首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many microbial pathogens recognize oligosaccharides displayed on the surface of host cells as receptors for toxins and adhesins. These ligand-receptor interactions are critical for disease pathogenesis, making them promising targets for novel anti-infectives. One strategy with particular utility against enteric infections involves expression of molecular mimics of host oligosaccharides on the surface of harmless bacteria capable of surviving in the gut. This can be achieved in Gram-negative bacteria by manipulating the outer core region of the lipopolysaccharide (LPS) through expression of cloned heterologous glycosyltransferases. The resultant chimeric LPS molecules are incorporated into the outer membrane by the normal assembly route and presented as a closely packed 2-D array of receptor mimics. Several such "designer probiotics" have been constructed, and these bind bacterial toxins in the gut lumen with very high avidity, blocking their uptake by host cells and thereby preventing disease.  相似文献   

2.
Lipopolysaccharides (LPSs) form the major constituent of the outer membrane of Gram-negative bacteria, and are believed to play a key role in processes that govern microbial metal binding, microbial adsorption to mineral surfaces, and microbe-mediated oxidation/reduction reactions at the bacterial exterior surface. A computational modeling capability is being developed for the study of geochemical reactions at the outer bacterial envelope of Gram-negative bacteria. A molecular model for the rough LPS of Pseudomonas aeruginosa has been designed based on experimentally determined structural information. An electrostatic model was developed based on Hartree-Fock SCF calculations of the complete LPS molecule to obtain partial atomic charges. The exterior of the bacterial membrane was assembled by replication of a single LPS molecule and a single phospholipid molecule. Molecular dynamics simulations of the rough LPS membrane of P. aeruginosa were carried out and trajectories were analyzed for the energetic and structural factors that determine the role of LPS in processes at the cell surface.  相似文献   

3.
Soil pollution is a major environmental problem and many contaminated sites are tainted with a mixture of organic and heavy metal contaminants. Compared to other remedial strategies, phytoremediation is a low cost, environmentally-friendly, sustainable means of remediating the contamination. This review first provides an overview of phytoremediation studies where the soil is contaminated with just one type of pollutant (heavy metals or organics) and then critically evaluates the applicability of phytotechnologies for the remediation of contaminated sites where the soil is polluted by a mixture of organic and heavy metal contaminants. In most of the earlier research studies, mixed contamination was held to be detrimental to plant growth, yet there were instances where plant growth was more successful in soil with mixed contamination than in the soil with only individual contaminants. New effective phytoremediation strategies can be designed for remediation of co-contaminated sites using: (a) plants species especially adapted to grow in the contaminated site (hyperacumulators, local plants, transgenic plants); (b) endophytic bacteria to enhance the degradation in the rizhosphere; (c) soil amendments to increase the contaminants bioavailability [chelating agents and (bio)surfactants]; (d) soil fertilization to enhance the plant growth and microbial activity in the soil; and (e) coupling phytoremediation with other remediation technologies such as electrokinetic remediation or enhanced biodegradation in the rhizosphere.  相似文献   

4.
芳香族化合物是一类具有苯环结构的有机物,它们结构稳定,不易分解,并可通过食物链进行生物富集和生物放大,对生态环境及人类健康造成极大危害。细菌具有超强的分解代谢能力,能降解多环芳烃(polycyclic aromatic hydrocarbons, PAHs)等多种难降解芳香族污染物。吸附和转运是细菌进行芳香族化合物细胞内代谢的前提。虽然芳香族化合物的细菌降解已取得较为显著的研究进展,但吸附和转运机理仍不甚清楚。本文讨论了细菌对芳香族化合物的吸附有积极作用的细胞表面疏水性、生物被膜形成和细菌趋化性等影响因素,总结了FadL家族、TonB依赖性受体蛋白、OmpW家族等外膜转运系统和主要协同转运蛋白超家族(major facilitator superfamily, MFS)转运体、ATP结合盒(ATP-binding cassette, ABC)转运蛋白等内膜转运系统对该类化合物跨膜运输作用,并对跨膜转运机制进行了讨论和阐述,旨在为芳香族污染物的防控和治理提供一定理论参考。  相似文献   

5.
重金属的生物不可降解性使其在环境中长期存在,导致严重的环境污染,对人类健康和生态系统构成威胁。与传统的物化修复技术相比,微生物修复具有成本低廉、环境友好和高效等特点。在面对重金属胁迫或营养不均衡时,微生物会被激发以分泌合成胞外多糖(exopolysaccharides, EPS)。由此可见,EPS的产生是微生物对抗重金属胁迫的重要策略之一。EPS不仅能保护微生物在低温、高温、高盐等极端环境或受毒性化合物胁迫的条件下存活,并且在细胞内外进行信息和物质的交流与传递,既作为保护屏障限制重金属离子进入细胞,又作为介质进行交流。EPS结构中含有多个带负电荷的官能团,能够与重金属离子发生络合、离子交换、氧化还原等反应,从而降低重金属的生物有效性并减轻其毒性。微生物EPS在重金属胁迫环境中的修复具有重要意义。然而,目前缺乏关于微生物EPS合成过程、与重金属互作机制及其在重金属胁迫环境中应用现状的系统综述。本文概述了微生物EPS及其分类,详细阐述了细菌EPS胞内及胞外的生物合成机制,并探讨了微生物EPS与重金属互作机制,以及微生物EPS修复水、土环境中重金属污染方面的研究进展。最后,展望了EPS合成及其在重金属修复中的作用机制研究,可为微生物EPS进一步应用于环境重金属污染修复提供支持。  相似文献   

6.
A comprehensive overview of elements in bioremediation   总被引:3,自引:0,他引:3  
Sustainable development requires the development and promotion of environmental management and a constant search for green technologies to treat a wide range of aquatic and terrestrial habitats contaminated by increasing anthropogenic activities. Bioremediation is an increasingly popular alternative to conventional methods for treating waste compounds and media with the possibility to degrade contaminants using natural microbial activity mediated by different consortia of microbial strains. Many studies about bioremediation have been reported and the scientific literature has revealed the progressive emergence of various bioremediation techniques. In this review, we discuss the various in situ and ex situ bioremediation techniques and elaborate on the anaerobic digestion technology, phytoremediation, hyperaccumulation, composting and biosorption for their effectiveness in the biotreatment, stabilization and eventually overall remediation of contaminated strata and environments. The review ends with a note on the recent advances genetic engineering and nanotechnology have had in improving bioremediation. Case studies have also been extensively revisited to support the discussions on biosorption of heavy metals, gene probes used in molecular diagnostics, bioremediation studies of contaminants in vadose soils, bioremediation of oil contaminated soils, bioremediation of contaminants from mining sites, air sparging, slurry phase bioremediation, phytoremediation studies for pollutants and heavy metal hyperaccumulators, and vermicomposting.  相似文献   

7.
水体沉积物有机污染是当前全球关注的重要环境问题。微生物具有呼吸和代谢多样性,能以多种污染物作为厌氧呼吸的电子供体或受体,与周围环境中的生物和非生物因素组成代谢网络耦合有机污染物降解转化,是有机污染水体沉积物修复的重要驱动者。本文重点综述了微生物厌氧呼吸、电子传递网络及其对有机污染水体沉积物的修复机制研究进展,并对有机污染水体沉积物微生物修复理论和技术研究的问题和挑战进行了探讨。  相似文献   

8.
Biological technologies for the remediation of co-contaminated soil   总被引:1,自引:0,他引:1  
Compound contamination in soil, caused by unreasonable waste disposal, has attracted increasing attention on a global scale, particularly since multiple heavy metals and/or organic pollutants are entering natural ecosystem through human activities, causing an enormous threat. The remediation of co-contaminated soil is more complicated and difficult than that of single contamination, due to the disparate remediation pathways utilized for different types of pollutants. Several modern remediation technologies have been developed for the treatment of co-contaminated soil. Biological remediation technologies, as the eco-friendly methods, have received widespread concern due to soil improvement besides remediation. This review summarizes the application of biological technologies, which contains microbial technologies (function microbial remediation and composting or compost addition), biochar, phytoremediation technologies, genetic engineering technologies and biochemical technologies, for the remediation of co-contaminated soil with heavy metals and organic pollutants. Mechanisms of these technologies and their remediation efficiencies are also reviewed. Based on this study, this review also identifies the future research required in this field.  相似文献   

9.
The ultrastructure of the cytoplasmic membrane and cell wall of two strains of Escherichia coli, Proteus morganii, P. vulgaris, Acinetobacter anitratum, Moraxella lacunata, Erwinia amylovora, Acinetobacter sp., and of a plant pathogen, unclassified gram-negative, fixed by the Ryter-Kellenberger procedure, was found to be significantly affected by the use or omission of the uranyl postfixation included in that procedure, and by the presence or absence of calcium in the OsO(4) fixative. The omission of the uranyl treatment results in a less clear profile of both the outer membrane of the cell wall and of the cytoplasmic membrane. The observation of these two membranes is further limited when both uranyl and calcium are omitted. The R-layer and the material covering the surface of the cell wall appear more distinct when the uranyl postfixation is not used. Evidence is given suggesting that the influence of uranyl and calcium ions on the appearance of the outer and cytoplasmic membranes would be primarily due to their action as fixatives, whereas the influence of uranyl on the appearance of the R-layer would be due to a direct action on the peptidoglycan component of this layer. When uranyl acetate is used as a section stain after the embedding in plastic, it improves the observation of the R-layer. In this case, a well contrasted R-layer is consistently observed in all strains studied, provided that the postfixation has been omitted. The frequent difficulty in clearly observing the R-layer in many published micrographs probably results from the common use of uranyl postfixation.  相似文献   

10.
陈杏娟  郭俊  许玫英 《微生物学报》2011,51(9):1146-1151
零价铁(Fe0)具有高效还原转化多种污染物的能力,但不能实现污染物的矿化作用。微生物与Fe0的协同作用过程,以微生物为主导,Fe0起促进作用,可有效提高多种污染物的降解效率,实现污染物的彻底脱毒与无害化,因此利用微生物协同Fe0氧化进行环境修复具有广阔的应用前景。本文从微生物协同Fe0氧化的作用机理、菌种多样性及其在环境修复中的应用等研究进展进行综述,提出微生物协同Fe0氧化的环境修复研究中存在的主要问题和重点研究方向,以期在更全面、深入地认识这一过程的基础上,充分发挥其在环境修复中的作用。  相似文献   

11.
Francisella tularensis is a Gram-negative intracellular coccobacillus and the causative agent of the zoonotic disease tularemia. When compared with other bacterial pathogens, the extremely low infectious dose (<10 CFU), rapid disease progression, and high morbidity and mortality rates suggest that the virulent strains of Francisella encode for novel virulence factors. Surface-exposed molecules, namely outer membrane proteins (OMPs), have been shown to promote bacterial host cell binding, entry, intracellular survival, virulence and immune evasion. The relevance for studying OMPs is further underscored by the fact that they can serve as protective vaccines against a number of bacterial diseases. Whereas OMPs can be extracted from gram-negative bacteria through bulk membrane extraction techniques, including sonication of cells followed by centrifugation and/or detergent extraction, these preparations are often contaminated with periplasmic and/or cytoplasmic (inner) membrane (IM) contaminants. For years, the "gold standard" method for the biochemical and biophysical separation of gram-negative IM and outer membranes (OM) has been to subject bacteria to spheroplasting and osmotic lysis, followed by sucrose density gradient centrifugation. Once layered on a sucrose gradient, OMs can be separated from IMs based on the differences in buoyant densities, believed to be predicated largely on the presence of lipopolysaccharide (LPS) in the OM. Here, we describe a rigorous and optimized method to extract, enrich, and isolate F. tularensis outer membranes and their associated OMPs.  相似文献   

12.
The outer membrane of Gram-negative bacteria is of great scientific interest because it mediates the action of antimicrobial agents. The membrane surface is composed of lipopolysaccharide (LPS) molecules with negatively charged oligosaccharide headgroups. To a certain fraction, LPSs additionally display linear polysaccharides termed O-side chains (OSCs). Structural studies on bacterial outer surfaces models, based on LPS monolayers at air-water interfaces, have so far dealt only with rough mutant LPSs lacking these OSCs. Here, we characterize monolayers of wild-type LPS from Escherichia coli O55:B5 featuring strain-specific OSCs in the presence of defined concentrations of monovalent and divalent ions. Pressure-area isotherms yield insight into in-plane molecular interactions and monolayer elastic moduli. Structural investigations by x-ray and neutron reflectometry reveal the saccharide conformation and allow quantifying the area per molecule and the fraction of LPS molecules carrying OSCs. The OSC conformation is satisfactorily described by the self-consistent field theory for end-grafted polymer brushes. The monolayers exhibit a significant structural response to divalent cations, which goes beyond generic electrostatic screening.  相似文献   

13.
董彬 《生态科学》2012,31(6):683-687
文章通过对土壤重金属污染相关文献进行研究分析,从我国土壤重金属污染的现状、修复技术应用和研究前景等方面进行了系统综述,重点分析了我国土壤重金属污染修复技术的应用和研究前景。超富集植物修复是一种新兴的绿色生物技术,成本较低,易操作,是土壤污染治理的环境友好技术。微生物修复具有成本低、无二次污染、对环境影响小、效率高等特点,可在一定程度上带来经济效益和生态效益,是一种理想的绿色修复方法。并指出筛选和培育生物量大、适应性强、富集能力强、易栽培且具经济效益的超富集植物、利用大型真菌吸收和富集土壤重金属、组合运用多种修复技术、结合应用分子生物学技术和基因工程技术和加强土壤重金属污染修复效果的评价将是今后研究的重点和热点。  相似文献   

14.
环境问题是21世纪人类面临的最严重的挑战。随着现代工农业飞速发展,生态环境日益恶化,难降解污染物如新兴污染物逐渐显现,已成为制约社会经济可持续发展的重要因素。微生物具有强大的环境修复能力,但是其进化速度远不及新兴污染物出现的速度,亟需应用合成生物学的技术来解决这一难题。在充分认识难降解有机污染物微生物降解(途径)特性的基础上,利用我国丰富的微生物与基因资源,运用合成生物学的手段,定向设计和改造现有降解菌株,构建能够降解一种或多种污染物的工程菌株;同时针对复合型污染,如废水等,在建立典型有机污染物代谢、调控和抗逆相关基因元件的模块库基础上,引入人工菌群等策略,对生物系统进行理性设计和组装,构建典型环境污染物的高效降解菌群,可有效促进我国新兴污染物微生物分解代谢的研究,为环境修复的工程应用提供技术支持。  相似文献   

15.
Discharge of heavy metals from metal processing industries is known to have adverse effects on the environment. Conventional treatment technologies for removal of heavy metals from aqueous solution are not economical and generate huge quantity of toxic chemical sludge. Biosorption of heavy metals by metabolically inactive non-living biomass of microbial or plant origin is an innovative and alternative technology for removal of these pollutants from aqueous solution. Due to unique chemical composition biomass sequesters metal ions by forming metal complexes from solution and obviates the necessity to maintain special growth-supporting conditions. Biomass of Aspergillus niger, Penicillium chrysogenum, Rhizopus nigricans, Ascophyllum nodosum, Sargassum natans, Chlorella fusca, Oscillatoria anguistissima, Bacillus firmus and Streptomyces sp. have highest metal adsorption capacities ranging from 5 to 641 mg g(-1) mainly for Pb, Zn, Cd, Cr, Cu and Ni. Biomass generated as a by-product of fermentative processes offers great potential for adopting an economical metal-recovery system. The purpose of this paper is to review the available information on various attributes of utilization of microbial and plant derived biomass and explores the possibility of exploiting them for heavy metal remediation.  相似文献   

16.
The majority of Pseudomonas aeruginosa strains synthesize two antigenically distinct types of lipopolysaccharide (LPS), namely, a serotype-specific B-band LPS and a common antigen A-band LPS. A-band LPS consists of uncharged poly-D-rhamnan, which does not bind uranyl ions and is difficult to stain for electron microscopy; the highly charged B-band LPS is more easily visualized. We selected two wild-type strains, PAO1 (serotype O5) and IATS O6 (serotype O6), generated isogenic mutants from them, and examined the distribution of LPS on the surface of these organisms by freeze-substitution and electron microscopy. On PAO1 cells, which express both A-band and B-band LPSs, a 31- to 36-nm-wide fringe extending perpendicularly from the outer membrane was observed. A fine fibrous material was also observed on the surface of serotype O6 (A+ B+) cells, although this material did not form a uniform layer. When the LPS-deficient mutants, strains AK1401 (A+ B-), AK 1012 (A- B-), rd7513 (A- B-), and R5 (an IATS O6-derived rough mutant; A- B-), were examined, no extraneous material was apparent above the bilayer. However, an asymmetrical staining pattern was observed on the outer leaflet of the outer membrane of each of these mutants, presumably conforming to the anionic charge distribution of the core region of the rough LPS. In all cases, expression of the LPS types was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and silver staining. When optical densitometry on electron microscopy negatives was used to analyze the outer membrane staining profiles, subtle differences in the degrees of core deficiency among rough mutants were detectable. This is the first time an electron microscopy technique has preserved the infrastructure produced in the outer membrane by its constituent macromolecules. We conclude that freeze-substitution electron microscopy is effective in the visualization of LPS morphotypes.  相似文献   

17.
随着工业化进程不断加快,重金属污染日益加剧,尤其是水体的重金属污染,已严重威胁人类健康,迫切需要进行有效的污染修复.相比传统物理和化学修复,生物修复具有绿色环保和可持续性的特点.因为微生物生长繁殖迅速、生物被膜具有动态可调节和环境适应性好等特点,使其能更好耐受胁迫环境,在环境修复中有重要作用.合成生物学改造微生物及生物...  相似文献   

18.
Paenibacterin is a broad-spectrum lipopeptide antimicrobial agent produced by Paenibacillus thiaminolyticus OSY-SE. The compound consists of a cyclic 13-residue peptide and an N-terminal C15 fatty acyl chain. The mechanism of action of paenibacterin against Escherichia coli and Staphylococcus aureus was investigated in this study. The cationic lipopeptide paenibacterin showed a strong affinity for the negatively charged lipopolysaccharides (LPS) from the outer membrane of Gram-negative bacteria. Addition of LPS (100 μg/ml) completely eliminated the antimicrobial activity of paenibacterin against E. coli. The electrostatic interaction between paenibacterin and LPS may have displaced the divalent cations on the LPS network and thus facilitated the uptake of antibiotic into Gram-negative cells. Paenibacterin also damaged the bacterial cytoplasmic membrane, as evidenced by the depolarization of membrane potential and leakage of intracellular potassium ions from cells of E. coli and S. aureus. Therefore, the bactericidal activity of paenibacterin is attributed to disruption of the outer membrane of Gram-negative bacteria and damage of the cytoplasmic membrane of both Gram-negative and Gram-positive bacteria. Despite the evidence of membrane damage, this study does not rule out additional bactericidal mechanisms potentially exerted by paenibacterin.  相似文献   

19.
Cationic antimicrobial cationic peptides (CAMP) have been found in recent years to play a decisive role in hosts' defense against microbial infection. They have also been investigated as a new therapeutic tool, necessary in particular due to the increasing resistance of microbiological populations to antibiotics. The structural basis of the activity of CAMPs has only partly been elucidated and may comprise quite different mechanism at the site of the bacterial cell membranes or in their cytoplasm. Polymyxin B (PMB) is a CAMP which is effective in particular against Gram-negative bacteria and has been well studied with the aim to understand its interaction with the outer membrane or isolated membrane components such as lipopolysaccharide (LPS) and to define the mechanism by which the peptides kill bacteria or neutralize LPS. Since PMB resistance of bacteria is a long-known phenomenon and is attributed to structural changes in the LPS moiety of the respective bacteria, we have performed a thermodynamic and biophysical analysis to get insights into the mechanisms of various LPS/PMB interactions in comparison to LPS from sensitive strains. In isothermal titration calorimetric (ITC) experiments considerable differences of PMB binding to sensitive and resistant LPS were found. For sensitive LPS the endothermic enthalpy change in the gel phase of the hydrocarbon chains converts into an exothermic reaction in the liquid crystalline phase. In contrast, for resistant LPS the binding enthalpy change remains endothermic in both phases. As infrared data show, these differences can be explained by steric changes in the headgroup region of the respective LPS.  相似文献   

20.
随着人类活动的干扰以及社会工业化进程的加剧,水环境污染现象日益严峻。微生物是水环境污染治理和修复的主要驱动者。越来越多的研究发现,水环境中污染物的去除速率与微生物的趋化功能密切相关。综述了近几年有关微生物对水环境中无机盐、溶解性有机物和重金属等的趋化特性研究进展,讨论并展望了基于趋化功能微生物精准调控的水环境污染强化治理技术的应用前景及主要问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号