首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bananas were exposed to acetylene or ethylene at 0·01, 0·1 and 1 ml/litre, under high humidity, for 24 h at 18 °C. They were then transferred to an atmosphere of air alone for a further 4 days and during this period the respiration rate of three fruit from each treatment was measured. Ripeness was then assessed by colour score and soluble solids content. All levels of ethylene initiated ripening. Treatment with ethylene induced a climacteric rise in respiration, an increase in the soluble solids content of the pulp and degreening of the peel. All levels of acetylene, except 0·01 ml/litre, induced a climacteric rise in respiration. Fruit treated with acetylene at 1 ml/litre had a similar colour score and soluble solids content to those ripened by exposure to ethylene. Fruits treated with acetylene at 0·1 ml/litre had a lower soluble solids content and their peel remained green. Treatment with acetylene at 0·01 ml/litre failed to initiate ripening. Sensory evaluation of fruit ripened by acetylene at 1 ml/litre indicated that the acetylene treated fruit ripened slightly more slowly. When compared at the same stage of ripeness fruits from the two treatments were equally palatable.  相似文献   

2.
Although ethephon ([2-chloroethyl]phosphonic acid) is often used as a form of liquid ethylene in studies of seed germination, it is not known if ethylene evolved from ethephon in the seed is sufficient to elicit the desired response and/or if ethephon has a regulatory action that alone accounts for the response. For these reasons we studied the uptake and fate of [1,2-14C]ethephon in dormant seeds of Avena fatua, Sinapis arvensis, Thlaspi arvense, and Chenopodium album. The radioactivity within the seeds was separated into a labile carbon-labeled ethephon/ethylene fraction (64-87%) and, following extraction in methanol-chloroform-water (12:5:3), into fractions associated with insoluble (12-29%) and soluble (3-8%) seed constituents. The radioactivity associated with seed constituents was reduced 5 to 75% by hot alkaline hydrolysis (2.5 n KOH, 70° C for 1 hour). Although a small portion of the ethephon (or metabolite of ethephon/ethylene) taken up by the seeds is tightly bound to the tissues, our results indicate that, at the appropriate external concentrations of ethephon, the amount of ethylene evolved from ethephon within the seeds is sufficient to produce the desired ethylene mediated responses. However, factors affecting the decomposition of ethephon must be considered in the decision as to whether to use ethephon as a liquid supply of ethylene.  相似文献   

3.
Aspects of the post-harvest physiology relating to storage and ripening of the fruit of tetraploid banana clones resistant to Sigatoka disease, have been compared with fruit of Valery, an important commercial triploid cultivar. Significant differences in susceptibility to low temperature injury, duration of the preclimacteric period, the texture of pulp and peel and ethylene evolution have been found between tetraploid and Valery fruit and also between tetraploid fruit of different clones. Fruit of Valery and one tetraploid clone developed serious chilling injury during storage at 12 °C whereas that of five other tetraploid clones showed only slight damage. The preclimacteric period for fruit of two tetraploid clones was 30–45% less than for Valery fruit at an equivalent stage of physical development. Pulp firmness of preclimacteric tetraploid fruit was 20–30% less than that of Valery fruit and the differences persisted through ripening. The softening response to applied ethylene was up to 15 h earlier in fruit of tetraploid clones than of Valery but respiratory patterns, colour development and starch-to-sugar conversion were similar. Unlike Valery fruit, ripe tetraploid fruit did not develop senescent spotting, and shelf life was terminated by rapid deterioration of peel strength to a state of severe finger drop. Temporal and quantitative differences occurred between fruit of tetraploid clones and Valery in production of ethylene and these may relate to the observed differences in control of softening in both pulp and peel.  相似文献   

4.
Abstract The quinone and cytochrome components of the respiratory chain of the microaerophilic bacterium Helicobacter pylori have been investigated. The major isoprenoid quinone was menaquinone-6, with traces of menaquinone-4; no methyl-substituted or unusual menaquinone species were found. Cell yield was highest after growth at 10% (v/v) oxygen and menaquinone levels (per dry cell mass) were maximal at 5–10% (v/v) oxygen. Helicobacter pylori cells and membranes contained b -and c -type cytochromes, but not terminal oxidases of the a -or d -types, as judged by reduced minus oxidised difference spectra. Spectra consistent with the presence of a CO-binding terminal oxidase of the cytochrome b -or o -type were obtained. The soluble fraction from disrupted cells also contained cytochrome c . There were no significant qualitative differences in the cytochrome complements of cells grown at oxygen concentrations in the range 2–15% (v/v) but putative oxidases were highest in cells grown at 5–10% (v/v) oxygen.  相似文献   

5.
Indole-3-acetic acid (IAA), at concentrations of 0.01 to 1.0 millimolar, and ethephon (0.3% v/v Ethrel) promote stomatal opening when applied to epidermal peels of Vicia faba L. in light or dark. The effect of ethylene is seen by 30 minutes and maximal opening (over two times that of untreated controls) occurs after only 60 to 90 minutes in the light. Stomatal opening by IAA and Ethrel in both light and dark is prevented by 0.14 millimolar AgCl. It is suggested that the effect of added IAA, but not that of light, is linked to ethylene production. The possible role of ethylene in stomatal opening during fungal infection is discussed. The stomates of Vicia faba provide a new system to study the effects of ethylene on certain membrane-regulated processes.  相似文献   

6.
本实验用CaCl_2溶液对香蕉(Musa acuminata cf. 'Dwarf Davendish')组织进行真空浸透处理,研究Ca~(2 )对香蕉采后乙烯释放、EFE活性、ACC水平以及ACC/MACC比值的影响。结果表明,Ca~(2 )处理可抑制香蕉果皮和果肉组织乙烯生成,对抑制果皮的乙烯生成尤为明显。Ca~(2 )处理还可降低内源ACC水平,抑制EFE活性。结果还显示,Ca~(2 )处理对组织中ACC/MACC比值有一定影响。  相似文献   

7.
This research compares effects of the compound 5-chloro-3-methyl-4-nitro-1 H -pyrazole (CMNP), a plant growth regulator that selectively promotes abscission in mature citrus fruit ( Citrus sinensis ), and the ethylene-releasing agent ethephon (2-chloroethylphosphonic acid). Application of CMNP and ethephon to mature citrus fruit reduced fruit detachment force and changed peel color from green to orange. More total chlorophyll was extracted from flavedo in early season (November) than late season (January), and both compounds caused a similar reduction in chlorophyll. In contrast, total carotenoid content was similar in November and January. Both abscission compounds increased total carotenoids, but induction was greater in January, and CMNP was more effective in both months. Phospholipase A2 (PLA2) activity increased after CMNP but not ethephon application. Electrolyte leakage increased 2 h after CMNP treatment, and total protein content was reduced by 50% after 72 h. Ethephon caused only minor changes in electrolyte leakage and total protein content. Inhibition of PLA2 activity with aristolochic acid did not reduce leakage but inhibited total protein loss and reduced visual peel damage associated with CMNP. Ultrastructural observations indicated decreased number, and length of starch grains 3 h after CMNP treatment. A transient increase in soluble sugars was measured 3 h after CMNP application. Ethephon had little effect on soluble sugar content and changes in starch grains. Collectively, the results indicate that CMNP and ethephon induced color change in peel and advanced mature fruit abscission. However, CMNP but not ethephon promoted other physiological changes associated with senescence.  相似文献   

8.
The purpose of this study was to know the mechanism of jasmonates to induce gummosis in tulip (Tulipa gesneriana L. cv. Apeldoorn) shoots, especially on the focus of sugar metabolism. Gummosis in the first internode of tulip plants was induced by the application of methyl jasmonate (JA-Me, 1% w/w in lanolin) and jasmonic acid (JA, 1% w/w in lanolin) 5 days after application and strongly stimulated by the simultaneous application of ethylene-releasing compound, ethephon (2-chloroethylphosphonic acid, 1% w/w in lanolin), although ethephon alone had little effect. JA-Me stimulated ethylene production of the first internodes of tulips, ethylene production increasing up to more than 5 times at day 1 and day 3 after the application. On the other hand, application of ethephon did not increase endogenous levels of jasmonates in tulip stems. Analysis of composition of tulip gums revealed that they were consisted of glucuronoarabinoxylan with an average molecular weight of ca. 700 kDa. JA-Me strongly decreased the total amount of soluble sugars in tulip stems even in 1 day after application, being ca. 50% of initial values 5 days after application, but ethephon did not. However, both JA-Me and ethephon had almost no effect on the neutral sugar compositions of soluble sugars mainly consisting of glucose, mannose and xylose in ratio of 20:2:1 and traces of arabinose. Both JA-Me and ethephon applied exogenously stimulated senescence of tulip shoots shown by the loss of chlorophyll. These results strongly suggest that the essential factor of gummosis in tulips is jasmonates affecting the sugar metabolism in tulip shoots. The mode of action of jasmonates to induce gummosis of tulip shoots is discussed in relation to ethylene production, sugar metabolism and senescence.  相似文献   

9.
This paper studies the effect of different concentrations of ethephon (an ethylene releasing compound) on the level of the steroidal sapogenin diosgenin in cell suspensions of Trigonella foenum-graecum L. The results reveal that diosgenin synthesis and/or accumulation was stimulated by 5 ppm ethephon treatment, an increase of 126% being observed, while concentrations of 25 ppm and 50 ppm reduced the levels of this secondary compound. Changes in the isopentenyl diphosphate isomerase activity, increased cell diameter, decreased cell packing (with all the ethephon concentrations assayed), increased cytoplasmic density (5 ppm ethephon treatment) and alterations in the membrane structures (25 and 50 ppm ethephon treatments) were also observed.  相似文献   

10.
阿拉伯糖是果实软化过程中变化最明显的细胞壁糖残基之一,α-L-阿拉伯呋喃糖苷酶是导致细胞壁多糖中阿拉伯糖残基降解的主要糖苷酶。为阐明该酶在香蕉果实成熟软化中的作用,实验对香蕉贮藏过程中果皮和果肉中该酶活性以及果实硬度、呼吸强度和乙烯释放量的变化进行了研究。结果表明:α-L-阿拉伯呋喃糖苷酶在果实初期的变化很小,到果实硬度开始急剧下降时达到最大,增加量达10倍以上,且果肉中的酶活性大于果皮中;乙烯吸收剂处理延缓了香蕉果实呼吸和乙烯高峰的出现时间,降低了果实硬度、果皮和果肉中α-L-阿拉伯呋喃糖苷酶活性变化的速度和幅度。以上结果表明α-L-阿拉伯呋喃糖苷酶起诱导香蕉果实成熟的作用,在果实的软化中起着十分重要的作用,且其活性受乙烯的调节。  相似文献   

11.
12.
Ethylene production rates and 1-aminocyclopropane-1-carboxylic acid (ACC) synthetase activities were 0. 78,0.91 nl· g-l ·h-land 0.02,0.05 nmol·g-1·h-1 respectively in the peel and pulp of newly harvested banana fruits(Musa acuminata Colla “warf cavendish”),their ethylene-forming enzyme(EFE)activities were yet as high as 10.5 and 5.1 nl·g-1·h-1. When the fruits were chilled at 1.5℃ ,the ethylene production and EFE activities of the peel and pulp kept decreasing with the time course of chilling treatment. However, after these chilled fruits were transferred to 20℃ for 24 h,their ACC synthetase activities increased markedly,and ethylene production had separate peaks(1.75 and 2.45 nl·g-1 ·h-1) in the peel and pulp. In this case,the endogenous low content of S-adenosylmethionine (SAM)in vivo was insufficient for its ACC synthesis, The inhibitory effect of cycloheximide on ACC synthesis showed that chilling-induced ethylene production was mainly the result of activity of the resynthesized ACC synthetase induced by chilling treatment. The production of chilling-induced ethylene could be good indicator of chilling injury, but it is unlikely an indicator of chilling damage during ripening process in banana. In the severly chilling-injured fruits, both the peel and pulp still had the capability of converting ACC to ethylene.  相似文献   

13.
14.
Gas phase composition effects on suspension cultures of Taxus cuspidata   总被引:2,自引:0,他引:2  
The effect of different concentrations and combinations of oxygen, carbon dioxide, and ethylene on cell growth and taxol production in suspension cultures of Taxus cuspidata was investigated using several factorial design experiments. Low head space oxygen concentration (10% v/v) promoted early production oftaxol. High carbon dioxide concentration (10% v/v) inhibited taxol production. The most effective gas mixture composition in terms of taxol production was 10% (v/v) oxygen, 0.5% (v/v) carbon dioxide, and 5 ppm ethylene. Cultures grown underambient concentration of oxygen had a delayed uptake of glucose and fructose compared to cultures grown under 10% (v/v) oxygen. Average calcium uptake rates into the cultured cells decreased and average phosphate uptake rates increased as ethylene was increased from 0 to 10 ppm. These results may indicate that gas composition alters partitioning of nutrients, which in turn affects secondary metabolite production. (c) 1995 John Wiley & Sons, Inc.  相似文献   

15.
A combined foliar application of ethephon (2-chloroethylphosphonic acid) at 0.8 kg/ha and daminozide (butanedioic acid mono (2,2 dimethylhydrazide) at 3.2 kg/ha inhibited the vegetative growth of Black Valentine bean (Phaseolus vulgaris L.) without the leaf chlorosis and necrosis caused by ethephon alone. This antagonistic interaction was further evaluated by examining the effect of ethephon and daminozide on respiration and lipid synthesis of isolated leaf cells. Ethephon (1.0 mM) promoted14CO2 evolution from cells incubated with14C-glucose for 14 h by approximately 75%. Characterization of this response with Black Valentine bean mitochondria indicated that the observed stimulation could not be attributed to the existence of a major cyanide insensitive pathway or the possibility of ethephon acting as an uncoupler, which supports the view that ethephon (or ethylene) acts in the cytosol rather than in mitochondria. Daminozide at 30.0 and 60.0 mM inhibited14CO2 evolution of isolated cells by 30 and 70%, respectively. Ethephon in combination with daminozide (1.0+60 mM) resulted in a 32% inhibition of respiration. Daminozide (60.0 mM) inhibited the incorporation of14C-glucose into chloroform-methanol soluble products by 47%, but did not affect the incorporation of14C-acetate. The results suggest that daminozide may reduce or overcome any stimulatory effect of ethephon on respiration and support an active inhibitory site for daminozide in mitochondria.  相似文献   

16.
The possible implication of ethylene on the growth regulation of etiolated lupin hypocotyls was investigated. Excised hypocotyl sections from actively growing seedlings produced ethylene at a rate of 3 nmol h-1 g-1 min-1. The rate of ethylene production was increased about 7 times when sections were treated with 10 mM 1-aminocyclopropane-1-carboxylic acid (ACC). Measurement of endogenous ACC showed that 95 % of total ACC (64.2 nmol g-1 min-1) corresponded to conjugated ACC. Treatments to intact seedlings with the ethylene precursor ACC, and the ethylene generating compound, 2-chloroethyl phosphonic acid (ethephon) during the cell elongation phase of the hypocotyl (from 7 to 21 dage), modified the cell growth of the organ. ACC (1 or 5 mM) or low concentrations of ethephon (0.66 mM) produced a transient decrease in the growth rate without modifying the final length of the hypocotyls. Higher concentrations of ethephon reduced the final length; the younger the seedlings were, the greater the reduction. Simultaneously to inhibition of cell elongation, ethephon produced stimulation of the radial expansion of cells in pith and cortex. The growth inhibition period, which lasted for 2 days after the treatments, was followed by another period in which the growth rate of treated plants surpassed that of the control. In both cases differences were observed along the hypocotyls due to the different growth status of the cells. It is suggested that the sensitivity to ethylene and the metabolism of ethylene depend on the growth status of the cells.  相似文献   

17.
The effects of d-limonene concentration, enzyme loading, and pH on ethanol production from simultaneous saccharification and fermentation (SSF) of citrus peel waste by Saccharomyces cerevisiae were studied at 37 °C. Prior to SSF, citrus peel waste underwent a steam explosion process to remove more than 90% of the initial d-limonene present in the peel waste. d-Limonene is known to inhibit yeast growth and experiments were performed where d-limonene was added back to peel to determine threshold inhibition amounts. Ethanol concentrations after 24 h were reduced in fermentations with initial d-limonene concentrations greater than or equal to 0.33% (v/v) and final (24 h) d-limonene concentrations greater than or equal to 0.14% (v/v). Ethanol production was reduced when enzyme loadings were (IU or FPU/g peel dry solids) less than 25, pectinase; 0.02, cellulase; and 13, beta-glucosidase. Ethanol production was greatest when the initial pH of the peel waste was adjusted to 6.0.  相似文献   

18.
During ripening, citrus fruit-peel undergoes 'colour break', a process characterized by the conversion of chloroplast to chromoplast. The process involves the progressive loss of chlorophylls and the gain of carotenoids, changing peel colour from green to orange. In the present work, the in vivo and in vitro effects of supplemented nutrients (sucrose and nitrogen) and phytohormones (gibberellins [GA] and ethylene) on colour change in fruit epicarp of Satsuma mandarin ( Citrus unshiu (Mak.) Marc., cv. Okitsu), were studied. The rate of colour break was correlated positively with sucrose content and negatively with nitrogen content. The removal of leaves blocked natural sucrose build-up and nitrogen reduction in the peel. Defoliation also inhibited chlorophyll disappearance and carotenoid accumulation, thereby preventing colour break. In vivo sucrose supplementation promoted sucrose accumulation and advanced colour break. In both in vivo and in vitro experiments, colour change promoted by sucrose was unaffected by ethylene but delayed by GA3. In non-supplemented plants, ethylene accelerated colour break while GA3 had no detectable effects. Ethylene inhibitors effectively counteracted the sucrose effects on colour change. Collectively, these results suggest that the chloroplast to chromoplast conversion in citrus fruit epicarps is stimulated by sucrose accumulation. The sugar regulation appears to operate via ethylene, whereas GA may act as a repressor of the sucrose-ethylene stimulation.  相似文献   

19.
钙对香蕉采后果实呼吸的影响   总被引:3,自引:0,他引:3  
本实验对香蕉成熟过程中水溶性钙的变化及CaCl_2溶液真空浸渗处理对香蕉果实呼吸作用的影响进行研究,结果表明,香蕉成熟期间,水溶性钙含量随成熟度的提高而增加,果实呼吸跃变上升前期,水溶性钙的增加尤为明显,果皮和果肉中水溶性钙含量与采后成熟天数呈正相关。以0.05mol/l和0.1mol/l CaCl_2溶液真空浸渗,可使香蕉果实呼吸跃变高峰延迟,但没有明显降低跃变峰值。  相似文献   

20.
The apical 2 cm of seedling roots of oilseed rape (Brassica napus L., cv. Primor) produced more ethylene than adjacent, older tissue. Treatment with 5 × 10–3 mol m–3 3,5-diiodo4-hydroxybenzoic acid (DIHB), a presumed inhibitor of ethylene action, failed to stimulate root extension. Larger concentrations were inhibitory. Ethylene, applied as ethephon decreased root extension but DIHB (5 × 10–3 mol m–3) partially overcame this effect. Oxygen concentrations below that present in air also inhibited root extension but this was not ameliorated by DIHB.Roots of barley seedlings (Hordeum vulgare L., cv. Midas) evolved ethylene more slowly than roots of oilseed rape. DIHB (10–3–10–2 mol m–3) stimulated root extension in the absence of ethephon. Ethephon alone retarded root extension but DIHB partially overcame this inhibition. Small concentrations of oxygen also inhibited root extension but DIHB failed to ameliorate the effect even though the slow growth of oxygen-deficient roots (3–5% oxygen) was associated with abnormally fast rates of endogenous ethylene production.Extension growth in different oxygen concentrations was more closely associated with rates of oxygen consumption than with the amount of ethylene produced. Thus respiration rather than ethylene appeared to limit root extension under oxygen deficiency. This may explain why DIHB was unable to offset this form of environmental stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号