首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ICP8 is the major single-stranded DNA (ssDNA) binding protein of the herpes simplex virus type 1 and is required for the onset and maintenance of viral genomic replication. To identify regions responsible for the cooperative binding to ssDNA, several mutants of ICP8 have been characterized. Total reflection X-ray fluorescence experiments on the constructs confirmed the presence of one zinc atom per molecule. Comparative analysis of the mutants by electrophoretic mobility shift assays was done with oligonucleotides for which the number of bases is approximately that occluded by one protein molecule. The analysis indicated that neither removal of the 60-amino-acid C-terminal region nor Cys254Ser and Cys455Ser mutations qualitatively affect the intrinsic DNA binding ability of ICP8. The C-terminal deletion mutants, however, exhibit a total loss of cooperativity on longer ssDNA stretches. This behavior is only slightly modulated by the two-cysteine substitution. Circular dichroism experiments suggest a role for this C-terminal tail in protein stabilization as well as in intermolecular interactions. The results show that the cooperative nature of the ssDNA binding of ICP8 is localized in the 60-residue C-terminal region. Since the anchoring of a C- or N-terminal arm of one protein onto the adjacent one on the DNA strand has been reported for other ssDNA binding proteins, this appears to be the general structural mechanism responsible for the cooperative ssDNA binding by this class of protein.  相似文献   

2.
Herpes simplex virus type 1 encodes a multifunctional protein, ICP8, which serves both as a single-strand binding protein and as a recombinase, catalyzing reactions involved in replication and recombination of the viral genome. In the presence of divalent ions and at low temperature, previous electron microscopic studies showed that ICP8 will form long left-handed helical filaments. Here, electron microscopic image reconstruction reveals that the filaments are bipolar, with an asymmetric unit containing two subunits of ICP8 that constitute a symmetrical dimer. This organization of the filament has been confirmed using scanning transmission electron microscopy. The pitch of the filaments is ∼ 250 Å, with ∼ 6.2 dimers per turn. Docking of a crystal structure of ICP8 into the reconstructed filament shows that the C-terminal domain of ICP8, attached to the body of the subunit by a flexible linker containing ∼ 10 residues, is packed into a pocket in the body of a neighboring subunit in the crystal in a similar manner as in the filament. However, the interactions between the large N-terminal domains are quite different in the filament from that observed in the crystal. A previously proposed model for ICP8 binding single-stranded DNA (ssDNA), based upon the crystal structure, leads to a model for a continuous strand of ssDNA near the filament axis. The bipolar nature of the ICP8 filaments means that a second strand of ssDNA would be running through this filament in the opposite orientation, and this provides a potential mechanism for how ICP8 anneals complementary ssDNA into double-stranded DNA, where each strand runs in opposite directions.  相似文献   

3.
A subset of DNA replication proteins of herpes simplex virus (HSV) comprising the single-strand DNA-binding protein, ICP8 (UL29), and the helicase-primase complex (UL5, UL8, and UL52 proteins) has previously been shown to be sufficient for the replication of adeno-associated virus (AAV). We recently demonstrated complex formation between ICP8, AAV Rep78, and the single-stranded DNA AAV genome, both in vitro and in the nuclear HSV replication domains of coinfected cells. In this study the functional role(s) of HSV helicase and primase during AAV DNA replication were analyzed. To differentiate between their necessity as structural components of the HSV replication complex or as active enzymes, point mutations within the helicase and primase catalytic domains were analyzed. In two complementary approaches the remaining HSV helper functions were either provided by infection with HSV mutants or by plasmid transfection. We show here that upon cotransfection of the minimal four HSV proteins (i.e., the four proteins constituting the minimal requirements for basal AAV replication), UL52 primase catalytic activity was not required for AAV DNA replication. In contrast, UL5 helicase activity was necessary for fully efficient replication. Confocal microscopy confirmed that all mutants retained the ability to support formation of ICP8-positive nuclear replication foci, to which AAV Rep78 colocalized in a manner strictly dependent on the presence of AAV single-stranded DNA (ssDNA). The data indicate that recruitment of AAV Rep78 and ssDNA to nuclear replication sites by the four HSV helper proteins is maintained in the absence of catalytic primase or helicase activities and suggest an involvement of the HSV UL5 helicase activity during AAV DNA replication.  相似文献   

4.
The RecA proteins of Escherichia coli (Ec) and Deinococcus radiodurans (Dr) both promote a DNA strand exchange reaction involving two duplex DNAs. The four-strand exchange reaction promoted by the DrRecA protein is similar to that promoted by EcRecA, except that key parts of the reaction are inhibited by Ec single-stranded DNA-binding protein (SSB). In the absence of SSB, the initiation of strand exchange is greatly enhanced by dsDNA-ssDNA junctions at the ends of DNA gaps. This same trend is seen with the EcRecA protein. The results lead to an expansion of published hypotheses for the pathway for RecA-mediated DNA pairing, in which the slow first order step (observed in several studies) involves a structural transition to a state we designate P. The P state is identical to the state found when RecA is bound to double-stranded (ds) DNA. The structural state present when the RecA protein is bound to single-stranded (ss) DNA is designated A. The DNA pairing model in turn facilitates an articulation of three additional conclusions arising from the present work. 1) When a segment of a RecA filament bound to ssDNA is forced into the P state (as RecA bound to the ssDNA immediately adjacent to dsDNA-ssDNA junction), the segment becomes "pairing enhanced." 2) The unusual DNA pairing properties of the D. radiodurans RecA protein can be explained by postulating this protein has a more stringent requirement to initiate DNA strand exchange from the P state. 3) RecA filaments bound to dsDNA (P state) have directly observable structural changes relative to RecA filaments bound to ssDNA (A state), involving the C-terminal domain.  相似文献   

5.
ICP8, the herpes simplex virus type-1 encoded single-strand DNA (ssDNA)-binding protein, promotes the assimilation of a single-stranded DNA molecule into a homologous duplex plasmid resulting in the formation of a displacement loop. Here we examine the mechanism of this process. In contrast to the RecA-type recombinases that catalyze strand invasion via an active search for homology, ICP8 acts by a salt-dependent strand annealing mechanism. The active species in this reaction is a ssDNA:ICP8 nucleoprotein filament. There appears to be no requirement for ICP8 to interact with the acceptor DNA. At higher concentrations, ICP8 promotes the reverse reaction, presumably owing to its helix destabilizing activity. ICP8-mediated strand assimilation imparts single-stranded character onto the acceptor DNA, consistent with the formation of a displacement loop. These data suggest that the recombination activity of ICP8 is similar to the mechanism of eukaryotic Rad52.  相似文献   

6.
The Kaposi's sarcoma-associated herpesvirus ORF6 has a 41% sequence identity with Balf2 protein of Epstein-Barr virus and 23% with ICP8 protein of Herpes Simplex type I. Balf2 and ICP8 are multi-functional DNA binding proteins with roles central to viral DNA replication and recombination. In this study, we cloned the KSHV ORF6 gene, expressed the full length ORF6 protein in insect cells and purified it to homogeneity. Gel filtration revealed the protein to be present in a broad spectrum of sizes ranging from monomers to high molecular weight oligomers. Transmission electron microscopy (TEM) using negative staining under conditions favoring monomers and small oligomers revealed fields of globular particles measuring 11nm in diameter consistent with the size of a protein monomer. Incubation of ORF6 protein at room temperature for extended periods of time resulted in the bulk of the protein forming very long helical filaments. Measurements from negative staining revealed that the filaments were up to 2600nm in length, with a width of 13.7nm and a long gentle helical periodicity of 42.9nm along the filament axis. Using rapid freezing and freeze-drying, it was possible to show that the filaments consist of two protein chains wrapped around each other. The possibility that these protein filaments generate a scaffold upon which viral DNA replication, recombination, and encapsidation occur in the infected cell nucleus is discussed.  相似文献   

7.
The RecO and RecR proteins form a complex that promotes the nucleation of RecA protein filaments onto SSB protein-coated single-stranded DNA (ssDNA). However, even when RecO and RecR proteins are provided at optimal concentrations, the loading of RecA protein is surprisingly slow, typically proceeding with a lag of 10 min or more. The rate-limiting step in RecOR-promoted RecA nucleation is the binding of RecOR protein to ssDNA, which is inhibited by SSB protein despite the documented interaction between RecO and SSB. Full activity of RecOR is seen only when RecOR is preincubated with ssDNA prior to the addition of SSB. The slow binding of RecOR to SSB-coated ssDNA involves the C terminus of SSB. When an SSB variant that lacks the C-terminal 8 amino acids is used, the capacity of RecOR to facilitate RecA loading onto the ssDNA is largely abolished. The results are used in an expanded model for RecOR action.  相似文献   

8.
We have carried out solution equilibrium binding studies of ICP8, the major single-stranded DNA (ssDNA)-binding protein of herpes simplex virus type I, in order to determine the thermodynamic parameters for its interaction with ssDNA. Fluorescence anisotropy measurements of a 5'-fluorescein-labeled 32-mer oligonucleotide revealed that ICP8 formed a nucleoprotein filament on ssDNA with a binding site size of 10 nucleotides/ICP8 monomer, an association constant at 25 degrees C, K = 0.55 +/- 0.05 x 10(6) M(-1), and a cooperativity parameter, omega = 15 +/- 3. The equilibrium constant was largely independent of salt, deltalog(Komega)/deltalog([NaCl]) = -2.4 +/- 0.4. Comparison of these parameters with other ssDNA-binding proteins showed that ICP8 reacted with an unusual mechanism characterized by low cooperativity and weak binding. In addition, the reaction product was more stable at high salt concentrations, and fluorescence enhancement of etheno-ssDNA by ICP8 was higher than for other ssDNA-binding proteins. These last two characteristics are also found for protein-DNA complexes formed by recombinases in their active conformation. Given the proposed role of ICP8 in promoting strand transfer reactions, they suggest that ICP8 and recombinase proteins may catalyze homologous recombination by a similar mechanism.  相似文献   

9.
10.
The nucleation step of Escherichia coli RecA filament formation on single-stranded DNA (ssDNA) is strongly inhibited by prebound E. coli ssDNA-binding protein (SSB). The capacity of RecA protein to displace SSB is dramatically enhanced in RecA proteins with C-terminal deletions. The displacement of SSB by RecA protein is progressively improved when 6, 13, and 17 C-terminal amino acids are removed from the RecA protein relative to the full-length protein. The C-terminal deletion mutants also more readily displace yeast replication protein A than does the full-length protein. Thus, the RecA protein has an inherent and robust capacity to displace SSB from ssDNA. However, the displacement function is suppressed by the RecA C terminus, providing another example of a RecA activity with C-terminal modulation. RecADeltaC17 also has an enhanced capacity relative to wild-type RecA protein to bind ssDNA containing secondary structure. Added Mg(2+) enhances the ability of wild-type RecA and the RecA C-terminal deletion mutants to compete with SSB and replication protein A. The overall binding of RecADeltaC17 mutant protein to linear ssDNA is increased further by the mutation E38K, previously shown to enhance SSB displacement from ssDNA. The double mutant RecADeltaC17/E38K displaces SSB somewhat better than either individual mutant protein under some conditions and exhibits a higher steady-state level of binding to linear ssDNA under all conditions.  相似文献   

11.
Infected cell protein 8 (ICP8) from herpes simplex virus 1 was first identified as a single-strand (ss) DNA-binding protein. It is essential for, and abundant during, viral replication. Studies in vitro have shown that ICP8 stimulates model replication reactions, catalyzes annealing of complementary ssDNAs and, in combination with UL12 exonuclease, will catalyze ssDNA annealing homologous recombination. DNA annealing and strand transfer occurs within large oligomeric filaments of ssDNA-bound ICP8. We present the first 3D reconstruction of a novel ICP8–ssDNA complex, which seems to be the basic unit of the DNA annealing machine. The reconstructed volume consists of two nonameric rings containing ssDNA stacked on top of each other, corresponding to a molecular weight of 2.3 MDa. Fitting of the ICP8 crystal structure suggests a mechanism for the annealing reaction catalyzed by ICP8, which is most likely a general mechanism for protein-driven DNA annealing.  相似文献   

12.
In contrast to other replication systems, adenovirus DNA replication does not require a DNA helicase to unwind the double-stranded template. Elongation is dependent on the adenovirus DNA-binding protein (DBP) which has helix-destabilizing properties. DBP binds cooperatively to single-stranded DNA (ssDNA) in a non-sequence-specific manner. The crystal structure of DBP shows that the protein has a C-terminal extension that hooks on to an adjacent monomer which results in the formation of long protein chains. We show that deletion of this C-terminal arm results in a monomeric protein. The mutant binds with a greatly reduced affinity to ssDNA. The deletion mutant still stimulates initiation of DNA replication like the intact DBP. This shows that a high affinity of DBP for ssDNA is not required for initiation. On a single-stranded template, elongation is also observed in the absence of DBP. Addition of DBP or the deletion mutant has no effect on elongation, although both proteins stimulate initiation on this template. Strand displacement synthesis on a double-stranded template is only observed in the presence of DBP. The mutant, however, does not support elongation on a double-stranded template. The unwinding activity of the mutant is highly reduced compared with intact DBP. These data suggest that protein chain formation by DBP and high affinity binding to the displaced strand drive the ATP-independent unwinding of the template during adenovirus DNA replication.  相似文献   

13.
The subnuclear distribution of replication complex proteins is being recognized as an important factor for the control of DNA replication. Herpes simplex virus (HSV) single-strand (ss)DNA-binding protein, ICP8 (infected cell protein 8) accumulates in nuclear replication domains. ICP8 also serves as helper function for the replication of adeno-associated virus (AAV). Using quantitative 3D colocalization analysis we show that upon coinfection of AAV and HSV the AAV replication protein Rep and ICP8 co-reside in HSV replication domains. In contrast, Rep expressed by a recombinant HSV, in the absence of AAV DNA, displayed a nuclear distribution pattern distinct from that of ICP8. Colocal ization of Rep and ICP8 was restored by the reintroduction of single-stranded AAV vector genomes. In vitro, ICP8 displayed direct binding to Rep78. Single-stranded recombinant AAV DNA strongly stimulated this interaction, whereas double-stranded DNA was ineffective. Our findings suggest that ICP8 by its strong ssDNA-binding activity exploits the unique single-strandedness of the AAV genome to form a tripartite complex with Rep78 and AAV ssDNA. This novel mechanism for recruiting components of a functional replication complex directs AAV to subnuclear HSV replication compartments where the HSV replication complex can replicate the AAV genome.  相似文献   

14.
The rate of annealing of long linear complementary single-stranded (ss) DNAs can be increased greatly by certain DNA-binding proteins including the herpes simplex virus type 1 ICP8 SSB/recombinase. Using electron microscopy, we have investigated the DNA-protein structures involved in ICP8-mediated DNA annealing. We show that the formation of superhelical ICP8-ssDNA filaments is required for annealing. Two superhelices interact with each other to form a coiled-coil, which is the intermediate in annealing. In this process, the superhelices likely rotate and translocate relative to each other. Psoralen/UV photocrosslinking studies revealed that meta-stable contacts form at sites of limited sequence homology during the annealing. Partial proteolysis of ICP8 in the protein-ssDNA complexes showed that Mg2+ induces conformational changes in the N-terminal region (amino acid residues 1-305) of ICP8. In addition to Mg2+, Ca2+ and, to a significantly lesser extent, Cu2+ and Mn2+, were found to induce superhelix formation of the ICP8-ssDNA filament and to facilitate annealing. Mechanisms for how the coiled-coil structures facilitate annealing are discussed.  相似文献   

15.
The homotetrameric Escherichia coli single-stranded DNA-binding (SSB) protein plays a central role in DNA replication, repair, and recombination. In addition to its essential activity of binding to transiently formed single-stranded (ss) DNA, SSB also binds an array of partner proteins and recruits them to their sites of action using its four intrinsically disordered C-terminal tails. Here we show that the binding of ssDNA to SSB is inhibited by the SSB C-terminal tails, specifically by the last 8 highly acidic amino acids that comprise the binding site for its multiple partner proteins. We examined the energetics of ssDNA binding to short oligodeoxynucleotides and find that at moderate salt concentration, removal of the acidic C-terminal ends increases the intrinsic affinity for ssDNA and enhances the negative cooperativity between ssDNA binding sites, indicating that the C termini exert an inhibitory effect on ssDNA binding. This inhibitory effect decreases as the salt concentration increases. Binding of ssDNA to approximately half of the SSB subunits relieves the inhibitory effect for all of the subunits. The inhibition by the C termini is due primarily to a less favorable entropy change upon ssDNA binding. These observations explain why ssDNA binding to SSB enhances the affinity of SSB for its partner proteins and suggest that the C termini of SSB may interact, at least transiently, with its ssDNA binding sites. This inhibition and its relief by ssDNA binding suggest a mechanism that enhances the ability of SSB to selectively recruit its partner proteins to sites on DNA.  相似文献   

16.
Human Rad51 (hRad51), the protein central to DNA pairing and strand exchange during homologous recombination, polymerizes on DNA to form nucleoprotein filaments. By making use of magnetic tweezers to manipulate individual DNA molecules, we measured the nucleation and growth of hRad51 nucleoprotein filaments, and their subsequent disassembly in real time. The dependence of the initial polymerization rate upon the concentration of hRad51 suggests that the rate-limiting step is the formation of a nucleus involving 5.5 ± 1.5 hRad51 monomers, corresponding to one helical turn of the hRad51 nucleoprotein filament. Polymerization is highly cooperative (i.e. a nucleation-limited reaction) at low concentrations and less cooperative (a growth-limited reaction) at high concentrations of the protein. We show that the observed preference of hRad51 to form nucleoprotein filaments on double-stranded DNA rather than on single-stranded DNA is due to the fact that it depolymerizes much faster from ssDNA than from dsDNA: indeed, hRad51 polymerizes faster on ssDNA than on dsDNA. Hydrolysis of ATP by hRad51 does not correlate with its dissociation from dsDNA. This suggests that hRad51 does not depolymerize rapidly from dsDNA after strand exchange but stays bound to the heteroduplex, highlighting the importance of partner proteins to facilitate hRad51 depolymerization from dsDNA.  相似文献   

17.
Herpes simplex virus type 1 single-stranded DNA-binding protein (ICP8) has been crystallized on a positively charged lipid monolayer. The crystals belong to the planar group p2 with a=39 nm, b=23.2 nm and gamma=87.2 degrees. The projected map of ICP8 crystals calculated at a resolution of 3.9 nm shows four ICP8 monomers per unit cell with the crystals formed by a parallel arrangement of 16.2 nm helical ICP8 filaments. This novel filamentous form has not been reported before. The ICP8 monomers show different appearances in projection, suggesting that they may adopt different orientations, probably reflecting the strong intermolecular and lipid-filament interactions in the crystal. When the 23 nm diameter filaments formed by ICP8 in solution at low temperature in the presence of magnesium were generated and then layered on the phospholipid monolayer, highly ordered arrays of an 8.5 nm filament with a shallow 31.2 nm pitch were observed and reconstruction revealed a double-helical structure.  相似文献   

18.
When E. coli single-stranded DNA binding protein (SSB) coats single-stranded DNA (ssDNA) in the presence of 1 mM MgCl2 it inhibits the subsequent binding of recA protein, whereas SSB binding to ssDNA in 12 mM MgCl2 promotes the binding of recA protein. These two conditions correspond respectively to those which produce 'smooth' and 'beaded' forms of ssDNA-SSB filaments. By gel filtration and immunoprecipitation we observed active nucleoprotein filaments of recA protein and SSB on ssDNA that contained on average 1 monomer of recA protein per 4 nucleotides and 1 monomer of SSB per 20-22 nucleotides. Filaments in such a mixture, when digested with micrococcal nuclease produced a regular repeating pattern, approximately every 70-80 nucleotides, that differed from the pattern observed when only recA protein was bound to the ssDNA. We conclude that the beaded ssDNA-SSB nucleoprotein filament readily binds recA protein and forms an intermediate that is active in the formation of joint molecules and can retain substantially all of the SSB that was originally bound.  相似文献   

19.
The bacteriophage T4 uvsX gene codes for a DNA-binding protein that is important for genetic recombination in T4-infected cells. This protein is a DNA-dependent ATPase that resembles the Escherichia coli recA protein in many of its properties. We have examined the binding of purified uvsX protein to single-stranded DNA (ssDNA) and to double-stranded DNA (dsDNA) using electron microscopy to visualize the complexes that are formed and double label analysis to measure their protein content. We find that the uvsX protein binds cooperatively to dsDNA, forming filaments 14 nm in diameter with an apparently helical axial repeat of 12 nm. Each repeat contains about 42 base pairs and 9-12 uvsX protein monomers. In solutions containing Mg2+, the uvsX protein also binds cooperatively to ssDNA. The filaments that result are 14 nm in diameter, show a 12-nm axial repeat, and they are nearly identical in appearance to the filaments that contain dsDNA. In the filaments formed along ssDNA, each axial repeat contains about 49 DNA bases and 9-12 uvsX monomers. Both the filaments formed on the ssDNA and dsDNA show a strong tendency to align side-by-side. T4 gene 32 protein also binds cooperatively to ssDNA and interacts both physically and functionally with uvsX protein. However, when gene 32 and uvsX proteins were added to ssDNA together, no interaction between the two proteins was detected.  相似文献   

20.
The UL37 and ICP8 proteins present in herpes simplex virus type 1 (HSV-1)-infected-cell extracts produced at 24 h postinfection coeluted from single-stranded-DNA-cellulose columns. Experiments carried out with the UL37 protein expressed by a vaccinia virus recombinant (V37) revealed that the UL37 protein did not exhibit DNA-binding activity in the absence of other HSV proteins. Analysis of extracts derived from cells coinfected with V37 and an ICP8-expressing vaccinia virus recombinant (V8) and analysis of extracts prepared from cells infected with the HSV-1 ICP8 deletion mutants d21 and n10 revealed that the retention of the UL37 protein on single-stranded DNA columns required a DNA-binding-competent ICP8 protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号