space had become an important limiting factor. The same negative correlation was found in Lake Tåkern for 1983–91. 3. Charophytes had much higher biomass per unit area than angiosperms in both lakes and reduced water movement considerably. This was probably one reason for the increase of water transparency in Lake Krankesjön during the spatial expansion of these plants. Charophytes also stored large amounts of phosphorus and nitrogen, Charophytes are probably superior competitors for both space and nutrients and thus have competitive advantage over angiosperms in this lake type. 4. In Lake Krankesjön, both P. pectinatus and C. tomentosa were negatively affected by high water level during the growing period. Total disappearance of submerged vegetation occurred in both lakes after catastrophic events (dry-out during summer or mechanical damage by ice) caused by extremely low water level. Changes in water level are thus one of the most important reasons for among-year fluctuations in areal coverage of submerged macrophytes in these lakes.  相似文献   

18.
An HPLC analysis of the summer phytoplankton assemblage in Lake Baikal   总被引:5,自引:0,他引:5  
1. The enormous size and spatial heterogeneity of Lake Baikal require rapid methods for large sample sets. We therefore tested the applicability of a novel, high‐performance liquid chromatography (HPLC)‐based, combination of methods for analysing phytoplankton. In July 2001, samples were collected in a transect across the lake at various depths down to 30 m. Phytoplankton (>3 μm) and autotrophic picoplankton (APP) were counted under light and epifluorescence microscopes, respectively. Pigments were analysed with HPLC. 2. The pigment data allowed the contributions of the dominant phytoplankton groups to the total chlorophyll a (Chl a) in the lake to be estimated by multiple linear regression and by the CHEMTAX matrix factorisation program. Three marker pigments, fucoxanthin, lutein and zeaxanthin, were shown to be useful indicators of the abundance and spatial distribution of certain phytoplankton groups. The relative contributions of the various phytoplankton groups to the total Chl a in the lake determined using these marker pigments were similar, but not identical, to those determined by cell counts. 3. Pigment analyses of isolated strains from Lake Baikal and some European lakes confirmed that phycoerythrin‐containing Cyanobacteria with very high amounts of zeaxanthin were responsible for the low Chl a/zeaxanthin ratios of the water samples. A picoplanktonic species of Eustigmatophyceae was isolated from the lake. Its high violaxanthin content, responsible for very low Chl a/violaxanthin ratios of some water samples, can be used to estimate the contribution of this group to total Chl a.  相似文献   

19.
In this study, the relative role of spatio‐temporal factors and associated environmental variables (water transparency and temperature) were quantified in relation to gillnet samples of fishes in a large and shallow lake (Lake Balaton, Hungary). Most of the variance (56·1%) in the relative abundance data (%) was related to the vertical segregation of fishes. This gradient substantially affected the catch per unit effort (CPUE) by number of the dominant species, the surface‐oriented bleak Alburnus alburnus and the benthic common bream Abramis brama. It also influenced total CPUE, mean fish mass and species richness and diversity. At the lake level, horizontal habitat heterogeneity (i.e. littoral v. offshore) accounted for only 8·3% of the total variance in relative abundance data, but was important in structuring the CPUE of the ruffe Gymnocephalus cernua and the pikeperch Sander lucioperca. The longitudinal environmental gradient (i.e. lake basin), year and season of sampling, water transparency and temperature had significant effects on relative abundance only at the habitat level, but were also important components of variability of CPUE in some species at the lake level. As sampling schemes need to consider the main gradients in fish assemblage distributions, the use of surface and pelagic gillnets should be more intensively incorporated in the study and monitoring of fish assemblages in shallow lakes and lake habitats.  相似文献   

20.
Evaluation of recent limnological changes at Lake Apopka   总被引:4,自引:0,他引:4  
Recent changes in submersed macrophytes and water quality variables have been offered as the strongest evidence that the current restoration program at Lake Apopka will be effective (Lowe et al., 2000); however, the new beds of submersed plants in Lake Apopka are found only on hard substrates on the fringes of the lake within 40 m of shore and are protected from waves by cattails (Typha spp.). They occupy only 0.02% of the lake area, and there is no indication that they can colonize the flocculent sediments that make up 90% of the lake area. There is no correlation between annual inputs of phosphorus and total phosphorus concentrations in the lake, and patterns of change in chlorophyll and other water quality variables do not follow changes in phosphorus loads. Rather than reflecting decreases in phosphorus loading, the recent changes could be related to the harvest of benthivorous fish or are just the normal fluctuations found in lakes that have not been perturbed. Regardless of the reason the macrophytes were lost in the 1940s, the new analyses confirm our previous findings that the high turbidities in Lake Apopka are due to the resuspension of sediments, and that the fluid mud cannot support the colonization of submersed aquatic macrophytes. Even without the fluid mud, the target phosphorus concentration of 55 mg m–3 is too high to bring about the restoration of the former macrophyte beds in the lake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号