首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Oligomerization of the mannose 6-phosphate/insulin-like growth factor?II receptor (M6P/IGF2R) is important for optimal ligand binding and internalization. M6P/IGF2R is a tumor suppressor gene that exhibits loss of heterozygosity and is mutated in several cancers. We tested the potential dominant-negative effects of two cancer-associated mutations that truncate M6P/IGF2R in ectodomain repeats 9 and 14. Our hypothesis was that co-expression of the truncated receptors with the wild-type/endogenous full-length M6P/IGF2R would interfere with M6P/IGF2R function by heterodimer interference. Immunoprecipitation confirmed formation of heterodimeric complexes between full-length M6P/IGF2Rs and the truncated receptors, termed Rep9F and Rep14F. Remarkably, increasing expression of either Rep9F or Rep14F provoked decreased levels of full-length M6P/IGF2Rs in both cell lysates and plasma membranes, indicating a dominant-negative effect on receptor availability. Loss of full-length M6P/IGF2R was not due to increased proteasomal or lysosomal degradation, but instead arose from increased proteolytic cleavage of cell-surface M6P/IGF2Rs, resulting in ectodomain release, by a mechanism that was inhibited by metal ion chelators. These data suggest that M6P/IGF2R truncation mutants may contribute to the cancer phenotype by decreasing the availability of full-length M6P/IGF2Rs to perform tumor-suppressive functions such as binding/internalization of receptor ligands such as insulin-like growth factor II.  相似文献   

2.
The mannose 6-phosphate/insulin-like growth factor II receptor (M6P/IGF2R) is involved in multiple physiological pathways including targeting of lysosomal enzymes, degradation of IGF2, and cicatrization through TGFbeta activation. To target potential therapeutics to this membrane receptor, four carboxylate analogues of mannose 6-phosphate (M6P) were synthesized. Three of them, two isosteric carboxylate analogues and a malonate derivative, showed a binding affinity for the M6P/IGF2R equivalent to or higher than that of M6P. Contrary to M6P, all these analogues were particularly stable in human serum. Moreover, these derivatives did not present any cytotoxic activity against two human cell lines. These analogues represent a new potential for the lysosomal targeting of enzyme replacement therapy in lysosomal diseases or to prevent the membrane-associated activities of the M6P/IGF2R.  相似文献   

3.
The mannose 6-phosphate/insulin-like growth factor II receptor (M6P/IGF2R) forms oligomeric structures important for optimal function in binding and internalization of Man-6-P-bearing extracellular ligands as well as lysosomal biogenesis and growth regulation. However, neither the mechanism of inter-receptor interaction nor the dimerization domain has yet been identified. We hypothesized that areas near the ligand binding domains of the receptor would contribute preferentially to oligomerization. Two panels of minireceptors were constructed that involved truncations of either the N- or C-terminal regions of the M6P/IGF2R encompassing deletions of various ligand binding domains. alpha-FLAG or alpha-Myc-based immunoprecipitation assays showed that all of the minireceptors tested were able to associate with a full-length, Myc-tagged M6P/IGF2R (WT-M). In the alpha-FLAG but not alpha-Myc immunoprecipitation assays, the degree of association of a series of C-terminally truncated minireceptors with WT-M showed a positive trend with length of the minireceptor. In contrast, length did not seem to affect the association of the N-terminally truncated minireceptors with WT-M, except that the 12th extracytoplasmic repeat appeared exceptionally important in dimerization in the alpha-FLAG assays. The presence of mutations in the ligand-binding sites of the minireceptors had no effect on their ability to associate with WT-M. Thus, association within the heterodimers was not dependent on the presence of functional ligand binding domains. Heterodimers formed between WT-M and the minireceptors demonstrated high affinity IGF-II and Man-6-P-ligand binding, suggesting a functional association. We conclude that there is no finite M6P/IGF2R dimerization domain, but rather that interactions between dimer partners occur all along the extracytoplasmic region of the receptor.  相似文献   

4.
Both retinoids and the mannose 6-phosphate/insulin-like growth factor-II receptor (M6P/IGF2R) have been shown to play an important role in controlling cell growth during embryonic development and oncogenesis. Our recent work (Kang et al., Proc. Natl. Acad. Sci. USA, 94: 13671-13676, 1997; Kang et al., Proc. Natl. Acad. Sci. USA, 95: 13687-13691, 1998) revealed a direct biochemical interaction between retinoic acid (RA) and the M6P/IGF2R, thereby leading us to hypothesize that the M6P/IGF2R may mediate a growth-inhibiting effect of RA. To test this hypothesis, cell growth and apoptosis in response to RA and various receptor-selective retinoids were examined in cells that lack or overexpress the M6P/IGF2R. RA and those retinoids capable of binding to the M6P/IGF2R induced a remarkable morphological change with characteristics of round shape and reduced spreading, apoptosis, and growth inhibition in stably transfected mouse P388D1 cells overexpressing the M6P/IGF2R but not in the M6P/IGF2R-deficient P388D1 cells. These effects of RA were neither blocked by a potent RA nuclear receptor (RAR) antagonist (AGN193109), nor mimicked by a selective RAR agonist (TTNPB), suggesting that the observed effects of RA are independent of RARs. Similar effects of the retinoids were observed in cultured neonatal rat cardiac myocytes that have high levels of the M6P/IGF2R. Furthermore, overexpression of the M6P/IGF2R in a RA-resistant cancer cell line (HL-60R) that lacked functional RARs gave the cells a susceptibility to RA-induced apoptosis. These data suggest that the M6P/ IGF2R may play an important role in mediating retinoid-induced apoptosis/growth-inhibition and provide insight into the similar biological effects of RA and the M6P/IGF2R on fetal development and carcinogenesis.  相似文献   

5.
The chicken liver cation-independent mannose 6-phosphate receptor has been purified to apparent homogeneity by affinity chromatography on pentamannose phosphate-Sepharose and tested for its ability to bind iodinated human IGF-I, human IGF-II, and chicken IGF-II. In contrast to the bovine, rat, and human cation-independent mannose 6-phosphate receptors, which bind human IGF-II and IGF-I with nanomolar and micromolar affinities, respectively, the chicken receptor failed to bind either radioligand at receptor concentrations as high as 1 microM. The bovine receptor binds chicken IGF-II with high affinity while the chicken receptor binds this ligand with only low affinity, which we estimate to be in the micromolar range. These data demonstrate that the chicken cation-independent mannose 6-phosphate receptor lacks the high affinity binding site for IGF-II. These results provide an explanation for the failure of previous investigators to identify the type II IGF receptor by IGF-II cross-linking to chicken cells and indicate that the mitogenic activity of IGF-II in chick embryo fibroblasts is most likely mediated via the type I IGF receptor.  相似文献   

6.
The two mannose 6-phosphate (Man-6-P) binding domains of the insulin-like growth factor II/mannose 6-phosphate receptor (Man-6-P/IGF2R), located in extracytoplasmic repeats 1-3 and 7-9, are capable of binding Man-6-P with low affinity and glycoproteins that contain more than one Man-6-P residue with high affinity. High affinity multivalent ligand binding sites could be formed through two possible mechanisms: the interaction of two Man-6-P binding domains within one Man-6-P/IGF2R molecule or by receptor oligomerization. To discriminate between these mechanisms, truncated FLAG epitope-tagged Man-6-P/IGF2R constructs, containing one or both of the Man-6-P binding domains, were expressed in 293T cells, and characterized for binding of pentamannose phosphate-bovine serum albumin (PMP-BSA), a pseudoglycoprotein bearing multiple Man-6-P residues. A construct containing all 15 repeats of the Man-6-P/IGF2R extracytoplasmic domain bound PMP-BSA with the same affinity as the full-length receptor (K(d) = 0.54 nm) with a curvilinear Scatchard plot. The presence of excess unlabeled PMP-BSA increased the dissociation rate of pre-formed (125)I-PMP-BSA/receptor complexes, suggesting negative cooperativity in multivalent ligand binding and affirming the role of multiple Man-6-P/IGF2R binding domains in forming high affinity binding sites. Truncated receptors containing only one Man-6-P binding domain and mutant receptor constructs, containing an Arg(1325) --> Ala mutation that eliminates binding to the repeats 7-9 binding domain, formed high affinity PMP-BSA binding, but with reduced stoichiometries. Collectively, these observations suggest that alignment of Man-6-P binding domains of separate Man-6-P/IGF2R molecules is responsible for the formation of high affinity Man-6-P binding sites and provide functional evidence for Man-6-P/IGF2R oligomerization.  相似文献   

7.
To ascertain whether mannose 6-phosphate affects insulin-like growth factor (IGF) II stimulation of phospholipase C activity in the basolateral membrane of the renal proximal tubular cell, we determined the effect of mannose 6-phosphate on IGF II-stimulated production of inositol trisphosphate (Ins-P3) in isolated basolateral membranes. Production of Ins-P3 measured in the presence of 10(-10), 10(-9), or 10(-8) M rat IGF II was potentiated approximately 2-fold by inclusion of 5 mM mannose 6-phosphate in incubations. Mannose 6-phosphate had no effect on Ins-P3 production in the absence of IGF II. Neither mannose 1-phosphate, mannose, glucose 6-phosphate, nor fructose 1-phosphate exerted similar potentiation. Enhancement of IGF II-stimulated Ins-P3 production required concentrations on the order of several millimolar mannose 6-phosphate. Total and specific binding of 10(-10) M 125I-IGF II to basolateral membranes was significantly increased by 5 mM mannose 6-phosphate. However, there was no significant effect on total or specific binding of 10(-9) or 10(-8) M 125I-IGF II. Our findings suggest that mannose 6-phosphate potentiates stimulation of phospholipase C by IGF II in the basolateral membrane of the renal proximal tubular cell and that potentiation is mediated via a mechanism in addition to enhanced binding of IGF II. Such potentiation could reflect a role for the mannose 6-phosphate moiety as a modulator of IGF II "signal" transmission in vivo.  相似文献   

8.
The insulin-like growth factor II/mannose 6-phosphate receptor (IGF2R) interacts with lysosomal enzymes through two binding domains in its extracytoplasmic domain. We report in the accompanying article (Byrd, J. C., and MacDonald, R. G. (2000) J. Biol. Chem. 275, 18638-18646) that only one of the two extracytoplasmic mannose 6-phosphate (Man-6-P) binding domains is necessary for high affinity Man-6-P ligand binding, suggesting that, like the cation-dependent Man-6-P receptor, oligomerization of the IGF2R contributes to high affinity interaction with lysosomal enzymes. In the present study, we have directly characterized both naturally occurring and engineered forms of the IGF2R for their ability to form oligomeric structures. Whereas gel filtration chromatography suggested that purified bovine IGF2R species exist in a monomeric form, native gel electrophoresis allowed for the separation of dimeric and monomeric forms of the receptors with distinct phosphomannosyl ligand binding characteristics. The ability of the IGF2R to form oligomeric complexes was confirmed and localized to the extracytoplasmic domain through the use of epitope-tagged soluble IGF2R constructs bearing deletions of the transmembrane and cytoplasmic domains. Finally, chimeric receptors were engineered containing the extracytoplasmic and transmembrane domains of the IGF2R fused to the cytoplasmic domain of the epidermal growth factor receptor with which dimerization of the chimeras could be monitored by measuring autophosphorylation. Collectively, these results show that the IGF2R is capable of forming oligomeric complexes, most likely dimers, in the absence of Man-6-P ligands.  相似文献   

9.
Monotreme IGF2 expression and ancestral origin of genomic imprinting   总被引:8,自引:0,他引:8  
IGF2 (insulin-like growth factor 2) and M6P/IGF2R (mannose 6-phosphate/insulin-like growth factor 2 receptor) are imprinted in marsupials and eutherians but not in birds. These results along with the absence of M6P/IGF2R imprinting in the egg-laying monotremes indicate that the parental imprinting of fetal growth-regulatory genes may be unique to viviparous mammals. In this investigation, we have cloned IGF2 from two monotreme mammals, the platypus and echidna, to further investigate the origin of imprinting. We report herein that like M6P/IGF2R, IGF2 is not imprinted in monotremes. Thus, although IGF2 encodes for a highly conserved growth factor in chordates, it is only imprinted in therian mammals. These findings support a concurrent origin of IGF2 and M6P/IGF2R imprinting in the late Jurassic/early Cretaceous period. The absence of imprinting in monotremes, despite apparent interparental conflicts over maternal-offspring exchange, argues that a fortuitous congruency of genetic and epigenetic events may have limited the phylogenetic breadth of genomic imprinting to therian mammals. J. Exp. Zool. (Mol. Dev. Evol.) 291:205-212, 2001.  相似文献   

10.
Competitive inhibition of sperm to explants of the oviductal epithelium was used to study the complementary receptor system that may be involved in the establishment of the oviductal sperm reservoir in the pig. Sperm binding to the oviductal explants is expressed as Binding Index (BI = sperm cells/0.01 mm(2)). From a set of glycoproteins with known oligosaccharide structures, only asialofetuin and ovalbumin showed inhibitory activity, indicating that ovalbumin may block high affinity binding sites (IC(50) congruent with 1.3 microM) and asialofetuin low affinity sites (IC(50) congruent with 18 microM) of the complementary receptor systems, whereas fetuin carrying terminal sialic acid has no effect. Ovalbumin glycopeptides were isolated by Con A affinity chromatography and reverse-phase HPLC following tryptic digestion. Glycopeptides and enzymatically released glycans were analyzed by MS, and were shown to represent preferentially the two high mannose type glycans (Man)(5)(GlcNAc)(2) and (Man)(6)(GlcNAc)(2), and as a minor component the hybrid type glycan (Hex)(4)(GlcNAc)(5). Glycopeptides (84% inhibition) and glycans (81% inhibition) significantly reduced sperm-oviduct binding at a concentration of 3 microM, whereas the deglycosylated peptides showed no inhibitory activity. Mannopentaose (IC(50) congruent with 0.8 microM) representing the oligomannose residue of the high mannose glycans of ovalbumin was as effective as ovalbumin. These data indicate that the carbohydrate-based mechanisms underlying the formation of the oviductal sperm reservoir in the pig is the result of the concerted action of at least the high-affinity binding sites for oligomannose or nonreducing terminal mannose residues and low-affinity binding of galactose.  相似文献   

11.
The insulin-like growth factor II/mannose 6-phosphate receptor (IGF2R) carries out multiple regulatory and transport functions, and disruption of IGF2R function has been implicated as a mechanism to increase cell proliferation. Several missense IGF2R mutations have been identified in human cancers, including the following amino acid substitutions occurring in the extracytoplasmic domain of the receptor: Cys-1262 --> Ser, Gln-1445 --> His, Gly-1449 --> Val, Gly-1464 --> Glu, and Ile-1572 --> Thr. To determine what effects these mutations have on IGF2R function, mutant and wild-type FLAG epitope-tagged IGF2R constructs lacking the transmembrane and cytoplasmic domains were characterized for binding of insulin-like growth factor (IGF)-II and a mannose 6-phosphate-bearing pseudoglycoprotein termed PMP-BSA (where PMP is pentamannose phosphate and BSA is bovine serum albumin). The Ile-1572 --> Thr mutation eliminated IGF-II binding while not affecting PMP-BSA binding. Gly-1449 --> Val and Cys-1262 --> Ser each showed 30-60% decreases in the number of sites available to bind both (125)I-IGF-II and (125)I-PMP-BSA. In addition, the Gln-1445 --> His mutant underwent a time-dependent loss of IGF-II binding, but not PMP-BSA binding, that was not observed for wild type. In all, four of the five cancer-associated mutants analyzed demonstrated altered ligand binding, providing further evidence that loss of IGF2R function is characteristic of certain cancers.  相似文献   

12.
Three monocarboxylic-containing analogues, O-carboxymethyltyrosine (cmT, 5), 4-(carboxymethyl)phenylalanine (cmF, 6), and 4-(carboxydifluoromethyl)phenylalanine (F2cmF, 7) were utilized as phosphotyrosyl (pTyr) replacements in a high affinity B-bend mimicking platform, where they exhibited IC50 values of 2.5 microM, 65 microM and 28 microM, respectively, in a Grb2 SH2 domain Biacore binding assay. When a terminal N(alpha)-oxalyl axillary was utilized to enhance ligand interactions with a critical SH2 domain Arg67 residue (alphaA-helix), binding potencies increased from 4- to 10-fold, resulting in submicromolar affinity for cmF (IC50 = 0.6 microM) and low micromolar affinity for F2cmF (IC50 = 2 microM). Cell lysate binding studies also showed inhibition of cognate Grb2 binding to the p185erbB-2 phosphoprotein in the same rank order of potency as observed in the Biacore assay. These results indicate the potential value of cmF and F2cmF residues as pTyr mimetics for the study of Grb2 SH2 domains and suggest new strategies for improvements in inhibitor design.  相似文献   

13.
The multifunctional mannose 6-phosphate/insulin-like growth factor 2 receptor (M6P/IGF2R) is considered a tumor suppressor. We report here that RNA interference with M6P/IGF2R expression in urokinase-type plasminogen activator (uPA)/urokinase-type plasminogen activator receptor (uPAR) expressing human cancer and endothelial cells resulted in increased pericellular plasminogen activation, cell adhesion, and higher invasive potential through matrigel. M6P/IGF2R silencing led also to the cell surface accumulation of urokinase and plasminogen and enhanced expression of αV integrins. Genetic rescue experiments and inhibitor studies revealed that the enhanced plasminogen activation was due to a direct effect of M6P/IGF2R on uPAR, whereas increased cell adhesion to vitronectin was dependent on αV integrin expression and not uPAR. Increased cell invasion of M6P/IGF2R knockdown cells was rescued by cosilencing both uPAR and αV integrin. Furthermore, we found that M6P/IGF2R expression accelerates the cleavage of uPAR. M6P/IGF2R silencing resulted in an increased ratio of full-length uPAR to the truncated D2D3 fragment, incapable of binding most uPAR ligands. We conclude that M6P/IGF2R controls cell invasion by regulating αV integrin expression and by accelerating uPAR cleavage, leading to the loss of the urokinase/vitronectin/integrin-binding site on uPAR.  相似文献   

14.
Pentamannose 6-phosphate/trilysine substituted aprotinin (PMP-lys-aprotinin) and insulin like growth factor II (IGF II) were used as affinity ligands for the mannose 6-phosphate (M6P) and IGF II binding sites of the M6P/IGF II receptor. Both ligands were cross linked to intact receptor and tryptic fragments of the receptor. The pattern of receptor fragments with M6P and IGF II binding sites differed indicating that the two binding sites are located on different segments of the receptor. The receptor was incubated with [125I]IGF II and pentamannose 6-phosphate substituted bovine serum albumin (PMP-BSA). From these mixtures [125I]IGF II receptor complexes could be precipitated with antibodies against the PMP-BSA indicating that the M6P/IGF II receptor can bind simultaneously IGF II and M6P-containing ligands.  相似文献   

15.
N O'Hara  H Ono 《Life sciences》1987,40(13):1301-1308
The effects of papaverine on specific [3H]-yohimbine binding to canine platelet alpha 2-adrenergic receptors and on the platelet aggregation were assessed and compared with those of verapamil. Both compounds concentration-dependently inhibited [3H]-yohimbine binding with KI values for respective compounds of 0.39 +/- 0.05 microM (n = 3) and 15 +/- 0.19 microM (n = 3). In the presence of either compound KD values in Scatchard analysis of the equilibrium ligand binding increased in concentration-dependent manner, whereas Bmax did not change, indicating competitive inhibition of the ligand binding by these compounds. (-)-Epinephrine (3 microM) potentiation of adenosine diphosphate (ADP, 0.1 microM) aggregation was inhibited by papaverine with IC50 of 11 +/- 3.6 microM (n = 4). In the same experiments verapamil inhibited the platelet aggregation with lower IC50 (3.1 +/- 0.87 microM, n = 4) in comparison with that for papaverine. These results suggest that papaverine, like verapamil, inhibits physiological response of canine platelets through alpha-adrenergic receptor stimulation by direct interaction with the receptors.  相似文献   

16.
Aromatase inhibition by flavonoids   总被引:4,自引:1,他引:3  
Several synthetic flavones were found to inhibit the aromatization of androstenedione to estrone catalyzed by human placental microsomes. Twenty-one compounds were tested and the IC50 of the most active were: flavone, 10 microM; 7-hydroxyflavone, 0.5 microM; 7,4'-dihydroxyflavone, 2.0 microM; flavanone, 8.0 microM; and 4'-hydroxyflavanone, 10 microM. Most of the others had IC50 values ranging from 80 to greater than 200 microM. These findings show that 4'-hydroxylation results in either no change or very little change in IC50 for flavanone, isoflavone and isoflavanone as well as other ring A hydroxylated flavones. Derivatives of flavone with a hydroxyl substituent at position 5, 6 and 7 were also screened. 7-Hydroxyflavone (11) was the most effective competitive inhibitor (IC50 = 0.5 microM) with an apparent Ki value of 0.25 microM. Compound 11 also induced a change in the absorption spectrum of the aromatase cytochrome P-450 which is indicative of substrate displacement. The relative binding affinities of the flavonoid analogs were determined and only ring A adn ring B dihydroxylated analogs were found to bind to the estrogen receptor.  相似文献   

17.
Imprint status of M6P/IGF2R and IGF2 in chickens   总被引:4,自引:0,他引:4  
Genomic imprinting is a method of gene regulation whereby a gene is expressed in a parent-of-origin-dependent fashion; however, it is hypothesized that imprinting should not occur in oviparous taxa such as birds. Therefore, we examined the allelic expression of two genes in the chicken that are reciprocally imprinted in most mammals, mannose 6-phosphate/insulin-like growth factor 2 receptor (M6P/IGF2R) and insulin-like growth factor 2 (IGF2). Single nucleotide polymorphisms were identified in these genes, and cDNA was prepared from several tissues of embryos heterozygous for these polymorphisms. Both alleles of M6P/IGF2R and IGF2 were expressed in all tissues examined by RT-PCR. Since the expression of these genes was independent of the parent from which they were inherited, we conclude that neither M6P/IGF2R nor IGF2 are imprinted in the chicken.  相似文献   

18.
1,1-bis(4-Hydroxyphenyl)-2-phenylpent-1-ene (5) and 1,1,2-tris(4-hydroxyphenyl)pent-1-ene (6) derivatives with terminal CN (5a, 6a), NH(2) (5b, 6b), NHCOCH(3) (5c, 6c), NHCOC(2)H(5) (5d, 6d) groups at the C2-propyl chain were synthesized and assayed in vitro for estrogen receptor (ER) binding affinity (RBA) in a competition experiment with [3H]estradiol and for estrogenic and anti-estrogenic properties in a luciferase assay with ER-positive MCF-7-2a cells, stably transfected with the plasmid ERE(wtc)luc. The CN as well as the NH(2) group reduced the RBA-values (5: 2.09%; 5a: 1.50%; 5b: 0.07%; 6: 4.03%; 6a: 0.67%; 6b: 0.20%) and the antagonistic potency (5: IC(50)=0.05 microM; 5a: IC(50)=0.43 microM; 5b: IC(50)=1.50 microM; 6: IC(50)=0.07 microM; 6a: IC(50)=0.60 microM; 6b: IC(50)=2.00 microM). Derivatization of the amino function with acetic anhydride and propionic anhydride did not change the RBA-value but altered the antagonistic profile (5c: IC(50)=2.50 microM; 5d: IC(50)=not detectable; 6c: IC(50)=0.65 microM; 6d: IC(50)=1.00 microM). Agonistic effects were only detected for the amine 6b (34.2% activation of the luciferase expression). These data document that estrogen receptor binding and the antagonistic effects can be modified by terminal groups at the C2-propyl chain of the pure antagonists 5 and 6. The mode of action is unclear. However, it can be assumed that the elongation of the side chain causes a reorientation in the LBD in order to locate the side chain in a side pocket near the ligand binding domain.  相似文献   

19.
Urokinase-type plasminogen activator receptor (uPAR) binding by the mannose 6-phosphate/insulin-like growth factor II receptor (Man-6-P/IGF2R) is considered important to Man-6-P/IGF2R tumor suppressor function via regulation of cell surface proteolytic activity. Our goal was to map the uPAR binding site of the Man-6-P/IGF2R by analyzing the uPAR binding characteristics of a panel of minireceptors containing different regions of the Man-6-P/IGF2R extracytoplasmic domain. Coimmunoprecipitation assays revealed that soluble recombinant uPAR (suPAR) bound the Man-6-P/IGF2R at two distinct sites, one localized to the amino-terminal end of the Man-6-P/IGF2R extracytoplasmic domain (repeats 1-3) and the other to the more carboxyl-terminal end (repeats 7-9). These sites correspond with the positions of the two Man-6-P binding domains of Man-6-P/IGF2R. Indeed, the suPAR-Man-6-P/IGF2R interaction was inhibited by Man-6-P, and binding-competent su-PAR species represented a minor percentage (8-30%) of the suPAR present. In contrast, Man-6-P/IGF2R binding of endogenous, full-length uPAR solubilized from plasma membranes of the prostate cancer cell line, PC-3, was not inhibited by Man-6-P. Further studies showed that very little (<5%) endogenous uPAR was Man-6-P/IGF2R binding-competent. We conclude that, contrary to previous reports, the interaction between uPAR and Man-6-P/IGF2R is a low percentage binding event and that suPAR and full-length uPAR bind the Man-6-P/IGF2R by different mechanisms.  相似文献   

20.

Background  

The mannose 6-phosphate/insulin-like growth factor-II receptor (M6P/IGF2R) is a multi-functional protein that has been implicated in regulation of cell growth and apoptosis. Cardiac myocytes express relatively high levels of M6P/IGF2R, and cardiomyocyte apoptosis has been identified in a variety of cardiovascular disorders, such as myocardial infarction and heart failure. However, involvement of M6P/IGF2R in the pathogenesis of these conditions has not been determined. Thus, the objective of this study was to determine the role of M6P/IGF2R in regulation of cardiac myocyte growth and apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号