首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA strand scission by the novel antitumor antibiotic leinamycin   总被引:1,自引:0,他引:1  
M Hara  Y Saitoh  H Nakano 《Biochemistry》1990,29(24):5676-5681
Leinamycin is a recently discovered antitumor antibiotic with an unusual 1,3-dioxo-1,2-dithiolane structure. It preferentially inhibits the incorporation of [3H]thymidine into the acid-insoluble fraction of Bacillus subtilis. In vitro, leinamycin causes single-strand cleavage of supercoiled double-helical pBR322 DNA in the presence of thiol cofactors. Scavengers of oxygen radical did not supress the DNA-cleaving activity. Thiol-activated leinamycin binds calf thymus DNA at 4 degrees C and thermal treatment of the leinamycin-DNA adduct released a chemically modified leinamycin from the complex. The lack of cytotoxicity and DNA-cleaving activity for S-deoxyleinamycin indicates that the 1,3-dioxo-1,2-dithiolane moiety is essential for the activity of leinamycin. Thus, the primary cellular target of leinamycin appears to be DNA. It binds DNA and causes single-strand break at low concentrations, which may account for the potent antitumor activity.  相似文献   

2.
Oxygen dependence of mitochondrial nitric oxide synthase activity   总被引:3,自引:0,他引:3  
The effect of O(2) concentration on mitochondrial nitric oxide synthase (mtNOS) activity and on O(2)(-) production was determined in rat liver, brain, and kidney submitochondrial membranes. The K(mO(2)) for mtNOS were 40, 73, and 37 microM O(2) and the V(max) were 0.51, 0.49, and 0.42 nmol NO/minmg protein for liver, brain, and kidney mitochondria, respectively. The rates of O(2)(-) production, 0.5-12.8 nmol O(2)(-)/minmg protein, depended on O(2) concentration up to 1.1mM O(2). Intramitochondrial NO, O(2)(-), and ONOO(-) steady-state concentrations were calculated for the physiological level of 20 microM O(2); they were 20-39 nM NO, 0.17-0.33 pM O(2)(-), and 0.6-2.2 nM ONOO(-) for the three organs. These levels establish O(2)/NO ratios of 513-1000 that correspond to physiological inhibitions of cytochrome oxidase by intramitochondrial NO of 16-25%. The production of NO by mtNOS appears as a regulatory process that modulates mitochondrial oxygen uptake and cellular energy production.  相似文献   

3.
The relative effectiveness of oxidizing (.OH, H2O2), ambivalent (O2-) and reducing free radicals (e- and CO2-) in causing damage to membranes and membrane=bound glyceraldehyde-3-phosphate dehydrogenase of resealed erythrocyte ghosts has been determined. The rates of damage to membrane-bound glyceraldehyde-3-phosphate dehydrogenase (R(enz)) were measured and the rates of damage to membranes (R(mb)) were assessed by measuring changes in permeability of the resealed ghosts to the relatively low molecular weight substrates of glyceraldehyde-3-phosphate dehydrogenase. Each radical was selectively isolated from the mixture produced during gamma-irradiation, using appropriate mixtures of scavengers such as catalase, superoxide dismutase and formate. .OH, O2- and H2O2 were approximately equally effective in inactivating membrane-bound glyceraldehyde-3-phosphate dehydrogenase, while e- and CO2- were the least effective. R(enz) values of O2- and H2O2 were 10-times and of .OH 15-times that of e-. R(mb) values were quite similar for e- and H2O2 (about twice that of O2-), while that of .OH was 3-times that of O2-. Hence, with respect to R(mb): .OH greater than e- = H2O2 greater than O2-, and with respect to R(enz): .OH greater than O2- = H2O2 much greater than e-. The difference between the effectiveness of the most damaging and the least damaging free radicals was more than 10-fold greater in damage to the enzyme than to the membranes. Comparison between H2O2 added as a chemical reagent and H2O2 formed by irradiation showed that membranes and membrane-bound glyceraldehyde-3-phosphate dehydrogenase were relatively inert to reagent H2O2 but markedly susceptible to the latter.  相似文献   

4.
The thyroid plasma membrane contains a Ca2(+)-regulated NADPH-dependent H2O2 generating system which provides H2O2 for the thyroid peroxidase-catalyzed biosynthesis of thyroid hormones. The plasma membrane fraction contains a Ca2(+)-independent cytochrome c reductase activity which is not inhibited by superoxide dismutase. But it is not known whether H2O2 is produced directly from molecular oxygen (O2) or formed via dismutation of super-oxide anion (O2-). Indirect evidence from electron scavenger studies indicate that the H2O2 generating system does not liberate O2-, but studies using the modified peroxidase, diacetyldeuteroheme horseradish peroxidase, to detect O2- indicate that H2O2 is provided via the dismutation of O2-. The present results provide indirect evidence that the cytochrome c reductase activity is not a component of the NADPH-dependent H2O2 generator, since it was removed by washing the plasma membranes with 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid without affecting H2O2 generation. Spectral studies with diacetyldeuteroheme-substituted horseradish peroxidase showed that the thyroid NADPH-dependent H2O2 generator does not catalyze superoxide anion formation. The O2- adduct compound (compound III) was formed but was completely inhibited by catalase, indicating that the initial product was H2O2. The rate of NADPH oxidation also increased in the presence of diacetylheme peroxidase. This increase was blocked by catalase and was greatly enhanced by superoxide dismutase. The O2- adduct compound (compound III) was produced in the presence of NADPH when glucose-glucose oxidase (which does not produce O2-) was used as the H2O2 generator. NADPH oxidation occurred simultaneously and was enhanced by superoxide dismutase. We conclude that O2- formation occurs in the presence of an H2O2 generator, diacetylheme peroxidase and NADPH, but that it is not the primary product of the H2O2 generator. We suggest that O2- formation results from oxidation of NADPH, catalyzed by the diacetylheme peroxidase compound I, producing NADP degree, which in turn reacts with O2 to give O2-.  相似文献   

5.
Kim YS  Han S 《Biological chemistry》2000,381(12):1269-1271
Catalase binds nitric oxide (NO) to generate ferricatalase-NO, an inhibited form of the enzyme. Superoxide (O2-) is also an inactivator of the enzyme. We found, however, that O2- efficiently converted the inhibited ferricatalase-NO to the active ferricatalase without producing detectable intermediates. The reaction slowed down when O2- was disproportionated to H2O2 and O2 by superoxide dismutase, but H2O2 could displace the heme-bound NO slowly to regenerate ferricatalase. Reactivation was observed even under simultaneous generation of NO and O2-, suggesting that ferricatalase-NO reacts with O2- fast enough to compete with the rapid reaction of O2- and NO. Formation of peroxynitrite by the simultaneous generation of NO and O2- was only partially inhibited by ferricatalase, presumably due to slow binding of NO to catalase in comparison with the reaction of NO and O2-.  相似文献   

6.
NADPH oxidases are major sources of superoxide (O2*-) and hydrogen peroxide (H2O2) in vascular cells. Production of these reactive oxygen species (ROS) is essential for cell proliferation and differentiation, while ROS overproduction has been implicated in hypertension and atherosclerosis. It is known that the heme-containing catalytic subunits Nox1 and Nox4 are responsible for oxygen reduction in vascular smooth muscle cells from large arteries. However, the exact mechanism of ROS production by NADPH oxidases is not completely understood. We hypothesized that Nox1 and Nox4 play distinct roles in basal and angiotensin II (AngII)-stimulated production of O2*- and H2O2. Nox1 and Nox4 expression in rat aortic smooth muscle cells (RASMCs) was selectively reduced by treatment with siNox4 or antisense Nox1 adenovirus. Production of O2*- and H2O2 in intact RASMCs was analyzed by dihydroethidium and Amplex Red assay. Activity of NADPH oxidases was measured by NADPH-dependent O2*- and H2O2 production using electron spin resonance (ESR) and 1-hydroxy-3-carboxypyrrolidine (CPH) in the membrane fraction in the absence of cytosolic superoxide dismutase. It was found that production of O2*- by quiescent RASMC NADPH oxidases was five times less than H2O2 production. Stimulation of cells with AngII led to a 2-fold increase of O2*- production by NADPH oxidases, with a small 15 to 30% increase in H2O2 formation. Depletion of Nox4 in RASMCs led to diminished basal H2O2 production, but did not affect O2*- or H2O2 production stimulated by AngII. In contrast, depletion of Nox1 in RASMCs inhibited production of O2*- and AngII-stimulated H2O2 in the membrane fraction and intact cells. Our data suggest that Nox4 produces mainly H2O2, while Nox1 generates mostly O2*- that is later converted to H2O2. Therefore, Nox4 is responsible for basal H2O2 production, while O2*- production in nonstimulated and AngII-stimulated cells depends on Nox1. The difference in the products generated by Nox1 and Nox4 may help to explain the distinct roles of these NADPH oxidases in cell signaling. These findings also provide important insight into the origin of H2O2 in vascular cells, and may partially account for the limited pharmacological effect of antioxidant treatments with O2*- scavengers that do not affect H2O2.  相似文献   

7.
Treatment of the phosphoramidite [myo-C(6)H(6)-2-[OC(O)Ph]-1,3,5-(O(3)CH)-4,6-(O(2)P-NH-i-Pr)] with o-chloranil affords the first example of inositol-based pentacoordinate phosphorane [myo-C(6)H(6)-2-[OC(O)Ph]-1,3,5-(O(3)CH)-4,6-(O(2)P-NH-i-Pr)(1,2-O(2)C(6)Cl(4))] (9) (X-ray structure) with a trigonal bipyramidal geometry at phosphorus. The six-membered 1,3,2-dioxaphosphorinane ring with the inositol residue has an unusual boat conformation in 9 which is quite different from that found in unrestrained rings investigated before, but is similar to that of its P(III) chloro precursor [myo-C(6)H(6)-2-[OC(O)Ph]-1,3,5-(O(3)CH)-4,6-(O(2)PCl)] (X-ray structure). Also, a convenient and chromatography-free procedure for the protected myo-inositol derivative [myo-C(6)H(6)-2-[OC(O)Ph]-1,3,5-(O(3)CH)-4,6-(OH)(2)] is reported.  相似文献   

8.
In contrast to the NADPH oxidases Nox1 and Nox2, which generate superoxide (O(2)(·-)), Nox4 produces hydrogen peroxide (H(2)O(2)). We constructed chimeric proteins and mutants to address the protein region that specifies which reactive oxygen species is produced. Reactive oxygen species were measured with luminol/horseradish peroxidase and Amplex Red for H(2)O(2) versus L-012 and cytochrome c for O(2)(·-). The third extracytosolic loop (E-loop) of Nox4 is 28 amino acids longer than that of Nox1 or Nox2. Deletion of E-loop amino acids only present in Nox4 or exchange of the two cysteines in these stretches switched Nox4 from H(2)O(2) to O(2)(·-) generation while preserving expression and intracellular localization. In the presence of an NO donor, the O(2)()-producing Nox4 mutants, but not wild-type Nox4, generated peroxynitrite, excluding artifacts of the detection system as the apparent origin of O(2)(·-). In Cos7 cells, in which Nox4 partially localizes to the plasma membrane, an antibody directed against the E-loop decreased H(2)O(2) but increased O(2)(·-) formation by Nox4 without affecting Nox1-dependent O(2)(·-) formation. The E-loop of Nox4 but not Nox1 and Nox2 contains a highly conserved histidine that could serve as a source for protons to accelerate spontaneous dismutation of superoxide to form H(2)O(2). Mutation of this but not of four other conserved histidines also switched Nox4 from H(2)O(2) to O(2)(·-) formation. Thus, H(2)O(2) formation is an intrinsic property of Nox4 that involves its E-loop. The structure of the E-loop may hinder O(2)(·-) egress and/or provide a source for protons, allowing dismutation to form H(2)O(2).  相似文献   

9.
Incubation of stimulated neutrophils with sulfhydryl (RSH) compounds or ascorbic acid (ascorbate) results in rapid superoxide (O2-)-dependent oxidation of these reducing agents. Oxidation of RSH compounds to disulfides (RSSR) is faster than the rate of O2- production by the neutrophil NADPH-oxidase, whereas about one ascorbate is oxidized per O2-. Ascorbate is oxidized to dehydroascorbate, which is also oxidized but at a slower rate. Oxidation is accompanied by a large increase in oxygen (O2) uptake that is blocked by superoxide dismutase. Lactoferrin does not inhibit, indicating that ferric (Fe3+) ions are not required, and Fe3+-lactoferrin does not catalyze RSH or ascorbate oxidation. Two mechanisms contribute to oxidation: 1) O2- oxidizes ascorbate or reduced glutathione and is reduced to hydrogen peroxide (H2O2), which also oxidizes the reductants. O2- reacts directly with ascorbate, but reduced glutathione oxidation is mediated by the reaction of O2- with manganese (Mn2+). The H2O2-dependent portion of oxidation is mediated by myeloperoxidase-catalyzed oxidation of chloride to hypochlorous acid (HOCl) and oxidation of the reductants by HOCl. 2) O2- initiates Mn2+-dependent auto-oxidation reactions in which RSH compounds are oxidized and O2 is reduced. Part of this oxidation is due to the RSH-oxidase activity of myeloperoxidase. This activity is blocked by superoxide dismutase but does not require O2- production by the NADPH-oxidase, indicating that myeloperoxidase produces O2- when incubated with RSH compounds. It is proposed that an important role for O2- in the cytotoxic activities of phagocytic leukocytes is to participate in oxidation of reducing agents in phagolysosomes and the extracellular medium. Elimination of these protective agents allows H2O2 and products of peroxidase/H2O2/halide systems to exert cytotoxic effects.  相似文献   

10.
Aggregation and the activation of the granulocyte (PMN) superoxide (O2-) generating system occur when certain stimuli are added to resting cells. It had previously been postulated that PMN aggregation is essential for maximal O2- production. This study was undertaken to test the hypothesis that PMN aggregation is required for full expression of PMN O2- production. We examined aggregation and O2- production induced by four stimuli; concanavalin A (Con A), phorbol myristate acetate (PMA), N-formylmethionyl-leucyl-phenylalanine (FMLP), and ionophore A23187. Cytochalasin B enhanced aggregation by all four stimuli but only enhanced the rate of O2- production by Con A; 2-deoxyglucose inhibited aggregation by all stimuli. Dissociation of PMN aggregation and O2- production was achieved by using NEM, TPCK, and divalent cations. NEM and TPCK prevent Con A-induced O2- production but have no effect on Con A-induced aggregation. PMA-stimulated PMN generate O2- in the presence or absence of Ca++ and Mg++. In contrast, PMA stimulated maximum PMN aggregation only in the presence of both Ca++ and Mg++. Thus PMN can generate O2- without aggregating, and PMN can aggregate without producing O2-. PMN from patients with chronic granulomatous disease do not generate O2- or undergo membrane potential depolarization in response to PMA. These PMN aggregated when stimulated with PMA, providing evidence that depolarization is not required for PMN aggregation. We conclude that aggregation and the activation of the O2- generating system, though temporally related, are not necessarily causally related.  相似文献   

11.
Previously, we demonstrated that coronary vasodilation in response to hydrogen peroxide (H(2)O(2)) is attenuated by 4-aminopyridine (4-AP), an inhibitor of voltage-gated K(+) (K(V)) channels. Using whole cell patch-clamp techniques, we tested the hypothesis that H(2)O(2) increases K(+) current in coronary artery smooth muscle cells. H(2)O(2) increased K(+) current in a concentration-dependent manner (increases of 14 +/- 3 and 43 +/- 4% at 0 mV with 1 and 10 mM H(2)O(2), respectively). H(2)O(2) increased a conductance that was half-activated at -18 +/- 1 mV and half-inactivated at -36 +/- 2 mV. H(2)O(2) increased current amplitude; however, the voltages of half activation and inactivation were not altered. Dithiothreitol, a thiol reductant, reversed the effect of H(2)O(2) on K(+) current and significantly shifted the voltage of half-activation to -10 +/- 1 mV. N-ethylmaleimide, a thiol-alkylating agent, blocked the effect of H(2)O(2) to increase K(+) current. Neither tetraethylammonium (1 mM) nor iberiotoxin (100 nM), antagonists of Ca(2+)-activated K(+) channels, blocked the effect of H(2)O(2) to increase K(+) current. In contrast, 3 mM 4-AP completely blocked the effect of H(2)O(2) to increase K(+) current. These findings lead us to conclude that H(2)O(2) increases the activity of 4-AP-sensitive K(V) channels. Furthermore, our data support the idea that 4-AP-sensitive K(V) channels are redox sensitive and contribute to H(2)O(2)-induced coronary vasodilation.  相似文献   

12.
Pulmonary vasoconstriction is influenced by inactivation of nitric oxide (NO) with extracellular superoxide (O2-*). Because the short-lived O2-* anion cannot diffuse across plasma membranes, its release from vascular cells requires specialized mechanisms that have not been well delineated in the pulmonary circulation. We have shown that the bicarbonate (HCO3-)-chloride anion exchange protein (AE2) expressed in the lung also exchanges O2-* for HCO3-. Thus we determined whether O2-* release involved in pulmonary vascular tone depends on extracellular HCO3-. We assessed endothelium-dependent vascular reactivity and O2-* release in the presence or absence of HCO3- in pulmonary artery (PA) rings isolated from normal rats and those exposed to hypoxia for 3 days. Lack of extracellular HCO3- in normal PA rings significantly attenuated endothelial O2-* release, opposed hypoxic vasoconstriction, and enhanced acetylcholine-mediated vasodilation. Release of O2-* was also inhibited by an AE2 inhibitor (SITS) and abolished in normoxia by an NO synthase inhibitor (NG-nitro-L-arginine methyl ester). In contrast, hypoxia increased PA AE2 protein expression and O2-* release; the latter was not affected by NG-nitro-l-arginine methyl ester or other inhibitors of enzymatic O2-* generation. Enhanced O2-* release by uncoupling NO synthase with geldanamycin was attenuated by hypoxia or by HCO3- elimination. These results indicate that O2-* produced by endothelial NOS in normoxia and unidentified sources in hypoxia regulate pulmonary vascular tone via AE2.  相似文献   

13.
Superoxide removal and radiation protection in bacteria   总被引:4,自引:0,他引:4  
Previous work with procaryotic cells has identified one kind of lethal damage from ionizing radiation which occurs only within a specific range of low O2 concentrations, about 10(-6) to 10(-4) M. Within this range, protection can occur in three ways: through the enzymatic decomposition of hydrogen peroxide (H2O2) by added catalase, through the enzymatic degradation of superoxide anion radicals (.O2-) by added superoxide dismutase (SOD), and through scavenging hydroxyl radicals (.OH) by various additives. These results indicate that three radiolytic products, H2O2, .OH, and .O2- (and/or the conjugate acid, the perhydroxyl radical, .HO2) are involved in this single kind of radiation-induced damage. Although the radiolytic productions of H2O2 and .O2- are strongly enhanced in higher O2 concentrations, neither enzyme protects when these air-equilibrated bacteria are irradiated. These experiments address this apparent contradiction and focus on the specific issue of why the addition of SOD protects at low but not at high O2 concentrations. We propose that, at a given O2 concentration, .O2- (and/or .HO2) may either react (with some cellular component?) to cause damage or react (with itself) to form hydrogen peroxide (H2O2). The specific O2 concentration during irradiation would determine the relative rates of these competing reactions and therefore the O2 concentration itself would establish whether or not we will observe damage from .O2-.  相似文献   

14.
It has been reported that a large amount of reactive oxygen species (ROS) is produced during seed imbibition and this ROS is related to seed vigor. To make this physiological mechanism clear, we have used 2-methyl-6-(4-methoxyphenyl)-3,7-dihydroimidazo(1,2-alpha)pyrazin-3-one (MCLA) as a sensitive and physiologically compatible probe for the determination of superoxide anion (O(2)(*-)) production in vivo. Our results showed that dry rice (Oryzae sativa L.) seed embryo cells possessed the capacity to generate O(2)(*-). Conversely, the O(2)(*-) production of seed embryo cells was inhibited by quinacrine (QA) and diphenylene iodonium (DPI), two specific inhibitors of NADPH oxidase, and O(2)(*-) induced MCLA-mediated chemiluminescence was also blocked by superoxide dismutase (SOD). Additionally, O(2)(*-) -production ability increased dramatically in a NADPH-dependent way in the plasma membrane protein abstract from rice seed embryo cells, whereas SOD and the inhibitors mentioned above suppressed O(2)(*-) production. These preliminary results suggested that rice seeds contained intrinsic NADPH oxidase activity. To validate this conclusion, dichlorofluorescein (DCF) fluorescence staining was used (observed under a laser scanning microscope, LSM) to reflect the in situ assessment of O(2)(*-) -generation. The position of O(2)(*-) production located at the plasma membrane. Additionally the ability to synthesize O(2)(*-) was activated directly by calcium ions. These observations are in accord with the character of NADPH oxidase catalyzed O(2)(*-) -generation. All these results indicated that NADPH oxidase contribute to O(2)(*-) production and release to the outside. We concluded that NADPH oxidase plays an intrinsic role as an NADPH sensor, so, measuring the O(2)(*-) one can monitor the NADPH concentration, which is an index of seed vigor. Therefore the O(2)(*-) generation during early imbibition can serve as a rapid measurement of seed vigor.  相似文献   

15.
The changes in superoxide (O2-) production, hydrogen peroxide (H2O2) content and active oxygen scavenging system in corn (Zea mays L. ) leaves under waterlogging stress were investigated to explore the relationship between O2- accumulation and waterlogging injury. Corn plants were grown in pots in a controlled environment. The results showed that prolonged waterlogging treatment conducted at 4-leaf stage caused a significant increase in the production of O2- and H2O2, while the extent of O2- change was more than that of H2O2. Malondialdehyde (MDA) accumulation, chlorophyll loss and electrolye leakage were positively correlated with O2- production in corn waterlogged leaves. Foliage spraying with 0. 1 mmol/L paraquat (02- producer) at the start of waterlogging treatment led to a significant increase in 02-, H202 and MDA levels. The addition of DDTC (SOD activity inhibitor) aggravated 02- formation in waterlogged leaves. Waterlogging apperantly reduced the activities of SOD. catalase (CAT), ascorbate peroxidase (AP) and the concentrations of ascorbic acid (ASA) and glutathione (GSH). It was noted that the decline in SOD activity proceeded the diminishment of H2O2 scavengers in chloroplasts (i. e. AP, AsA and GSH). The present findings suggest that O2- is involved in waterlogging damage, and excessive accumulation of 02- is due to the reduced SOD activity.  相似文献   

16.
Nitrite and SCN(-) in saliva can mixes with H(2)O(2) in the stomach. The mixing can result in the formation of ONOOH. It is not yet known how salivary SCN(-) reacts with ONOOH. An objective of the present study was to elucidate the reaction between ONOOH and SCN(-). In nitrite/H(2)O(2) systems at pH 2, SCN(-) inhibited the consumption of nitrite and the formation of O(3)(-). SCN(-) enhanced the decomposition of ONOOH and H(2)O(2) in HNO(2)/H(2)O(2) systems. Accompanying the reactions, sulfate was formed, suggesting that ONOOH oxidized SCN(-). SCN(-) inhibited the nitration of phenolics induced by HNO(2)/H(2)O(2). The inhibition is discussed taking SCN(-)-dependent reduction of ONOOH to HNO(2) into consideration. SCN(-) also inhibited H(2)O(2)-induced consumption of nitrite and nitration of phenolics in acidified saliva. The result obtained in this study suggests that salivary SCN(-) can reduce ONOOH to O(2)(-)/HNO(2) inhibiting nitrating reactions in the stomach.  相似文献   

17.
The effect of exercise-induced arterial hypoxemia (EIAH) on quadriceps muscle fatigue was assessed in 11 male endurance-trained subjects [peak O2 uptake (VO2 peak) = 56.4 +/- 2.8 ml x kg(-1) x min(-1); mean +/- SE]. Subjects exercised on a cycle ergometer at >or=90% VO2 peak) to exhaustion (13.2 +/- 0.8 min), during which time arterial O2 saturation (Sa(O2)) fell from 97.7 +/- 0.1% at rest to 91.9 +/- 0.9% (range 84-94%) at end exercise, primarily because of changes in blood pH (7.183 +/- 0.017) and body temperature (38.9 +/- 0.2 degrees C). On a separate occasion, subjects repeated the exercise, for the same duration and at the same power output as before, but breathed gas mixtures [inspired O2 fraction (Fi(O2)) = 0.25-0.31] that prevented EIAH (Sa(O2) = 97-99%). Quadriceps muscle fatigue was assessed via supramaximal paired magnetic stimuli of the femoral nerve (1-100 Hz). Immediately after exercise at Fi(O2) 0.21, the mean force response across 1-100 Hz decreased 33 +/- 5% compared with only 15 +/- 5% when EIAH was prevented (P < 0.05). In a subgroup of four less fit subjects, who showed minimal EIAH at Fi(O2) 0.21 (Sa(O2) = 95.3 +/- 0.7%), the decrease in evoked force was exacerbated by 35% (P < 0.05) in response to further desaturation induced via Fi(O2) 0.17 (Sa(O2) = 87.8 +/- 0.5%) for the same duration and intensity of exercise. We conclude that the arterial O2 desaturation that occurs in fit subjects during high-intensity exercise in normoxia (-6 +/- 1% DeltaSa(O2) from rest) contributes significantly toward quadriceps muscle fatigue via a peripheral mechanism.  相似文献   

18.
紫外A(UVA,320 nm-400 nm)诱发的脂质过氧化反应是通过活性氧(ROS)介导的。在UVA照射之后,单线态氧(1O2)和超氧阴离子(O2-.)是细胞内最初产生的ROS,它们进一步生成过氧化氢(H2O2),羟自由基(.OH)等其它自由基。为了探讨UVA照射后最早生成的1O2和O2-.与细胞氧化损伤后果的关系,我们采用一种特异性检测1O2和O2-.的高灵敏度化学发光探针MCLA(2-methyl-6-(4-methoxyphenyl)-3,7-dihydroimid-azo[1,2-α]pyrazin-3-one hydrochloride)检测人外周血淋巴细胞经UVA照射后的化学发光变化。发现不同剂量UVA照射后,细胞MCLA化学发光变化和MDA浓度变化一致。结果表明UVA照射后1O2和O2-.的水平与由此引发的脂质过氧化损伤存在正相关关系。因此,MCLA化学发光方法可望作为一种检测UVA诱发脂质过氧化水平的简单快速方法。  相似文献   

19.
Activation of ERK-1 and -2 by H(2)O(2) in a variety of cell types requires epidermal growth factor receptor (EGFR) phosphorylation. In this study, we investigated the activation of ERK by ONOO(-) in cultured rat lung myofibroblasts. Western blot analysis using anti-phospho-ERK antibodies along with an ERK kinase assay using the phosphorylated heat- and acid-stable protein (PHAS-1) substrate demonstrated that ERK activation peaked within 15 min after ONOO(-) treatment and was maximally activated with 100 micrometer ONOO(-). Activation of ERK by ONOO(-) and H(2)O(2) was blocked by the antioxidant N-acetyl-l-cysteine. Catalase blocked ERK activation by H(2)O(2), but not by ONOO(-), demonstrating that the effect of ONOO(-) was not due to the generation of H(2)O(2). Both H(2)O(2) and ONOO(-) induced phosphorylation of EGFR in Western blot experiments using an anti-phospho-EGFR antibody. However, the EGFR tyrosine kinase inhibitor AG1478 abolished ERK activation by H(2)O(2), but not by ONOO(-). Both H(2)O(2) and ONOO(-) activated Raf-1. However, the Raf inhibitor forskolin blocked ERK activation by H(2)O(2), but not by ONOO(-). The MEK inhibitor PD98059 inhibited ERK activation by both H(2)O(2) and ONOO(-). Moreover, ONOO(-) or H(2)O(2) caused a cytotoxic response of myofibroblasts that was prevented by preincubation with PD98059. In a cell-free kinase assay, ONOO(-) (but not H(2)O(2)) induced autophosphorylation and nitration of a glutathione S-transferase-MEK-1 fusion protein. Collectively, these data indicate that ONOO(-) activates EGFR and Raf-1, but these signaling intermediates are not required for ONOO(-)-induced ERK activation. However, MEK-1 activation is required for ONOO(-)-induced ERK activation in myofibroblasts. In contrast, H(2)O(2)-induced ERK activation is dependent on EGFR activation, which then leads to downstream Raf-1 and MEK-1 activation.  相似文献   

20.
By immobilizing synthesized Mn-TPAA (TPAA=tris[2-[N-(2-pyridylmethyl) amino] ethyl] amine) on TiO(2) nanoneedle surface, a biosensor for superoxide ion (O(2)(-)) has been developed and applied for determination of O(2)(-) released from living cells. Direct electron transfer of Mn-TPAA is realized with a formal redox potential (E°') falling in the range of the E°' values of the redox couples O(2)/O(2)(-) and O(2)(-)/H(2)O(2). This suggests that Mn-TPAA on TiO(2) films is electrochemically active and capable of thermodynamically mediating both the oxidation of O(2)(-) to O(2) and the reduction of O(2)(-) to H(2)O(2). Therefore, Mn-TPAA immobilized on the TiO(2) films can be used electrochemically for determination of O(2)(-) due to its electrochemical activities and biomimetic catalytic activities like superoxide dismutase (SOD) toward O(2)(-). The present biomimetic O(2)(-) sensor shows high selectivity at the low working potential of 0V vs. Ag|AgCl, a wide linear range from 10(-7)M to 10(-4)M and a quick response time within 6s. By taking advantage of the developed method and the properties of biomimetic SOD themselves, we have realized the real-time monitoring of O(2)(-) concentration released from living cells and investigated the relationship between the concentration changes of O(2)(-) and intracelluar Ca(2+), which may gain additional insights on the reactive oxygen species (ROS) signal transduction and other physiological and pathological events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号