首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Huang TC  Huang HC  Chang CC  Chang HY  Ou CH  Hsu CH  Chen ST  Juan HF 《FEBS letters》2007,581(18):3517-3522
Synthetic peptides with the arginine-glycine-aspartate (RGD) motif have been used widely as inhibitors of integrin-ligand interactions to study cell growth, adhesion, migration and differentiation. We designed cyclic-RGD peptide (Tpa-RGDWPC-, cRGD) which could cause cell death in MCF-7 cell line. In order to understand the mechanism involved in cRGD-induced apoptosis, we used microarray, real-time quantitative PCR (Q-PCR) and bioinformatics to study the effects of cRGD on breast cancer cell line MCF-7. By time-series gene expression measurements and our developed software BSIP and GeneNetwork, we reconstructed an apoptosis-related gene network. In the network, caspase-9, located at the upstream, activates downstream effector caspases such as caspase-7, leading to the induction of caspase-4. Combined our previous proteomics data with newly performed docking simulation, it indicated that the cell death induced by cRGD may be triggered through blocking integrin signaling to the extracellular matrix and activation of caspase pathway. This study provides a molecular explanation of cRGD treatment in breast cancer cells and set forth a constructive far-reaching impact on breast cancer therapy.  相似文献   

2.
Interactions between plant cell walls and plasma membranes are essential for cells to function properly, but the molecules that mediate the structural continuity between wall and membrane are unknown. Some of these interactions, which are visualized upon tissue plasmolysis in Arabidopsis (Arabidopsis thaliana), are disrupted by the RGD (arginine-glycine-aspartic acid) tripeptide sequence, a characteristic cell adhesion motif in mammals. In planta induced-O (IPI-O) is an RGD-containing protein from the plant pathogen Phytophthora infestans that can disrupt cell wall-plasma membrane adhesions through its RGD motif. To identify peptide sequences that specifically bind the RGD motif of the IPI-O protein and potentially play a role in receptor recognition, we screened a heptamer peptide library displayed in a filamentous phage and selected two peptides acting as inhibitors of the plasma membrane RGD-binding activity of Arabidopsis. Moreover, the two peptides also disrupted cell wall-plasma membrane adhesions. Sequence comparison of the RGD-binding peptides with the Arabidopsis proteome revealed 12 proteins containing amino acid sequences in their extracellular domains common with the two RGD-binding peptides. Eight belong to the receptor-like kinase family, four of which have a lectin-like extracellular domain. The lectin domain of one of these, At5g60300, recognized the RGD motif both in peptides and proteins. These results imply that lectin receptor kinases are involved in protein-protein interactions with RGD-containing proteins as potential ligands, and play a structural and signaling role at the plant cell surfaces.  相似文献   

3.
The interaction of cells with extracellular matrix components such as fibronectin, vitronectin, and type I collagen has been shown to be mediated through a family of cell-surface receptors that specifically recognize an arginine-glycine-aspartic acid (RGD) amino acid sequence within each protein. Synthetic peptides containing the RGD sequence can inhibit these receptor-ligand interactions. Here, we use novel RGD-containing synthetic peptides with different inhibition properties to investigate the role of the various RGD receptors in tumor cell invasion. The RGD-containing peptides used include peptides that inhibit the attachment of cells to fibronectin and vitronectin, a peptide that inhibits attachment to fibronectin but not to vitronectin, a cyclic peptide with the opposite specificity, and a peptide, GRGDTP, that inhibits attachment to type I collagen in addition to inhibiting attachment to fibronectin and vitronectin. The penetration of two human melanoma cell lines and a glioblastoma cell line through the human amniotic basement membrane and its underlying stroma was inhibited by all of the RGD-containing peptides except for the one that inhibits only the vitronectin attachment. Various control peptides lacking RGD showed essentially no inhibition. This inhibitory effect on cell invasion was dose-dependent and nontoxic. A hexapeptide, GRGDTP, that inhibits the attachment of cells to type I collagen in addition to inhibiting fibronectin- and vitronectin-mediated attachment was more inhibitory than those RGD peptides that inhibit only fibronectin and vitronectin attachment. Analysis of the location of these cells that were prevented from invading indicated that they attached to the amniotic basement membrane but did not proceed further into the tissue. These results suggest that interactions between RGD-containing extracellular matrix adhesion proteins and cells are necessary for cell invasion through tissues and that fibronectin and type I collagen are important for this process.  相似文献   

4.
Lactoferrin (LF) is an iron-binding secretory protein, which is distributed in the secondary granules of polynuclear lymphocytes as well as in the milk produced by female mammals. Although it has multiple functions, for example antimicrobial, immunomodulatory, antiviral, and anti-tumor metastasis activities, the receptors responsible for these activities are not fully understood. In this study, the binding epitopes for human LF were first isolated from a hexameric random peptide library displayed on T7 phage. Interestingly, two of the four isolated peptides had a representative cell adhesion motif, Arg-Gly-Asp (RGD), implying that human LF interacts with proteins with the RGD motif. We found that human LF bound to the RGD-containing human extracellular matrix proteins, fibronectin and vitronectin. Furthermore, human LF inhibited cell adhesion to these matrix proteins in a concentration-dependent manner but not to the RGD-independent cell adhesion molecule like laminin or collagen. These results indicate that a function of human LF is to block the various interactions between the cell surface and adhesion molecules. This may explain the multifunctionality of LF.  相似文献   

5.
G protein-activated K+ channel (GIRK) subunits possess a conserved extracellular integrin-binding motif (RGD) and bind directly to beta1 integrins. We expressed GIRK1/GIRK4 channels labeled with green fluorescent protein in fibroblast cell lines expressing or lacking beta1 integrins. Neither plasma membrane localization nor agonist-evoked GIRK currents were affected by the absence of beta1 integrins or by incubation with externally applied RGD-containing peptide. Mutation of the aspartate (D) of RGD impaired currents, GIRK glycosylation, and membrane localization, but the interaction with beta1 integrins remained intact. Thus, beta1 integrins are not essential for functional GIRK expression; and the GIRK-integrin interactions involve structural elements other than the RGD motif.  相似文献   

6.
《The Journal of cell biology》1995,130(5):1189-1196
Many integrins recognize short RGD-containing amino acid sequences and such peptide sequences can be identified from phage libraries by panning with an integrin. Here, in a reverse strategy, we have used such libraries to isolate minimal receptor sequences that bind to fibronectin and RGD-containing fibronectin fragments in affinity panning. A predominant cyclic motif, *CWDDG/LWLC*, was obtained (the asterisks denote a potential disulfide bond). Studies using the purified phage and the corresponding synthetic cyclic peptides showed that *CWDDGWLC*-expressing phage binds specifically to fibronectin and to fibronectin fragments containing the RGD sequence. The binding did not require divalent cations and was inhibited by both RGD and *CWDDGWLC*-containing synthetic peptides. Conversely, RGD-expressing phage attached specifically to immobilized *CWDDGWLC*-peptide and the binding could be blocked by the respective synthetic peptides in solution. Moreover, fibronectin bound to a *CWDDGWLC*-peptide affinity column, and could be eluted with an RGD-containing peptide. The *CWDDGWLC*-peptide inhibited RGD-dependent cell attachment to fibronectin and vitronectin, but not to collagen. A region of the beta subunit of RGD-binding integrins that has been previously demonstrated to be involved in ligand binding includes a polypeptide stretch, KDDLW (in beta 3) similar to WDDG/LWL. Synthetic peptides corresponding to this region in beta 3 were found to bind RGD-displaying phage and conversion of its two aspartic residues into alanines greatly reduced the RGD binding. Polyclonal antibodies raised against the *CWDDGWLC*- peptide recognized beta 1 and beta 3 in immunoblots. These data indicate that the *CWDDGWLC*-peptide is a functional mimic of ligand binding sites of RGD-directed integrins, and that the structurally similar site in the integrin beta subunit is a binding site for RGD.  相似文献   

7.
The Arg-Gly-Asp (RGD) sequence serves as the primary integrin recognition site in extracellular matrix proteins, and peptides containing this sequence can mimic the activities of the matrix proteins. Depending on the context of the RGD sequence, an RGD-containing peptide may bind to all of the RGD-directed integrins, to a few, or to only a single one. We have previously isolated from a phage-displayed peptide library a cyclic peptide that binds avidly to the alpha(v)beta3 and alpha(v)beta5 integrins but does not bind to other closely related integrins. This peptide, ACDCRGDCFCG, exists in two natural configurations depending on internal disulfide bonding. The peptide with the 1-4; 2-3 disulfide bond arrangement accounts for most of the alpha(v) integrin binding activity, whereas the 1-3; 2-4 peptide is about 10-fold less potent. Solution structure analysis by nuclear magnetic resonance reveals an entirely different presentation of the RGD motif in the two isomers of RGD-4C. These results provide new insight into the ligand recognition specificity of integrins.  相似文献   

8.
This study examined whether enamel matrix derivative (EMD) inhibits the adhesion of cancer cells to bone. A typical breast cancer cell line, MCF-7, was used. Conditioned human osteosarcoma cell (Saos-2) medium was used as extracellular bone matrix (ECBM) to measure cell attachment. MCF-7 cells were incubated on ECBM-coated culture plates with or without soluble EMD, Arg-Gly-Asp (RGD) sequence blocking peptides, recombinant bone sialoprotein (rBSP), or specific integrin antibodies, and the attached cells were quantified using toluidine blue staining. EMD markedly reduced the attachment of MCF-7 cells to ECBM in a dose-dependent manner. An RGD peptide (GRGDSP) and recombinant BSP inhibited cell attachment to the same degree as EMD. Similarly, anti-alphavbeta3 integrin antibody strongly reduced cell attachment, whereas anti-alphavbeta5 and anti-beta1 integrin antibodies had less marked effects on cell attachment. These results show that EMD inhibits MCF-7 cell attachment to a bone matrix and that it might be useful as an anti-adhesive agent for breast cancer cells to bone in vivo.  相似文献   

9.
Human herpesvirus 8 (HHV-8) or Kaposi's sarcoma-associated herpesvirus, implicated in the pathogenesis of Kaposi's sarcoma, utilizes heparan sulfate-like molecules to bind the target cells via its envelope-associated glycoproteins gB and gpK8.1A. HHV-8-gB possesses the Arg-Gly-Asp (RGD) motif, the minimal peptide region of many proteins known to interact with subsets of host cell surface integrins. HHV-8 utilizes alpha3beta1 integrin as one of the receptors for its entry into the target cells via its gB interaction and induces the activation of focal adhesion kinase (FAK) (S. M. Akula, N. P. Pramod, F.-Z. Wang, and B. Chandran, Cell 108:407-419, 2002). Since FAK activation is the first step in the outside-in signaling necessary for integrin-mediated cytoskeletal rearrangements, cell adhesions, motility, and proliferation, the ability of HHV-8-gB to mediate the target cell adhesion was examined. A truncated form of gB without the transmembrane and carboxyl domains (gBdeltaTM) and a gBdeltaTM mutant (gBdeltaTM-RGA) with a single amino acid mutation (RGD to RGA) were expressed in a baculovirus system and purified. Radiolabeled HHV-8-gBdeltaTM, gBdeltaTM-RGA, and deltaTMgpK8.1A proteins bound to the human foreskin fibroblasts (HFFs), human dermal microvascular endothelial (HMVEC-d) cells, human B (BJAB) cells, and Chinese hamster ovary (CHO-K1) cells with equal efficiency, which was blocked by preincubation of proteins with soluble heparin. Maxisorp plate-bound gBdeltaTM protein induced the adhesion of HFFs and HMVEC-d and monkey kidney epithelial (CV-1) cells in a dose-dependent manner. In contrast, the gBdeltaTM-RGA and DeltaTMgpK8.1A proteins did not mediate adhesion. Adhesion mediated by gBdeltaTM was blocked by the preincubation of target cells with RGD-containing peptides or by the preincubation of plate-bound gBdeltaTM protein with rabbit antibodies against gB peptide containing the RGD sequence. In contrast, adhesion was not blocked by the preincubation of plate-bound gBdeltaTM protein with heparin, suggesting that the adhesion is mediated by the RGD amino acids of gB, which is independent of the heparin-binding domain of gB. Integrin-ligand interaction is dependent on divalent cations. Adhesion induced by the gBdeltaTM was blocked by EDTA, thus suggesting the role of integrins in the observed adhesions. Focal adhesion components such as FAK and paxillin were activated by the binding of gBdeltaTM protein to the target cells but not by gBdeltaTM-RGA protein binding. Inhibition of FAK phosphorylation by genistein blocked gBdeltaTM-induced FAK activation and cell adhesion. These findings suggest that HHV-8-gB could mediate cell adhesion via its RGD motif interaction with the cell surface integrin molecules and indicate the induction of cellular signaling pathways, which may play roles in the infection of target cells and in Kaposi's sarcoma pathogenesis.  相似文献   

10.
11.
Our previous studies showed that the alpha 5 beta 1 integrin selects cysteine pair-containing RGD peptides from a phage display library based on a random hexapeptide. We have therefore searched for more selective peptides for this integrin using a larger phage display library, where heptapeptides are flanked by cysteine residues, thus making the inserts potentially cyclic. Most of the phage sequences that bound to alpha 5 beta 1 (69 of 125) contained the RGD motif. Some of the heptapeptides contained an NGR motif. As the NGR sequence occurs in the cell-binding region of the fibronectin molecule, this sequence could contribute to the specific recognition of fibronectin by alpha 5 beta 1. Selection for high affinity peptides for alpha 5 beta 1 surprisingly yielded a sequence RRETAWA that does not bear obvious resemblance to known integrin ligand sequences. The synthetic cyclic peptide GACRRETAWACGA (*CRRETAWAC*) was a potent inhibitor of alpha 5 beta 1-mediated cell attachment to fibronectin. This peptide is nearly specific for the alpha 5 beta 1 integrin, because much higher concentrations were needed to inhibit the alpha v beta 1 integrin, and there was no effect on alpha v beta 3- and alpha v beta 5-mediated cell attachment to vitronectin. The peptide also did not bind to the alpha IIb beta 3 integrin. *CRRETAWAC* appears to interact with the same or an overlapping binding site in alpha 5 beta 1 as RGD, because cell attachment to *CRRETAWAC* coated on plastic was divalent cation dependent and could be blocked by an RGD-containing peptide. These results reveal a novel binding specificity in the alpha 5 beta 1 integrin.  相似文献   

12.
A synthetic adhesion protein was designed by chemical grafting of the RGD tailed cyclic peptide cyclo[-d-Val-Arg-Gly-Asp-Glu(-Ahx-Tyr-Cys-NH2)-] on the carrier protein bovine serum albumin (BSA). The cyclic conformation of the RGD motif grafted on the protein mimics the conformation of the motif displayed in native adhesion proteins such as fibronectin. The adhesion of the cells on polystyrene coated with the conjugate BSA–peptide was similar or even better than the one obtained when the proadhesive protein fibronectin was coated on the plates. Results also indicated that covalent coupling of the peptide on BSA is not absolutely required, since simple adsorption of the peptide on the protein coated on plates was efficient for enhancing cell adhesion. These results show that polystyrene support can be reconditioned with conformationally constrained RGD peptides to enhance cell adhesion on solid supports. The same methodology can be adapted for the development of new biomaterials based on the recognition of specific peptides.  相似文献   

13.
Integrin receptors are the main mediators of cell adhesion to the extracellular matrix. They bind to their ligands by interacting with short amino acid sequences, such as the RGD sequence. Soluble, small RGD-based peptides have been used to block integrin-binding to ligands, thereby interfering with cell adhesion, migration and survival, while substrate-immobilized RGD sequences have been used to enhance cell binding to artificial surfaces. This approach has several important medical applications, e.g. in suppression of tumor angiogenesis or stimulation of bone formation around implants. However, the relatively weak affinity of short RGD-containing peptides often results in incomplete integrin inhibition or ineffective ligation. In this work, we designed and synthesized several new multivalent RGD-containing molecules and tested their ability to inhibit or to promote integrin-dependent cell adhesion when used in solution or immobilized on substrates, respectively. These molecules consist of an oligomeric structure formed by alpha-helical coiled coil peptides fused at their amino-terminal ends with an RGD-containing fragment. When immobilized on a substrate, these peptides specifically promoted integrin alphaVbeta3-dependent cell adhesion, but when used in solution, they blocked alphaVbeta3-dependent cell adhesion to the natural substrates fibronectin and vitronectin. One of the peptides was nearly 10-fold more efficient than fibronectin or vitronectin in promoting cell adhesion, and almost 100-fold more efficient than a linear RGD tripeptide in blocking adhesion. These results indicate that alpha-helical coiled coil peptides carrying an amino-terminal RGD motif can be used as soluble antagonists or surface-immobilized agonists to efficiently inhibit or promote integrin alphaVbeta3-mediated cell adhesion, respectively.  相似文献   

14.
Integrins have been shown to be involved in the process of fertilization and many integrin-ligand interactions are mediated through the recognition of an arginine-glycine-aspartic acid (RGD) sequence. Despite the fact the RGD domain is a principal player in determining the functional characteristics of an adhesive protein, increasing evidence has accumulated implicating the amino acids flanking the RGD sequence in determining the functional properties of the RGD-containing protein. A set of linear peptides in which the amino acid sequence in and around the RGD tri-peptide was modified was synthesized to better understand the specificity of the RGD-receptor interaction. Mature oocytes were fertilized in vitro in the presence of RGD-containing and RGD-modified peptides. Both the RGD-containing and RGD-modified peptides impaired the ability of sperm to fertilize bovine oocytes, illustrated by a reduction in cleavage. The linear modified RGD containing peptides were also examined for their ability to induce parthenogenetic development with the objective of providing a linear RGD peptide with greater biological activity than the one (GRGDSPK) used previously (Campbell et al., 2000). The data demonstrate the specificity of the receptor for the RGD sequence, further implicate the involvement of integrins in the process of bovine fertilization, and illustrate the importance of the amino acids surrounding the RGD sequence in determining the binding and functional properties of RGD-containing peptides. The data support the findings that a linear RGD peptide can block fertilization and that amino acids around the RGD sequence have an impact on the biological activity of the receptor.  相似文献   

15.
The cell-binding abilities of a recombinant, RGD-containing peptide from foot-and-mouth disease virus (FMDV) have been characterized in HeLa and BHK cells. This peptide represents the aa sequence of the solvent-exposed G-H loop of protein VP1 which is involved in cell recognition and infection. The efficiency of the viral motif in promoting cell attachment and spreading is comparable to that shown by fibronectin or vitronectin. Cell binding is inhibited by a monoclonal antibody directed against a viral, RGD-involving B-cell epitope and also by sera against vitronectin (Vβ35) and fibronectin (5β1) receptors. In addition, a synthetic RGD peptide, which is a ligand for both integrins, prevents the cell binding mediated by the FMDV domain. These data demonstrate that the FMDV RGD motif is a potent ligand for cell-receptor integrins and sufficient to promote cell attachment to susceptible cells mainly through the vitronectin receptor.  相似文献   

16.
Altered expression of glycolysis proteins is an important yet poorly understood characteristic of cancer. To better understand the glycolytic changes during tumorigenesis, we designed a liquid chromatography multiple reaction monitoring (LC-MRM) assay targeting the "glycolysis proteome" in MCF-7 breast cancer cells, using isotope-coded dimethylation of peptides for relative quantification. In silico, dimethyl labeled tryptic peptides [M + 2H](2+) (of length n) and their y(n-1) fragment ions were determined based on UniprotKB database sequence entries for glycolysis proteins, related branching pathways, and reference proteins. Using predicted transitions ([M + 2H](2+) → y(n-1)), MRM-initiated detection and sequencing (MIDAS) was performed on a dimethyl-labeled, tryptic digest from MCF-7 cells, using two-dimensional liquid chromatography mass spectrometry analysis. Three transitions for each peptide were selected from identified spectra and assessed using 1D-LC-MRM-MS. Collision energy (CE) and dwell times were optimized and matching transitions for "heavy" isotope-coded dimethylated peptides were calculated. Resulting LC-MRM transitions were then used to measure changes in the glycolytic proteome in insulin-like growth factor-1 (IGF-1)-stimulated MCF-7 cells and other breast cell lines. Increases in the expression of glycolysis proteins leading to lactic acid production were observed common to IGF-1-stimulated MCF-7 cells and the invasive MDA-MB-231 cell line. Preliminary analysis of lung tumors with varied states of differentiation demonstrated the clinical applicability of LC-MRM and showed decreased levels of PGK1 in poorly differentiated tumors.  相似文献   

17.
The sequence Arg-Gly-Asp (RGD) in extracellular matrix proteins such as fibronectin, collagen, and laminin mediates cell attachment by interacting with proteins of the integrin family of cell surface receptors. A gene fusion encoding the RGD-containing peptide, fused to the C-terminus of a cellulose-binding domain (CBD/RGD), was expressed in Escherichia coli. Cultures produced up to 50 mg of CBD/RGD per liter, most of which was extracellular. It was purified from the culture supernatant by affinity chromatography on cellulose. CBD/RGD promoted the attachment of green monkey Vero cells to polystyrene and cellulose acetate. Attachment was inhibited by small synthetic peptides containing the RGD sequence. CBD/RGD was as effective as collagen in promoting the attachment of Vero cells to Cellsnowtrade mark microcarriers. (c) 1995 John Wiley & Sons, Inc.  相似文献   

18.
We have generated a panel of potent, selective monoclonal antibodies that bind human and mouse alpha(v)beta(6) integrin with high affinity (up to 15 pm). A subset of these antibodies blocked the binding of alpha(v)beta(6) to the transforming growth factor-beta1 latency-associated peptide with IC(50) values as low as 18 pm, and prevented the subsequent alpha(v)beta(6)-mediated activation of transforming growth factor-beta1. The antibodies also inhibited alpha(v)beta(6) binding to fibronectin. The blocking antibodies form two biochemical classes. One class, exemplified by the ligand-mimetic antibody 6.8G6, bound to the integrin in a divalent cation-dependent manner, contained an RGD motif or a related sequence in CDR3 of the heavy chain, was blocked by RGD-containing peptides, and was internalized by alpha(v)beta(6)-expressing cells. Despite containing an RGD sequence, 6.8G6 was specific for alpha(v)beta(6) and showed no cross-reactivity with the RGD-binding integrins alpha(v)beta(3), alpha(v)beta(8),or alpha(IIb)beta(3). The nonligand-mimetic blocking antibodies, exemplified by 6.3G9, were cation-independent, were not blocked by RGD-containing peptides, were not internalized, and did not contain RGD or related sequences. These two classes of antibody were unable to bind simultaneously to alpha(v)beta(6), suggesting that they may bind overlapping epitopes. The "ligand-mimetic" antibodies are the first to be described for alpha(v)beta(6) and resemble those described for alpha(IIb)beta(3). We also report for the first time the relative abilities of divalent cations to promote alpha(v)beta(6) binding to latency-associated peptide and to the ligand-mimetic antibodies. These antibodies should provide valuable tools to study the ligand-receptor interactions of alpha(v)beta(6) as well as the role of alpha(v)beta(6) in vivo.  相似文献   

19.
Phage matrix for isolation of glioma cell membrane proteins   总被引:1,自引:0,他引:1  
Cell-binding ligands for RG2 rat glioma were identified in our recent study from a library of peptides that are displayed as fusion molecules on phage particles. Here, one of the phage clones was used to affinity purify those cell membrane components to which the displayed peptides bind. This phage clone, displaying the ELRGDSLP peptide, was shown to recognize glioma cells specifically in comparison to control phage-expressing peptides of either similar or irrelevant sequences. Blocking experiments with synthetic RGDS peptide demonstrated that the phage-glioma cell recognition occurs via the RGD motif known to be present in many integrin-binding proteins. To form an affinity matrix that would bind to glioma cell membrane molecules, ELRGDSLP phage particles were cross-linked using dextran polymer. Whole cell lysate from RG2 rat glioma cells was passed through the matrix, resulting in the isolation of cell membrane components having strong affinity to the peptides on phage and molecules associated with those components. One of the isolated proteins was found to be CD44s, a cell surface adhesion molecule involved in glioma cell invasion and migration, which likely formed a complex with an RGD-binding integrin. Cell membrane proteins isolated with this innovative approach could be used for the design of cell-specific anticancer treatments.  相似文献   

20.
Grb7 is an adapter-type signaling protein, which is recruited via its SH2 domain to a variety of receptor tyrosine kinases (RTKs), including ErbB2 and ErbB3. It is overexpressed in breast, esophageal, and gastric cancers, and may contribute to the invasive potential of cancer cells. Molecular interactions involving Grb7 therefore provide attractive targets for therapeutic intervention. We have utilized phage display random peptide libraries as a source of small peptide ligands to the SH2 domain of Grb7. Screening these libraries against purified Grb7 SH2 resulted in the identification of Grb7-binding peptide phage clones that contained a non-phosphorylated Tyr-X-Asn (YXN) motif. The tyrosine-phosphorylated form of this motif is characteristic of Grb7 SH2 domain binding sites identified in RTKs and other signaling proteins such as Shc. Peptides that are non-phosphorylated have greater potential in the development of therapeutics because of the instability of a phosphate group in vivo. Using a biased library approach with this conserved YXN motif, we identified seven different peptide phage clones, which bind specifically to the SH2 domain of Grb7. These peptides did not bind to the SH2 domain of Grb2 (which also selects for Asn at pY(+2)) or Grb14, a closely related family member. The cyclic structure of the peptides was required to bind to the Grb7 SH2 domain. Importantly, the synthetic Grb7-binding peptide G7-18 in cell lysates was able to specifically inhibit the association of Grb7 with the ErbB family of RTKs, in particular ErbB3, in a dose-dependent manner. These peptides will be useful in the development of targeted molecular therapeutics for cancers overexpressing Grb7 and in the development of Grb7-specific inhibitors to gain a complete understanding of the physiological role of Grb7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号