首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Observations on living mitotic cells have suggested that material in the spindle moves poleward during mitosis. In order to investigate this movement, sea urchin eggs have been microinjected with 0.25-micron diameter carboxylated fluorescent beads. When fluorescent beads were injected into unfertilized Lytechinus variegatus eggs, no motility was detected. When injected into mitotic cells, beads moved to the spindle poles. Individual beads moved rapidly, in a saltatory fashion, and followed generally linear paths. Beads appeared to move along astral fibers, were generally excluded from the spindle proper, and accumulated at the spindle poles. Some dispersion of the beads away from the pole was observed as cells completed mitosis, but the majority of beads retained a polar location. After depolymerization of spindle microtubules with nocodazole, some dispersion of beads into the cytoplasm was also observed. Beads moved along taxol-induced astral microtubules and accumulated at astral centers. These observations reveal that negatively charged beads accumulate rapidly at mitotic centers, moving toward the minus end of the microtubules. Neither the bidirectional motility of similar beads in interphase cells nor the plus-end-directed bead motility seen in axons was observed in these mitotic cells.  相似文献   

2.
The influence of centrioles, derived from the sperm flagellar basal bodies, and the centrosomal material (MTOCs) on spindle formation in the brown alga Fucus distichus (oogamous) was studied by immunofluorescence microscopy using anti-centrin and anti-beta-tubulin antibodies. In contrast to a bipolar spindle, which is formed after normal fertilization, a multipolar spindle was formed in polyspermic zygote. The number of mitotic poles in polyspermic zygotes was double the number of sperm involved in fertilization. As an anti-centrin staining spot (centrioles) was located at these poles, the multipolar spindles in polyspermic zygotes were produced by the supplementary centrioles. When anucleate egg fragments were fertilized, chromosome condensation and mitosis did not occur in the sperm nucleus. Two anti-centrin staining spots could be detected, microtubules (MTs) radiated from nearby, but the mitotic spindle was never produced. When a single sperm fertilized multinucleate eggs (polygyny), abnormal spindles were also observed. In addition to two mitotic poles containing anti-centrin staining spots, extra mitotic poles without anti-centrin staining spots were also formed, and as a result multipolar spindles were formed. When karyogamy was blocked with colchicine, it became clear that the egg nucleus proceeded independently into mitosis accompanying chromosome condensation. A monoastral spindle could be frequently observed, and in rare cases a barrel-shaped spindle was formed. However, when a sperm nucleus was located near an egg nucleus, the two anti-centrin staining spots shifted to the egg nucleus from the sperm nucleus. In this case, a normal spindle was formed, the egg chromosomes arranged at the equator, and the associated MTs elongated from one pole of the egg spindle toward the sperm chromosomes which were scattered. From these results, it became clear that paternal centrioles derived from the sperm have a crucial role in spindle formation in the brown algae, such as they do during animal fertilization. However, paternal centrioles were not adequate for the functional centrosome during spindle formation. We speculated that centrosomal materials from the egg cytoplasm aggregate around the sperm centrioles and are needed for centrosomal activation.  相似文献   

3.
In the mitotic sea urchin egg, the spindle microtubules were composed of different tubulin isotypes from those of astral microtubules using monoclonal antibodies [Oka et al. (1990) Cell Motil. Cytoskeleton, 16, 239-250]. Three of the antibodies, D2D6, DM1B, and YL1/2, were specific for spindle microtubules, astral microtubules and reactive with both microtubules, respectively. The mitotic sea urchin egg was treated with microtubule depolymerizing (colcemid and nocodazole) and stabilizing (hexylene glycol) drugs and change in the heterogeneous distribution of the tubulin isotypes was investigated by the immunofluorescence procedure using these three monoclonal anti-tubulin antibodies. We observed that: (1) the microtubule depolymerizing drugs caused quick depolymerization of most mitotic microtubules, and a small number of spindle microtubules remaining were stained with all three antibodies; (2) hexylene glycol induced many microtubules in the mitotic apparatus, which was stained with D2D6 but was not stained with DM1B; (3) hexylene glycol also induced a great number of miniasters in the cytoplasm, and they were stained with three antibodies. These results suggest that these drugs altered the distribution of tubulin isotypes in the mitotic microtubules during depolymerization or polymerization within a short time.  相似文献   

4.
Microinjected Polystyrene Beads Move Along Astral Rays in Sand Dollar Eggs   总被引:2,自引:2,他引:0  
Movements of polystyrene beads along astral rays of the sperm aster and the mitotic aster were investigated in eggs of the sand dollars, Clypeaster japonicus and Scaphechinus mirabilis . Polystyrene beads injected into the unfertilized egg were at a standstill in the protoplasm. After fertilization, these beads exhibited movements toward the center of the sperm aster along the rays, and finally gathered around the astral center. They were distributed in blastomeres together with the mitotic centers during successive cleavages. When injected into eggs during mitosis, beads moved to the centers of the mitotic asters along astral rays. The injected beads did not move when the aster was disorganized by treatment with Colcemid, and moved when it formed after UV-irradiation. These results indicate that microtubules of astral rays are essential to the movement of polystyrene beads. The movement of small polystyrene beads (0.2–0.3 μm in diameter) resembled the saltatory movement of endogenous cytoplasmic granules, and the movement of large beads (ca. 1 μm in diameter) resembled the female pronuclear migration. All of these movements observed in fertilized eggs were demonstrated to be microtubule-dependent, perhaps sharing the same basic mechanisms.  相似文献   

5.
Development of unfertilized eggs in the parthenogenetic strain K23-O-im of Drosophila mercatorum requires the stochastic interactions of self-assembled centrosomes with the female chromatin. In a portion of the unfertilized eggs that do not assemble centrosomes, microtubules organize a bipolar anastral mitotic spindle around the chromatin like the one formed during the first female meiosis, suggesting that similar pathways may be operative. In the cytoplasm of eggs in which centrosomes do form, monastral and biastral spindles are found. Analysis by laser scanning confocal microscopy suggests that these spindles are derived from the stochastic interaction of astral microtubules directly with kinetochore regions or indirectly with kinetochore microtubules. Our findings are consistent with the idea that mitotic spindle assembly requires both acentrosomal and centrosomal pathways, strengthening the hypothesis that astral microtubules can dictate the organization of the spindle by capturing kinetochore microtubules.  相似文献   

6.
Current models for cleavage plane determination propose that metaphase spindles are positioned and oriented by interactions of their astral microtubules with the cellular cortex, followed by cleavage in the plane of the metaphase plate [1, 2]. We show that in early frog and fish embryos, where cells are unusually large, astral microtubules in metaphase are too short to position and orient the spindle. Rather, the preceding interphase aster centers and orients a pair of centrosomes prior to nuclear envelope breakdown, and the spindle assembles between these prepositioned centrosomes. Interphase asters center and orient centrosomes with dynein-mediated pulling forces. These forces act before astral microtubules contact the cortex; thus, dynein must pull from sites in the cytoplasm, not the cell cortex as is usually proposed for smaller cells. Aster shape is determined by interactions of the expanding periphery with the cell cortex or with an interaction zone that forms between sister-asters in telophase. We propose a model to explain cleavage plane geometry in which the length of astral microtubules is limited by interaction with these boundaries, causing length asymmetries. Dynein anchored in the cytoplasm then generates length-dependent pulling forces, which move and orient centrosomes.  相似文献   

7.
To understand the unusual polar body formation in the androgenetic clam, Corbicula leana, whole-mount eggs stained with monoclonal antibodies against α-tubulin, γ-tubulin, and 4’-6’-diamidino-2-phenylindole were examined. The meiotic spindle was located at the peripheral region of the egg at metaphase I, and its axis was parallel to the egg surface. After segregation of chromosomes at anaphase I, cytoplasmic bulges formed at both meiotic spindle pole sites. Centrosomes were located at the apical portion of the each bulge. From the apical portion of the bulge a bundle of astral microtubules radiated toward the bulge base in late anaphase resembling a half spindle. Maternal chromosomes and both centrosomes were all distributed in two ”first polar bodies” and were eventually discarded. After the polar body formation only one male pronucleus existed in the egg cytoplasm. The present study showed that the anaphase microtubules originating from a single aster can induce the polar body formation without overlapping of microtubules from the opposing aster. Received: 29 September 1999 / Accepted: 24 November 1999  相似文献   

8.
All known mechanisms of mitotic spindle orientation rely on astral microtubules. We report that even in the absence of astral microtubules, metaphase spindles in MDCK and HeLa cells are not randomly positioned along their x-z dimension, but preferentially adopt shallow β angles between spindle pole axis and substratum. The nonrandom spindle positioning is due to constraints imposed by the cell cortex in flat cells that drive spindles that are longer and/or wider than the cell''s height into a tilted, quasidiagonal x-z position. In rounder cells, which are taller, fewer cortical constraints make the x-z spindle position more random. Reestablishment of astral microtubule–mediated forces align the spindle poles with cortical cues parallel to the substratum in all cells. However, in flat cells, they frequently cause spindle deformations. Similar deformations are apparent when confined spindles rotate from tilted to parallel positions while MDCK cells progress from prometaphase to metaphase. The spindle disruptions cause the engagement of the spindle assembly checkpoint. We propose that cell rounding serves to maintain spindle integrity during its positioning.  相似文献   

9.
Treatment of the eggs of the sea urchin with a 1 M solution of glycerol at fertilization allows the recovery from this solution of the protein released from the cortical granules, including that which would normally give rise to the hyaline layer. The calcium-gelable protein previously extracted from whole eggs and from isolated cortical material was found to be present in the glycerol solution, confirming its localization in the cortical granules and its role in the hyaline layer. Quantitative measurements on the eggs of two Hawaiian species, Colobocentrotus atratus and Pseudoboletia indiana, which have the widest variation in the gel protein content, demonstrated that a proportionate amount of this material was released at fertilization in these species, which correlates with the thickness of the hyaline layer in the two cases. In addition, the calcium-insoluble fraction of Sakai can be extracted from these eggs after removal of the hyaline protein by glycerol, showing that this is a different material. A simple method for the separation of the hyaline protein from the calcium-insoluble fraction in solution is provided.  相似文献   

10.
Crystalline trypsin in 3 × 10?8 M concentration and higher, elicits fertilization membranes in the unfertilized eggs of Dendraster excentricus. These membranes are adequate in artificial parthenogenesis. If the action of trypsin on these eggs is continued for two or three hours the result is first, digestion of the membranes, followed later by reduction of the egg to amoeboid form. When fertilized, some of the partially digested eggs segment and form irregular cell masses, thus demonstrating that, in response to trypsin, there is first the cortical reaction giving rise to the fertilization membrane, and second, the progressive digestion and disintegration of the cytoplasm.Chymotrypsin causes rounding of the unfertilized eggs and, in rare instances, a few membranes, but the enzyme is not an adequate parthenogenetic agent.Fertilization of the egg renders the cytoplasm resistant to trypsin. The facts lead to the suggestion that fertilization liberates trypsin inhibitors in the cytoplasm.  相似文献   

11.
The first cleavage in the freshwater oligochaete Tubifex hattai is unequal and meridional, and produces a smaller cell AB and a larger cell CD. This study traces the process of furrow formation, reorganization of cortical F-actin and the assembly of a mitotic apparatus during this unequal division. Cleavage furrow formation consists of two stages: (i) when eggs are viewed from the animal pole, meridionally running furrows emerge at two points of the egg's equator that are 90° apart from each other and approach the egg axis as they deepen; and (ii) at the midpoint between the equator and the egg center, the bottoms of these furrows link to each other on the animal and vegetal surfaces of the egg and form a continuous ring of constriction in a plane parallel to the egg axis. Egg cortices, isolated during the first step and stained with rhodamine-phalloidin, show that the bottoms of recently formed furrows are underlaid by a belt of tightly packed actin bundles (i.e. a contractile arc). The transition to the second stage of furrow formation coincides with the conversion of these actin belts into a continuous ring of F-actin. Whole-mount immunocytochemistry of microtubules reveals that the first cleavage in Tubifex involves an asymmetric mitotic spindle, which initially possesses an aster at one pole but not the other. This ‘monastral’ spindle is located at the egg's center and orients itself perpendicular to the egg axis. During anaphase, astral rays elongate to reach the cell surface, so that the array of astral microtubules in the plane of the egg's equator covers a sector of 270–300°. In contrast, it is not until the transition to telophase that microtubules emanating from the anastral spindle pole approach the cell margin. If eggs are compressed along the egg axis or forced to elongate, they form monastral spindles and divide unequally. In living compressed eggs, mitotic spindles, which are recognizable as bright streaks at the egg's center, appear not to shift their position along the spindle axis during division, suggesting that without eccentric migration of spindles Tubifex eggs are able to divide unequally. These results suggest that mechanisms that translocate the mitotic spindle eccentrically do not operate in Tubifex eggs during the first cell cycle. The mechanisms that generate asymmetry in spindle organization are discussed in the light of the present results.  相似文献   

12.
In the copulating cottid species,Blepsias cirrhosus, the point at which fertilization occurred was determined experimentally. Ovulated eggs were obtained directly from the ovary of impregnated females. Eggs maintained in ovarian fluid did not show any signs of development, whereas most of the eggs which had been placed in seawater had developed to the 4-cell stage after 24hrs. The eggs kept in ovarian fluid initiated segmentation when later transferred into seawater. Histological examination showed that a number of spermatozoa had entered the micropyle, but that penetration did not occur in eggs that were not immersed in seawater. In these eggs, the metaphase spindle of the second meiotic division was observed in the ooplasm, at the animal pole. These results indicate that, in impregnated females, the spermatozoa associate with the eggs in the ovarian cavity, but that fertilization occurs externally when the eggs are spawned.  相似文献   

13.
The objective of this study was to determine microtubule assembly and chromatin configuration in porcine oocytes during the first cell cycle following round spermatid injection into matured porcine oocytes in the presence or absence of electrical stimulation. The oocytes with two large pronuclei and two polar bodies were classified as normal fertilization at 6 to 8 h following injection. The incidence of normal fertilization following round spermatid injection with electrical stimulation was significantly higher (21/45, 47%) than that following injection alone (6/39, 15%). Although a small microtubular aster was organized near the decondensed spermatid chromatin in some oocytes (2/6, 33%, spermatid injection alone; 9/21, 29%, spermatid injection and electrical stimulation), it did not enlarge nor fill the cytoplasm. Instead, a dense network of microtubules in the cytoplasm was organized from cortex. At 12 to 15 h after injection, we classified the oocytes with closely apposed pronuclei as normal fertilization. The electrical stimulation following spermatid injection enhanced (P < 0.05) the incidence of normal fertilization (18/54, 33%) compared with spermatid injection alone (7/52, 13%). During pronuclear movement, the maternally derived microtubules filled the whole cytoplasm, which appeared to move male and female chromatin. Mitosis and two-cell division were observed at 20 to 24 h after spermatid injection with electrical stimulation (12/41, 29%). At mitotic metaphase, the microtubular spindle had focused astral poles, and chromosomes were aligned on the spindle equator. During mitosis, asters were assembled at each spindle pole, and they filled the cytoplasm. These results suggested that round spermatid nuclei of the pig can develop into a morphologically normal pronucleus in matured porcine oocytes and are competent to participate in syngamy with the ootid chromatin. In addition, functional microtubules for complete fertilization with spermatid were not associated with male-derived centrosome but were organized solely from maternal stores. Mol. Reprod. Dev. 50:221–228, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

14.
The endoplasmic reticulum (ER) of live metaphase II mouse eggs and prophase I-arrested oocytes was compared using the fluorescent, lipophilic dicarbocyanine dye, DiI. DiI, dissolved in soybean oil, was microinjected into oocytes and eggs; the dye diffused throughout the cytoplasm to label the ER, which was imaged by confocal microscopy. The mature egg had a fine reticular network of ER throughout the cell and numerous dense accumulations of membrane in the cortex. These ER accumulations, 1-2 μm in diameter, were generally absent deeper in the cytoplasm. A similar staining pattern was observed when the eggs were fixed within 1 min of injection, providing evidence that the cortical accumulations of membrane are part of a continuous ER membrane system, since membrane trafficking could not occur in a fixed egg. Cortical ER accumulations were localized to the same region of the egg as the cortical granules and were not observed in the cortical granule-free region adjacent to the meiotic spindle. In contrast, ER accumulations were rarely found in the cortex of the immature, prophase I-arrested oocyte, but larger and less well-defined membrane clusters were found throughout the deeper cytoplasm of the oocyte. The appearance of ER clusters in the egg cortex following oocyte maturation correlates with an increased ability of the mature egg to release calcium at fertilization. Since the ER is a calcium store, structural reorganization of the ER may be necessary to permit the large release of calcium and resulting cortical granule exocytosis at fertilization.  相似文献   

15.
In Saccharomyces cerevisiae, Kar9p, one player in spindle alignment, guides the bud-ward spindle pole by linking astral microtubule plus ends to Myo2p-based transport along actin cables generated by the formins Bni1p and Bnr1p and the polarity determinant Bud6p. Initially, Kar9p labels both poles but progressively singles out the bud-ward pole. Here, we show that this polarization requires cell polarity determinants, actin cables, and microtubules. Indeed, in a bud6Δ bni1Δ mutant or upon direct depolymerization of actin cables Kar9p symmetry increased. Furthermore, symmetry was selectively induced by myo2 alleles, preventing Kar9p binding to the Myo2p cargo domain. Kar9p polarity was rebuilt after transient disruption of microtubules, dependent on cell polarity and actin cables. Symmetry breaking also occurred after transient depolymerization of actin cables, with Kar9p increasing at the spindle pole engaging in repeated cycles of Kar9p-mediated transport. Kar9p returning to the spindle pole on shrinking astral microtubules may contribute toward this bias. Thus, Myo2p transport along actin cables may support a feedback loop by which delivery of astral microtubule plus ends sustains Kar9p polarized recruitment to the bud-ward spindle pole. Our findings also explain the link between Kar9p polarity and the choice setting aside the old spindle pole for daughter-bound fate.  相似文献   

16.
As lipids can be a source of artefacts during intracellular localization of enzymes by cytochemical methodsin situ it was the aim of the present work to obtain orientation data on the distribution of lipids in the meristematic plant cells. The different fixation and object embedding methods examined revealed that it is best to fix the material by some formol fixative and without chroming, to embed it in polyethyleneglycol media. An alcoholic solution of Sudan black was found to be most reliable. In the meristematio cells the cytoplasm is usually stained more intensely than the nucleus. The ground cytoplasm is stained weakly while cytoplasmic particles are stained intensely. In some cases an intense black staining of nuclei, particularly in the prolongation zone, can be achieved. The staining intensity of cell components does not decrease on extracting lipids with pyridine. After extracting the dye from stained cell components a browninsh residual coloration remains. Chromatography of Sudan black revealed in all the samples tested slowly moving spots (blue and violet) and rapidly moving ones (red II, yellow, red I, colourless).  相似文献   

17.
The content of glycolytic intermediates and of adenine nucleotides was measured in eggs of the echiuroid, Urechis unicinctus and the oyster, Crassostrea gigas, before and after fertilization. On the whole, the profile of the change in each glycolytic intermediate in Urechis eggs upon fertilization was found to be essentially similar to that in oyster eggs. Calculation of the mass action ratio for each glycolytic step from the amounts of glycolytic intermediates determined suggests that there are at least three limiting enzymes in the glycolysis system in unfertilized and fertilized eggs of each species examined. Phosphorylase (EC 2.4.1.1), phosphofructokinase (EC 2.7.1.11), and pyruvate kinase (EC 2.7.1.40) may be rate-limiting enzymes for the glycolysis system in Urechis eggs as well as in oyster eggs. These enzymes are thought to be activated upon fertilization, though even the reactions of the enzymes in fertilized eggs do not reach a state of equilibrium. In eggs of Urechis and oyster, phosphorylase is the first enzyme to be activated following fertilization. In Urechis eggs, pyruvate kinase is activated after the instant increase in the phosphorylase activity upon fertilization, followed by phosphofructokinase activation. In oyster eggs, however, pyruvate kinase and phosphofructokinase seem to be stimulated simultaneously, subsequent to phosphorylase activation upon fertilization. The mechanism controlling phosphorylase and pyruvate kinase activity is unknown, but the phosphofructokinase activity in both species may be regulated by the intracellular concentration of adenine nucleotides, since the enzyme activity is enhanced along with a decline in the phosphate potential in the eggs of both Urechis and of oyster.  相似文献   

18.
《The Journal of cell biology》1985,101(5):1665-1672
A human autoantiserum (5051) directed against pericentriolar material (PCM) was used to study the distribution of microtubule-organizing centers (MTOCs) in the oocyte and during the first cell cycle of mouse development. In oocytes, the PCM was found not only at the poles of the barrel-shaped metaphase II spindle but also at many discrete loci around the cytoplasm near the cell cortex. The spindle poles were also composed of several PCM foci. In metaphase-arrested eggs only the PCM foci located near the chromosomes acted as MTOCs. However, after reduction of the critical concentration for tubulin polymerization by taxol, the cytoplasmic PCM foci were also found to be associated with nucleation of microtubules. After fertilization the cortical PCM foci remained in a peripheral position until the end of the S phase, when they appeared to migrate centrally towards the pronuclei. At prometaphase of the first mitotic division, numerous MTOCs were found around the two sets of chromosomes; these MTOCs then aligned to form two bands on either side of the metaphase plate of the first mitosis.  相似文献   

19.
In eggs of Pleurodeles treated with chloralhydrate (0.1 M) spindle and astral fibers are progressively destroyed after 4 hours, leading to apolar nuclei, apolar mitoses and “monopolar” mitoses, the so-called star metaphases. After 1 hour the spindle is shortened, but not narrowed and separated from the poles and asters. Its microtubules, grown before metaphase, are first inhibited at their ends near the centrospheres. After 4 hours, defibrillated achromatic material, stained by methyl blue, surrounds a clearer zone originating from the nucleoplasm, in which chromosomes are embedded. At the EM level the treatment induces the formation of unusual tubular bodies connected with the centrospheres and of similar bodies related to kinetochores and chromosomes. These bodies are formed of tubular residues, parallel or in concentric systems, the latter embedded in a matrix containing tightly packed filaments of 170 Å diameter. The star metaphase is characterized by homogeneous centrospheres formed only of filaments and completely independent from kinetochores and chromosomes. Chromosomes are radially distributed around a central common mass, which keeps the chromosomes together; it is formed of a finely fibrous matrix containing disordered microtubular residues; kinetochores are embedded in the common mass. Fuzziness and alteration of chromosomes proceed as a direct action of the chloralhydrate. The star metaphase is not a real “monopolar” mitosis.  相似文献   

20.
The germinal vesicle (GV) was removed from toad oocytes at various times after treatment with progesterone, and enucleated eggs were inseminated under conditions that ensured fertilization of nucleated control eggs. The eggs enucleated before the initiation of GV break-down did not show genuine cleavage. Cytological examinations revealed, however, that spermatozoa enter the eggs enucleated even before the hormone treatment, without subsequent formation of pronuclei or DNA synthesis. The same lack of response was observed when several detergent-pretreated sperm were injected into enucleated eggs. When GV material was injected back into enucleated oocytes, the injected spermatozoa underwent transformation and DNA synthesis, although in variable degrees, in the egg cytoplasm. It is concluded that the egg becomes fertilizable independently of the GV during the hormone-induced maturation process. After entering the egg, however, spermatozoa require GV material for their participation in the developmental process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号