首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Terrestrial ecosystems respond to an increased concentration of atmospheric CO2. While elevated atmospheric CO2 has been shown to alter plant growth and productivity, it also affects ecosystem structure and function by changing below-ground processes. Knowledge of how soil microbiota respond to elevated atmospheric CO2 is of paramount importance for understanding global carbon and nutrient cycling and for predicting changes at the ecosystem-level. An increase in the atmospheric CO2 concentration not only alters the weight, length, and architecture of plant roots, but also affects the biotic and abiotic environment of the root system. Since the concentration of CO2 in soil is already 10–50 times higher than that in the atmosphere, it is unlikely that increasing atmospheric CO2 will directly influence the rhizosphere. Rather, it is more likely that elevated atmospheric CO2 will affect the microbe–soil–plant root system indirectly by increasing root growth and rhizodeposition rates, and decreasing soil water deficit. Consequently, the increased amounts and altered composition of rhizosphere-released materials will have the potential to alter both population and community structure, and activity of soil- and rhizosphere-associated microorganisms. This occurrence could in turn affect plant health and productivity and plant community structure. This review covers current knowledge about the response of soil microbes to elevated concentrations of atmospheric CO2.  相似文献   

2.
Abstract. Herbaceous C3 plants grown in elevated CO2 show increases in carbon assimilation and carbohydrate accumulation (particularly starch) within source leaves. Although changes in the partitioning of biomass between root and shoot occur, the proportion of this extra assimilate made available for sink growth is not known. Root:shoot ratios tend to increase for CO2-enriched herbaceous plants and decrease for CO2-enriched trees. Root:shoot ratios for cereals tend to remain constant. In contrast, elevated temperatures decrease carbohydrate accumulation within source and sink regions of a plant and decrease root:shoot ratios. Allometric analysis of at least two species showing changes in root: shoot ratios due to elevated CO2 show no alteration in the whole-plant partitioning of biomass. Little information is available for interactions between temperature and CO2. Cold-adapted plants show little response to elevated levels of CO2, with some species showing a decline in biomass accumulation. In general though, increasing temperature will increase sucrose synthesis, transport and utilization for CO2-enriched plants and decrease carbohydrate accumulation within the leaf. Literature reports are discussed in relation to the hypothesis that sucrose is a major factor in the control of plant carbon partitioning. A model is presented in support.  相似文献   

3.
1. Root competition can be an important determinant of the performance of neighbours within plant populations and communities. Because plants often maintain larger root systems and allocate more of their carbon to root systems under elevated atmospheric CO2 than they do at lower CO2 concentrations, root–root interactions could play an increasingly important role in determining competitive outcomes among individuals and plant species as global CO2 concentration continues to rise.
2. We established 12 pure stands of Linum usitatissimum (flax) and 12 mixed stands of Linum and its naturally co-occurring weed species Silene cretica in opaque plastic trays each filled with the same amount of nutrient-rich soil mix. In half of the trays from each of these stand types, vertical waterproof partitions separated the root systems of individual plants from each other to prevent root competition, while in the other half no partitions were present. Half of the trays from all treatments were allowed to grow under low atmospheric CO2 concentration (320μll–1) and the other half under elevated CO2 (600μll–1), in daylight growth chambers for 30 days from seedling emergence until harvest in mid-June. All trays received equal amounts of water so that soils in the low CO2 treatment were maintained at field capacity.
3. Our results indicate that under high soil fertilities: (1) intra-specific root–root interactions alone play a relatively insignificant role in determining plant biomass production within pure Linum populations and (2) the impact of an aggressive species ( Silene ) on co-occurring less aggressive species ( Linum ) becomes more severe under elevated CO2 as a result of amplified interspecific root competition.  相似文献   

4.
The influence of the root holoparasitic angiosperm Orobanche minor Sm. on the biomass, photosynthesis, carbohydrate and nitrogen content of Trifolium repens L. was determined for plants grown at two CO2 concentrations (350 and 550 μmol mol−1). Infected plants accumulated less biomass than their uninfected counterparts, although early in the association there was a transient stimulation of growth. Infection also influenced biomass allocation both between tissues (infected plants had lower root:shoot ratios) and within tissues:infected roots were considerably thicker before the point of parasite attachment and thinner below. Higher concentrations of starch were also found in roots above the point of attachment, particularly for plants grown in elevated CO2. Elevated CO2 stimulated the growth of T. repens only during the early stages of development. There was a significant interaction between infection and CO2 on growth, with infected plants showing a greater response, such that elevated CO2 partly alleviated the effects of the parasite on host growth. Elevated CO2 did not affect total O. minor biomass per host, the number of individual parasites supported by each host, or their time of attachment to the host root system. Photosynthesis was stimulated by elevated CO2 but was unaffected by O. minor . There was no evidence of down-regulation of photosynthesis in T. repens grown at elevated CO2 in either infected or uninfected plants. The data are discussed with regard to the influence of elevated CO2 on other parasitic angiosperm-host associations and factors which control plant responses to elevated CO2.  相似文献   

5.
Arbuscular mycorrhizal (AM) fungi form mutualistic symbioses with the root systems of most plant species. These mutualisms regulate nutrient exchange in the plant–soil interface and might influence the way in which plants respond to increasing atmospheric CO2. In other experiments, mycorrhizal responses to elevated CO2 have been variable, so in this study we test the hypothesis that different genera of AM fungi differ in their response, and in turn alter the plant's response, to elevated CO2. Four species from three genera of AM fungi were tested. Artemisia tridentata Nutt. seedlings were inoculated with either Glomus intraradices Schenck & Smith, Glomus etunicatum Becker & Gerdemann, Acaulospora sp. or Scutellospora calospora (Nicol. & Gerd.) Walker & Sanders and grown at either ambient CO2 (350 ppm) or elevated CO2 (700 ppm). Several significant inter-specific responses were detected. Elevated CO2 caused percent arbuscular and hyphal colonization to increase for the two Glomus species, but not for Acaulospora sp. or S. calospora . Vesicular colonization was not affected by elevated CO2 for any fungal species. In the extra-radical phase, the two Glomus species produced a significantly higher number of spores in response to elevated CO2, whereas Acaulospora sp. and S. calospora developed significantly higher hyphal lengths. These data show that AM fungal taxa differ in their growth allocation strategies and in their responses to elevated CO2, and that mycorrhizal diversity should not be overlooked in global change research.  相似文献   

6.
Elevated CO2 and conifer roots: effects on growth, life span and turnover   总被引:5,自引:4,他引:1  
Elevated CO2 increases root growth and fine (diam. 2 mm) root growth across a range of species and experimental conditions. However, there is no clear evidence that elevated CO2 changes the proportion of C allocated to root biomass, measured as either the root:shoot ratio or the fine root:needle ratio. Elevated CO2 tends to increase mycorrhizal infection, colonization and the amount of extramatrical hyphae, supporting their key role in aiding the plant to more intensively exploit soil resources, providing a route for increased C sequestration. Only two studies have determined the effects of elevated CO2 on conifer fine-root life span, and there is no clear trend. Elevated CO2 increases the absolute fine-root turnover rates; however, the standing crop root biomass is also greater, and the effect of elevated CO2 on relative turnover rates (turnover:biomass) ranges from an increase to a decrease. At the ecosystem level these changes could lead to increased C storage in roots. Increased fine-root production coupled with increased absolute turnover rates could also lead to increases in soil organic C as greater amounts of fine roots die and decompose. Although CO2 can stimulate fine-root growth, it is not known if this stimulation persists over time. Modeling studies suggest that a doubling of the atmospheric CO2 concentration initially increases biomass, but this stimulation declines with the response to elevated CO2 because increases in assimilation are not matched by increases in nutrient supply.  相似文献   

7.
A poplar short rotation coppice (SRC) grown for the production of bioenergy can combine carbon (C) storage with fossil fuel substitution. Here, we summarize the responses of a poplar ( Populus ) plantation to 6 yr of free air CO2 enrichment (POP/EUROFACE consisting of two rotation cycles). We show that a poplar plantation growing in nonlimiting light, nutrient and water conditions will significantly increase its productivity in elevated CO2 concentrations ([CO2]). Increased biomass yield resulted from an early growth enhancement and photosynthesis did not acclimate to elevated [CO2]. Sufficient nutrient availability, increased nitrogen use efficiency (NUE) and the large sink capacity of poplars contributed to the sustained increase in C uptake over 6 yr. Additional C taken up in high [CO2] was mainly invested into woody biomass pools. Coppicing increased yield by 66% and partly shifted the extra C uptake in elevated [CO2] to above-ground pools, as fine root biomass declined and its [CO2] stimulation disappeared. Mineral soil C increased equally in ambient and elevated [CO2] during the 6 yr experiment. However, elevated [CO2] increased the stabilization of C in the mineral soil. Increased productivity of a poplar SRC in elevated [CO2] may allow shorter rotation cycles, enhancing the viability of SRC for biofuel production.  相似文献   

8.
The effect of long-term exposure to different inorganic carbon, nutrient and light regimes on CAM activity and photosynthetic performance in the submerged aquatic plant, Littorella uniflora (L.) Aschers was investigated. The potential CAM activity of Littorella was highly plastic and was reduced upon exposure to low light intensities (43 μmol m−2 s−1), high CO2 concentrations (5.5 mM, pH 6.0) or low levels of inorganic nutrients, which caused a 25–80% decline in the potential maximum CAM activity relative to the activity in the control experiments (light: 450 μmol m−2 s−1; free CO2: 1.5 mM). The CAM activity was regulated more by light than by CO2, while nutrient levels only affected the activity to a minor extent. The minor effect of low nutrient regimes may be due to a general adaptation of isoetid species to low nutrient levels.
The photosynthetic capacity and CO2 affinity was unaffected or increased by exposure to low CO2, irrespective of nutrient levels. High CO2, low nutrient and low light, however, reduced the capacity by 22–40% and the CO2 affinity by 35-45%, relative to control.
The parallel effect of growth conditions on CAM activity and photosynthetic performance of Littorella suggest that light and dark carbon assimilation are interrelated and constitute an integrated part of the carbon assimilation physiology of the plant. The results are consistent with the hypothesis that CAM is a carbon-conserving mechanism in certain aquatic plants. The investment in the CAM enzyme system is beneficial to the plants during growth at high light and low CO2 conditions.  相似文献   

9.
The responses of three species of nitrogen-fixing trees to CO2 enrichment of the atmosphere were investigated under nutrient-poor conditions. Seedlings of the legume, Robinia pseudoacacia L. and the actinorhizal species, Alnus glutinosa (L.) Gaertn. and Elaeagnus angustifolia L. were grown in an infertile forest soil in controlled-environment chambers with atmospheric CO2 concentrations of 350 μl −1 (ambient) or 700 μl −1. In R. pseudoacacia and A. glutinosa , total nitrogenase (N2 reduction) activity per plant, assayed by the acetylene reduction method, was significantly higher in elevated CO2, because the plants were larger and had more nodule mass than did plants in ambient CO2. The specific nitrogenase activity of the nodules, however, was not consistently or significantly affected by CO2 enrichment. Substantial increases in plant growth occurred with CO2 enrichment despite probable nitrogen and phosphorus deficiencies. These results support the premises that nutrient limitations will not preclude growth responses of woody plants to elevated CO2 and that stimulation of symbiotic activity by CO2 enrichment of the atmosphere could increase nutrient availability in infertile habitats.  相似文献   

10.
Dry weight (DW) and nitrogen (N) accumulation and allocation were measured in isolated plants of Danthonia richardsonii (Wallaby Grass) for 37 d following seed imbibition. Plants were grown at ≈ 365 or 735 μ L L–1 CO2 with N supply of 0·05, 0·2 or 0·5 mg N plant–1 d–1. Elevated CO2 increased DW accumulation by 28% (low-N) to 103% (high-N), following an initial stimulation of relative growth rate. Net assimilation rate and leaf nitrogen productivity were increased by elevated CO2, while N concentration was reduced. N uptake per unit root surface area was unaffected by CO2 enrichment. The ratio of leaf area to root surface area was decreased by CO2 enrichment. Allometric analysis revealed a decrease in the shoot-N to root-N ratio at elevated CO2, while the shoot-DW to root-DW ratio was unchanged. Allometric analysis showed leaf area was reduced, while root surface area was unchanged by elevated CO2, indicating a down-regulation of total plant capacity for carbon gain rather than a stimulation of mineral nutrient acquisition capacity. Overall, growth in elevated CO2 resulted in changes in plant morphology and nitrogen use, other than those associated simply with changing plant size and non-structural carbohydrate content.  相似文献   

11.
The response of Phaseolus vulgaris L. cv. Contender grown under controlled environment at either ambient or elevated (360 and 700 μmol mol-1, respectively) CO2 concentrations ([CO2]), was monitored from 10 days after germination (DAG) until the onset of senescence. Elevated CO2 had a pronounced effect on total plant height (TPH), leaf area (LA), leaf dry weight (LD), total plant biomass (TB) accumulation and specific leaf area (SLA). All of these were significantly increased under elevated carbon dioxide with the exception of SLA which was significantly reduced. Other than high initial growth rates in CO2-enriched plants, relative growth rates remained relatively unchanged throughout the growth period. While the trends in growth parameters were clearly different between [CO2], some physiological processes were largely transient, in particular, net assimilation rate (NAR) and foliar nutrient concentrations of N, Mg and Cu. CO2 enrichment significantly increased NAR, but from 20 DAG, a steady decline to almost similar levels to those measured in plants grown under ambient CO2 occurred. A similar trend was observed for leaf N content where the loss of leaf nitrogen in CO2-enriched plants after 20 DAG, was significantly greater than that observed for ambient-CO2 plants. Under enhanced CO2, the foliar concentrations of K and Mn were increased significantly whilst P, Ca, Fe and Zn were reduced significantly. Changes in Mg and Cu concentrations were insignificant. In addition. high CO2 grown plants exhibited a pronounced leaf discoloration or chlorosis, coupled with a significant reduction in leaf longevity.  相似文献   

12.
Sensing of atmospheric CO2 by plants   总被引:15,自引:12,他引:3  
Abstract. Despite recent interest in the effects of high CO2 on plant growth and physiology, very little is known about the mechanisms by which plants sense changes in the concentration of this gas. Because atmospheric CO2 concentration is relatively constant and because the conductance of the cuticle to CO2 is low, sensory mechanisms are likely to exist only for intercellular CO2 concentration. Therefore, responses of plants to changes in atmospheric CO2 will depend on the effect of these changes on intercellular CO2 concentration. Although a variety of plant responses to atmospheric CO2 concentration have been reported, most of these can be attributed to the effects of intercellular CO2 on photosynthesis or stomatal conductance. Short-term and long-term effects of CO2 on photosynthesis and stomatal conductance are discussed as sensory mechanisms for responses of plants to atmospheric CO2. Available data suggest that plants do not fully realize the potential increases in productivity associated with increased atmospheric CO2. This may be because of genetic and environmental limitations to productivity or because plant responses to CO2 have evolved to cope with variations in intercellular CO2 caused by factors other than changes in atmospheric CO2.  相似文献   

13.
Few studies have investigated the interaction of ultraviolet (UV)-B radiation and CO2 concentration on plants. We studied the combined effects of UV-B radiation and CO2 concentration on canola ( Brassica napus cv. 46A65) under four growth conditions – ambient CO2 with UV-B (control), elevated CO2 with UV-B, ambient CO2 without UV-B, and elevated CO2 without UV-B – to determine whether the adverse effects of UV-B are mitigated by elevated CO2. Elevated CO2 significantly increased plant height and seed yield, whereas UV-B decreased them. Elevated CO2 ameliorated the adverse effects of UV-B in plant height. UV-B did not affect the physical characteristics of leaf but CO2 did. Certain flower and fruit characteristics were affected negatively by UV-B and positively by CO2. UV-B did not affect net photosynthesis, transpiration and stomatal conductance but decreased water use efficiency (WUE). Elevated CO2 significantly increased net photosynthesis and WUE. Neither UV-B nor CO2 affected chlorophyll (Chl) fluorescence. UV-B significantly decreased Chl b and increased the ratio of Chl a / b . Elevated CO2 decreased only the ratio of Chl a / b . UV-B significantly increased UV-absorbing compounds while CO2 had no effect on them. Both UV-B and CO2 significantly increased epicuticular wax content. Many significant relationships were found between morphological, physiological, and chemical parameters. This study showed that elevated CO2 can partially ameliorate some of the adverse effects of UV-B radiation in B . napus .  相似文献   

14.
Brassica rapa L. (rapid-cycling Brassica), was grown in environmentally controlled chambers to determine the interactive effects of ozone (O3) and increased root temperature (RT) on biomass, reproductive output, and photosynthesis. Plants were grown with or without an average treatment of 63 ppb O3. RT treatments were 13°C (LRT) and 18°C (HRT). Air temperatures were 25°C/15°C day/night for all RT treatments.
Ozone affected plant biomass more than did root temperature. Plants in O3 had significantly smaller total plant d. wt, shoot weight, leaf weight, leaf area and leaf number than plants grown without O3. LRT plants tended to have slightly smaller total plant d. wt, shoot weight, root weight, leaf weight, leaf area, and leaf number than HRT plants. For all variables, LRT plants grown in O3 had the smallest biomass, and plants grown in HRT without O3 had the largest biomass.
Ozone reduced both fruit weight and fruit number; LRT also reduced fruit weight but had no effect on fruit number. Ozone reduced photosynthesis but RT had no effect. Conductance and internal CO2 were unaffected by O3 or RT.
These studies indicate that plant growth with LRT might be more reduced in the presence of O3 than growth in plants with HRT, which might be able to compensate for O3-caused reductions in photosynthesis to avoid decreased biomass and reproductive output.  相似文献   

15.
The effect of an elevated atmospheric CO2 concentration on growth, photosynthesis and root respiration of Plantago major L. ssp. major L. was investigated. Plants were grown in a nutrient solution in growth chambers at 350 and 700 μl I−1 CO2 during 7 weeks. The total dry weight of the Co2-enriched plants at the end of this period was 50% higher than that of control plants. However, the relative growth rate (RGR) was stimulated only during the first half of the growing period. The transient nature of the stimulation of the RGR was not likely to be due to end-product inhibition of photosynthesis. It is suggested that in P. major , a rosette plant, self-shading causes a decline in photosynthesis and results in an increase in the shoot: root ratio and a decrease in RGR. CO2-enriched plants grow faster and cosequently suffer more from self-shading. Corrected for this ontogenetic drift, high CO2 concentrations stimulated the RGR of P. major throughout the entire experiment.  相似文献   

16.
Potato plants ( Solanum tuberosum L. var. Russet Burbank) treated with 1 μl ethylene 1−1 of air showed an inhibition of CO2 assimilation by 18%. The inhibition occurred after 3 h of exposure to ethylene and was not mediated through closure of the stomata. The enrichment of the root zone with CO2 almost completely abolished the ethylene inhibition of CO2 assimilation which was apparently due to an increase in the intercellular concentration of CO2 in leaves following enrichment. The effect of application of CO2 to the root zone on ethylene inhibition of CO2 assimilation seemed to last for a few days. Potato plants treated with aminoethoxyvinlglycine (AVG) showed an increase in fresh and dry weight as compared to non-treated plants. Our results indicate that both CO2 and AVG alter the effect of ethylene and promote growth in plants by inhibiting ethylene action and biosynthesis, respectively.  相似文献   

17.
Herbaceous plants grown with free access to nutrients exhibit inherent differences in maximum relative growth rate (RGR) and rate of nutrient uptake. Measured rates of root respiration are higher in fast-growing species than in slow-growing ones. Fast-growing herbaceous species, however, exhibit lower rates of respiration than would be expected from their high rates of growth and nitrate uptake. We investigated why the difference in root O2 uptake between fast- and slow-growing species is relatively small. Inhibition of respiration by the build-up of CO2 in closed cuvettes, diurnal variation in respiration rates or an increasing ratio of respiratory CO2 release to O2 uptake (RQ) with increasing RGR failed to explain the relatively low root respiration rates in fast-growing grasses. Furthermore, differences in alternative pathway activity can at most only partly explain why the difference in root respiration between fast- and slow-growing grasses is relatively small. Although specific respiratory costs for maintenance of biomass are slightly higher in the fast-growing Dactylis glomerata L. than those in the slow-growing Festuca ovina L., they account for 50% of total root respiration in both species. The specific respiratory costs for ion uptake in the fast-growing grass are one-third of those in the slow-growing grass [0·41 versus 1·22 mol O2 mol (NO3)–1]. We conclude that this is the major cause of the relatively low rates of root respiration in fast-growing grasses.  相似文献   

18.
We examined how anticipated changes in CO2 concentration and temperature interacted to alter plant growth, harvest characteristics and photosynthesis in two cold-adapted herbaceous perennials, alfalfa ( Medicago sativa L. cv. Arc) and orchard grass ( Dactylis glomerata L. cv. Potomac). Plants were grown at two CO2 concentrations (362 [ambient] and 717 [elevated] μmol mol−1 CO2) and four constant day/night temperatures of 15, 20, 25 and 30°C in controlled environmental chambers. Elevated CO2 significantly increased total plant biomass and protein over a wide range of temperatures in both species. Stimulation of photosynthetic rate, however, was eliminated at the highest growth temperature in M. sativa and relative stimulation of plant biomass and protein at high CO2 declined as temperature increased in both species. Lack of a synergistic effect between temperature and CO2 was unexpected since elevated CO2 reduces the amount of carbon lost via photorespiration and photorespiration increases with temperature. Differences between anticipated stimulatory effects of CO2 and temperature and whole plant single and leaf measurements are discussed. Data from this study suggest that stimulatory effects of atmospheric CO2 on growth and photosynthesis may decline with anticipated increases in global temperature, limiting the degree of carbon storage in these two perennial species.  相似文献   

19.
1. Evolutionary responses to climate change will depend on the presence of heritable variation within species populations for traits that increase fitness under the changing conditions. Patterns of ecotypic differentiation in relation to latitude in some species suggest that such variation exists in relation to temperature responses. Response to elevated CO2, whether heritable or not, is not expected to be related to latitudinal or climatic differences within temperate regions.
2. To test these ideas, seeds were collected from 10 populations of the outbreeding perennial grass Agrostis curtisii across its range in Europe from south Wales to Portugal. Plants were grown under ambient and elevated temperature and CO2 conditions, in a factorial design, in solardomes; two half sibs from each population were planted in separate pots in each of the two replicate domes with each combination of treatments. One half sib was harvested at the end of the first summer, the second at the end of the second summer.
3. Survival was uniformly high and flowering uniformly low across treatments and populations.
4. Responses to temperature and CO2 treatments varied over time for almost all populations. Treatment effects were not significant on plants harvested in year 1, although there was a trend towards higher shoot biomass under the elevated temperature and CO2 treatment. In year 2 shoot biomass was significantly higher under the elevated temperature treatment across all populations and there was a strong trend towards decreased biomass under elevated CO2.
5. There were no significant correlations of plant response to either CO2 or temperature with climate at origin.
6. These results warn of the dangers of extrapolating evolutionary plant responses to CO2 from short-term experiments.  相似文献   

20.
The cellular basis of guard cell sensing of rising CO2   总被引:5,自引:1,他引:4  
Numerous studies conducted on both whole plants and isolated epidermes have documented stomatal sensitivity to CO2. In general, CO2 concentrations below ambient stimulate stomatal opening, or an inhibition of stomatal closure, while CO2 concentrations above ambient have the opposite effect. The rise in atmospheric CO2 concentrations which has occurred since the industrial revolution, and which is predicted to continue, will therefore alter rates of transpirational water loss and CO2 uptake in terrestrial plants. An understanding of the cellular basis for guard cell CO2 sensing could allow us to better predict, and perhaps ultimately to manipulate, such vegetation responses to climate change. However, the mechanisms by which guard cells sense and respond to the CO2 signal remain unknown. It has been hypothesized that cytosolic pH and malate levels, cytosolic Ca2+ levels, chloroplastic zeaxanthin levels, or plasma-membrane anion channel regulation by apoplastic malate are involved in guard cell perception and response to CO2. In this review, these hypotheses are discussed, and the evidence for guard cell acclimation to prevailing CO2 concentrations is also considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号