首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider an excitatory population of subthreshold Izhikevich neurons which exhibit noise-induced firings. By varying the coupling strength J, we investigate population synchronization between the noise-induced firings which may be used for efficient cognitive processing such as sensory perception, multisensory binding, selective attention, and memory formation. As J is increased, rich types of population synchronization (e.g., spike, burst, and fast spike synchronization) are found to occur. Transitions between population synchronization and incoherence are well described in terms of an order parameter $\mathcal{O}$ . As a final step, the coupling induces oscillator death (quenching of noise-induced spikings) because each neuron is attracted to a noisy equilibrium state. The oscillator death leads to a transition from firing to non-firing states at the population level, which may be well described in terms of the time-averaged population spike rate $\overline{R}$ . In addition to the statistical-mechanical analysis using $\mathcal{O}$ and $\overline{R}$ , each population and individual state are also characterized by using the techniques of nonlinear dynamics such as the raster plot of neural spikes, the time series of the membrane potential, and the phase portrait. We note that population synchronization of noise-induced firings may lead to emergence of synchronous brain rhythms in a noisy environment, associated with diverse cognitive functions.  相似文献   

2.
Calcium buffers are large proteins that act as binding sites for free cytosolic calcium. Since a large fraction of cytosolic calcium is bound to calcium buffers, calcium waves are widely observed under the condition that free cytosolic calcium is heavily buffered. In addition, all physiological buffered excitable systems contain multiple buffers with different affinities. It is thus important to understand the properties of waves in excitable systems with the inclusion of buffers. There is an ongoing controversy about whether or not the addition of calcium buffers into the system always slows down the propagation of calcium waves. To solve this controversy, we incorporate the buffering effect into the generic excitable system, the FitzHugh–Nagumo model, to get the buffered FitzHugh–Nagumo model, and then to study the effect of the added buffer with large diffusivity on traveling waves of such a model in one spatial dimension. We can find a critical dissociation constant ( $K=K(a)$ ) characterized by system excitability parameter $a$ such that calcium buffers can be classified into two types: weak buffers ( $K\in (K(a),\infty )$ ) and strong buffers ( $K\in (0,K(a))$ ). We analytically show that the addition of weak buffers or strong buffers but with its total concentration $b_0^1$ below some critical total concentration $b_{0,c}^1$ into the system can generate a traveling wave of the resulting system which propagates faster than that of the origin system, provided that the diffusivity $D_1$ of the added buffers is sufficiently large. Further, the magnitude of the wave speed of traveling waves of the resulting system is proportional to $\sqrt{D_1}$ as $D_1\rightarrow \infty $ . In contrast, the addition of strong buffers with the total concentration $b_0^1>b_{0,c}^1$ into the system may not be able to support the formation of a biologically acceptable wave provided that the diffusivity $D_1$ of the added buffers is sufficiently large.  相似文献   

3.
l-Proline (pyrrolidine-2-carboxylic acid) is a distinctive metabolite both biochemically and biotechnologically and is currently recognized to have a cardinal role in gene expression and cellular signaling pathways in stress response. Proline-fueled mitochondrial metabolism involves the oxidative conversion of l-Proline to l-Glutamate in two enzymatic steps by means of Put1p and Put2p that help Saccharomyces cerevisiae to respond to changes in the nutritional environment by initiating the breakdown of l-Proline as a source for nitrogen, carbon, and energy. Compartmentalization of l-Proline catabolic pathway implies that extensive l-Proline transport must take place between the cytosol where its biogenesis via Pro1p, Pro2p, Pro3p occurs and mitochondria. l-Proline uptake in S. cerevisiae purified and active mitochondria was investigated by swelling experiments, oxygen uptake and fluorimetric measurement of a membrane potential generation (ΔΨ). Our results strongly suggest that l-Proline uptake occurs via a carried-mediated process as demonstrated by saturation kinetics and experiments with N-ethylmaleimide, a pharmacological compound that is a cysteine-modifying reagent in hydrophobic protein domains and that inhibited mitochondrial transport. Plasticity of S. cerevisiae cell biochemistry according to background fluctuations is an important factor of adaptation to stress. Thus l-Proline → Glutamate route feeds Krebs cycle providing energy and anaplerotic carbon for yeast survival.  相似文献   

4.
The definition of an (M,R) is formulated in a way that emphasizes its mathematical properties. Neglecting interactions between the components, it is shown that:
  1. An (M,R) contains only one non-reestablishable component.
  2. If an (M,R) contains only one non-reestablishable component, then that component is central.
Examples are given to illustrate the biological significance of these two results. The notion of “lag-independence” is introduced, and it is shown that if a system possesses only one non-reestablishable component which is “lag-independent” then all components are lag-independent. The concepts of reestablishability, centrality and lag-independence are applied in order to suggest various criteria for optimal organization of (M,R).  相似文献   

5.
Augmentation of the mechanical properties of connective tissue using ultraviolet (UV) radiation—by targeting collagen cross-linking in the tissue at predetermined UV exposure time \((t)\) and wavelength \((\lambda )\) —has been proposed as a therapeutic method for supporting the treatment for structural-related injuries and pathologies. However, the effects of \(\lambda \) and \(t\) on the tissue elasticity, namely elastic modulus \((E)\) and modulus of resilience \((u_\mathrm{Y})\) , are not entirely clear. We present a thermomechanical framework to reconcile the \(t\) - and \(\lambda \) -related effects on \(E\) and \(u_\mathrm{Y}\) . The framework addresses (1) an energy transfer model to describe the dependence of the absorbed UV photon energy, \(\xi \) , per unit mass of the tissue on \(t\) and \(\lambda \) , (2) an intervening thermodynamic shear-related parameter, \(G\) , to quantify the extent of UV-induced cross-linking in the tissue, (3) a threshold model for the \(G\) versus \(\xi \) relationship, characterized by   \(t_\mathrm{C}\) —the critical \(t\) underpinning the association of \(\xi \) with \(G\) —and (4) the role of \(G\) in the tissue elasticity. We hypothesized that \(G\) regulates \(E\) (UV-stiffening hypothesis) and \(u_\mathrm{Y}\) (UV-resilience hypothesis). The framework was evaluated with the support from data derived from tensile testing on isolated ligament fascicles, treated with two levels of \(\lambda \) (365 and 254 nm) and three levels of \(t\) (15, 30 and 60 min). Predictions from the energy transfer model corroborated the findings from a two-factor analysis of variance of the effects of \(t\) and \(\lambda \) treatments. Student’s t test revealed positive change in \(E\) and \(u_\mathrm{Y}\) with increases in \(G\) —the findings lend support to the hypotheses, implicating the implicit dependence of UV-induced cross-links on \(t\) and \(\lambda \) for directing tissue stiffness and resilience. From a practical perspective, the study is a step in the direction to establish a UV irradiation treatment protocol for effective control of exogenous cross-linking in connective tissues.  相似文献   

6.
l-Carnitine is a naturally occurring substance required in mammalian energy metabolism that functions by facilitating long-chain fatty acid entry into cellular mitochondria, thereby delivering substrate for oxidation and subsequent energy production. It has been purposed that l-carnitine may improve and preserve cognitive performance, and may lead to better cognitive aging through the life span, and several controlled human clinical trials with l-carnitine support the hypothesis that this substance has the ability to improve cognitive function. We further hypothesized that, since l-carnitine is an important co-factor of mammalian mitochondrial energy metabolism, acute administration of l-carnitine to human tissue culture cells should result in detectable increases in mitochondrial function. Cultures of SH-SY-5Y human neuroblastoma and 1321N1 human astrocytoma cells grown in 96-well cell culture plates were acutely administered l-carnitine hydrochloride, and then, mitochondrial function was assayed using the colorimetric 2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxyanilide inner salt cell assay kit in a VERSAmax tunable microplate reader. Significant increases in mitochondrial function were observed when human neuroblastoma or human astrocytoma cells were exposed to 100 nM (20 μg l-carnitine hydrochloride/L) to 100 μM (20 mg l-carnitine hydrochloride/L) concentrations of l-carnitine hydrochloride in comparison to unexposed cells, whereas no significant positive effects were observed at lower or higher concentrations of l-carnitine hydrochloride. The results of the present study provide insights for how l-carnitine therapy may significantly improve human neuronal function, but we recommend that future studies further explore different derivatives of l-carnitine compounds in different in vitro cell-based systems using different markers of mitochondrial function.  相似文献   

7.
Large eddy simulation (LES) technique is employed to numerically investigate the airflow through an idealized human extra-thoracic airway under different breathing conditions, 10, 30, and 120 l/min. The computational results are compared with single and cross hot-wire measurements, and with time-averaged flow field computed by standard $k\text{- }\omega $ and $k\text{- }\omega $ -SST Reynolds-averaged Navier–Stokes (RANS) models and the Lattice Boltzmann method (LBM). The LES results are also compared to root-mean-square (RMS) flow field computed by the Reynolds stress model (RSM) and LBM. LES generally gives better prediction of the time-averaged flow field than RANS models and LBM. LES also provides better estimation of the RMS flow field than both the RSM and the LBM.  相似文献   

8.
9.
In this paper, we develop a method for computing the variance effective size \(N_{eV}\) , the fixation index \(F_{ST}\) and the coefficient of gene differentiation \(G_{ST}\) of a structured population under equilibrium conditions. The subpopulation sizes are constant in time, with migration and reproduction schemes that can be chosen with great flexibility. Our quasi equilibrium approach is conditional on non-fixation of alleles. This is of relevance when migration rates are of a larger order of magnitude than the mutation rates, so that new mutations can be ignored before equilibrium balance between genetic drift and migration is obtained. The vector valued time series of subpopulation allele frequencies is divided into two parts; one corresponding to genetic drift of the whole population and one corresponding to differences in allele frequencies among subpopulations. We give conditions under which the first two moments of the latter, after a simple standardization, are well approximated by quantities that can be explicitly calculated. This enables us to compute approximations of the quasi equilibrium values of \(N_{eV}\) , \(F_{ST}\) and \(G_{ST}\) . Our findings are illustrated for several reproduction and migration scenarios, including the island model, stepping stone models and a model where one subpopulation acts as a demographic reservoir. We also make detailed comparisons with a backward approach based on coalescence probabilities.  相似文献   

10.
The cis-epoxysuccinate hydrolases (CESHs), members of epoxide hydrolase, catalyze cis-epoxysuccinic acid hydrolysis to form d(?)-tartaric acid or l(+)-tartaric acid which are important chemicals with broad scientific and industrial applications. Two types of CESHs (CESH[d] and CESH[l], producing d(?)- and l(+)-tartaric acids, respectively) have been reported with low yield and complicated purification procedure in previous studies. In this paper, the two CESHs were overexpressed in Escherichia coli using codon-optimized genes. High protein yields by one-step purifications were obtained for both recombinant enzymes. The optimal pH and temperature were measured for both recombinant CESHs, and the properties of recombinant enzymes were similar to native enzymes. Kinetics parameters measured by Lineweaver?CBurk plot indicates both enzymes exhibited similar affinity to cis-epoxysuccinic acid, but CESH[l] showed much higher catalytic efficiency than CESH[d], suggesting that the two CESHs have different catalytic mechanisms. The structures of both CESHs constructed by homology modeling indicated that CESH[l] and CESH[d] have different structural folds and potential active site residues. CESH[l] adopted a typical ??/??-hydrolase fold with a cap domain and a core domain, whereas CESH[d] possessed a unique TIM barrel fold composed of 8 ??-helices and 8 ??-strands, and 2 extra short ??-helices exist on the top and bottom of the barrel, respectively. A divalent metal ion, preferred to be zinc, was found in CESH[d], and the ion was proved to be crucial to the enzymatic activity. These results provide structural insight into the different catalytic mechanisms of the two CESHs.  相似文献   

11.
l-DOPA (3,4-dihydroxyphenyl-l-alanine) is the most widely used drug for treatment of Parkinson’s disease. In this study Yarrowia lipolytica-NCIM 3472 biomass was used for transformation of l-tyrosine to l-DOPA. The process parameters were optimized using response surface methodology (RSM). The optimum values of the tested variables for the production of l-DOPA were: pH 7.31, temperature 42.9 °C, 2.31 g l?1 cell mass and 1.488 g l?1 l-tyrosine. The highest yield obtained with these optimum parameters along with recycling of the cells was 4.091 g l?1. This optimization of process parameters using RSM resulted in 4.609-fold increase in the l-DOPA production. The statistical analysis showed that the model was significant. Also coefficient of determination (R2) was 0.9758, indicating a good agreement between the experimental and predicted values of l-DOPA production. The highest tyrosinase activity observed was 7,028 U mg?1 tyrosine. l-DOPA production was confirmed by HPTLC and HPLC analysis. Thus, RSM approach effectively enhanced the potential of Y. lipolytica-NCIM 3472 as an alternative source to produce l-DOPA.  相似文献   

12.
d-Aspartate (d-Asp) is an endogenous amino acid in the central nervous and reproductive systems of vertebrates and invertebrates. High concentrations of d-Asp are found in distinct anatomical locations, suggesting that it has specific physiological roles in animals. Many of the characteristics of d-Asp have been documented, including its tissue and cellular distribution, formation and degradation, as well as the responses elicited by d-Asp application. d-Asp performs important roles related to nervous system development and hormone regulation; in addition, it appears to act as a cell-to-cell signaling molecule. Recent studies have shown that d-Asp fulfills many, if not all, of the definitions of a classical neurotransmitter—that the molecule’s biosynthesis, degradation, uptake, and release take place within the presynaptic neuron, and that it triggers a response in the postsynaptic neuron after its release. Accumulating evidence suggests that these criteria are met by a heterogeneous distribution of enzymes for d-Asp’s biosynthesis and degradation, an appropriate uptake mechanism, localization within synaptic vesicles, and a postsynaptic response via an ionotropic receptor. Although d-Asp receptors remain to be characterized, the postsynaptic response of d-Asp has been studied and several l-glutamate receptors are known to respond to d-Asp. In this review, we discuss the current status of research on d-Asp in neuronal and neuroendocrine systems, and highlight results that support d-Asp’s role as a signaling molecule.  相似文献   

13.
In a continuing effort to further explore the use of the average local ionization energy $ \overline{\mathrm{I}}\left( \mathbf{r} \right) $ as a computational tool, we have investigated how well $ \overline{\mathrm{I}}\left( \mathbf{r} \right) $ computed on molecular surfaces serves as a predictive tool for identifying the sites of the more reactive electrons in several nonplanar defect-containing model graphene systems, each containing one or more pentagons. They include corannulene (C20H10), two inverse Stone-Thrower-Wales defect-containing structures C26H12 and C42H16, and a nanotube cap model C22H6, whose end is formed by three fused pentagons. Coronene (C24H12) has been included as a reference planar defect-free graphene model. We have optimized the structures of these systems as well as several monohydrogenated derivatives at the B3PW91/6-31G* level, and have computed their $ \overline{\mathrm{I}}\left( \mathbf{r} \right) $ on molecular surfaces corresponding to the 0.001 au, 0.003 au and 0.005 au contours of the electronic density. We find that (1) the convex sides of the interior carbons of the nonplanar models are more reactive than the concave sides, and (2) the magnitudes of the lowest $ \overline{\mathrm{I}}\left( \mathbf{r} \right) $ surface minima (the $ {{\overline{\mathrm{I}}}_{{\mathrm{S}\text{,}\min }}} $ ) correlate well with the interaction energies for hydrogenation at these sites. These $ {{\overline{\mathrm{I}}}_{{\mathrm{S}\text{,}\min }}} $ values decrease in magnitude as the nonplanarity of the site increases, consistent with earlier studies. A practical benefit of the use of $ \overline{\mathrm{I}}\left( \mathbf{r} \right) $ is that a single calculation suffices to characterize the numerous sites on a large molecular system, such as graphene and defect-containing graphene models.
Figure
Convex 0.001 au molecular surface of hydrogenated inverse Stone-Thrower-Wales defect-containing model 4H, with the hydrogen attached to one of the central carbons fusing the two pentagons  相似文献   

14.
It is a classical result of Stein and Waterman that the asymptotic number of RNA secondary structures is $1.104366 \cdot n^{-3/2} \cdot 2.618034^n$ . Motivated by the kinetics of RNA secondary structure formation, we are interested in determining the asymptotic number of secondary structures that are locally optimal, with respect to a particular energy model. In the Nussinov energy model, where each base pair contributes $-1$ towards the energy of the structure, locally optimal structures are exactly the saturated structures, for which we have previously shown that asymptotically, there are $1.07427\cdot n^{-3/2} \cdot 2.35467^n$ many saturated structures for a sequence of length $n$ . In this paper, we consider the base stacking energy model, a mild variant of the Nussinov model, where each stacked base pair contributes $-1$ toward the energy of the structure. Locally optimal structures with respect to the base stacking energy model are exactly those secondary structures, whose stems cannot be extended. Such structures were first considered by Evers and Giegerich, who described a dynamic programming algorithm to enumerate all locally optimal structures. In this paper, we apply methods from enumerative combinatorics to compute the asymptotic number of such structures. Additionally, we consider analogous combinatorial problems for secondary structures with annotated single-stranded, stacking nucleotides (dangles).  相似文献   

15.
The present study deals with five genera of hepatics in Africa, Isotachis Mitt., Anastrophyllum (Spruce) Steph., Tritomaria Schiffn. ex Loeske, Gymnocoleopsis (Schust.) Schust. and Lophozia (Dum.) Dum. All African populations of the genus Isotachis Mitt. are considered to be one species, I. aubertii (Schwaegr.) Mitt. Four species of Anastrophyllum (Spruce) Steph. (s.l.), A. auritum (Lehm.) Steph., A. piligerum (Nees) Spruce, A. subcomplicatum (Lehm. et Lindenb.) Steph. and A. minutum (Schreb.) Schust., and two species of Tritomaria Schiffn. et Loeske, T. camerunensis S. Arnell and T. exsecta (Schrad.) Schiffn. ex Loeske occur in Africa. Gymmocoleopsis multiflora (Steph.) Schust. represents a genus and species hitherto unreported for the African flora. Finally, five Lophozia (Dum.) Dum. species, L. argentina (Steph.) Schust., L. capensis S. Arnell, L. decolorans (Limpr.) Steph., L. hedbergii S. Arnell and L. tristaniana (S. Arnell) Váňa, are reported from central and southern Africa; two of these (L. argentina (Steph.) Schust. and L. decolorans (Limpr.) Steph.) represent the first reports from Africa.  相似文献   

16.
17.
Cyclic AMP is important for the resolution of inflammation, as it promotes anti-inflammatory signaling in several immune cell lines. In this paper, we present an immune cell specific model of the cAMP signaling cascade, paying close attention to the specific isoforms of adenylyl cyclase (AC) and phosphodiesterase that control cAMP production and degradation, respectively, in these cells. The model describes the role that G protein subunits, including G \(\alpha _s\) , G \(\alpha _i\) , and G \(\beta \gamma \) , have in regulating cAMP production. Previously, G \(\alpha _i\) activation has been shown to increase the level of cAMP in certain immune cell types. This increase in cAMP is thought to be mediated by \(\beta \gamma \) subunits which are released upon G \(\alpha \) activation and can directly stimulate specific isoforms of AC. We conduct numerical experiments in order to explore the mechanisms through which G \(\alpha _i\) activation can increase cAMP production. An important conclusion of our analysis is that the relative abundance of different G protein subunits is an essential determinant of the cAMP profile in immune cells. In particular, our model predicts that limited availability of \(\beta \gamma \) subunits may both \((i)\) enable immune cells to link inflammatory G \(\alpha _i\) signaling to anti-inflammatory cAMP production thereby creating a balanced immune response to stimulation with low concentrations of PGE2, and \((ii)\) prohibit robust anti-inflammatory cAMP signaling in response to stimulation with high concentrations of PGE2.  相似文献   

18.
In this paper, a mathematical model is derived to describe the transmission and spread of vector-borne diseases over a patchy environment. The model incorporates into the classic Ross–MacDonald model two factors: disease latencies in both hosts and vectors, and dispersal of hosts between patches. The basic reproduction number \(\mathcal{R }_0\) is identified by the theory of the next generation operator for structured disease models. The dynamics of the model is investigated in terms of \(\mathcal{R }_0\) . It is shown that the disease free equilibrium is asymptotically stable if \(\mathcal{R }_0<1\) , and it is unstable if \(\mathcal{R }_0>1\) ; in the latter case, the disease is endemic in the sense that the variables for the infected compartments are uniformly persistent. For the case of two patches, more explicit formulas for \(\mathcal{R }_0\) are derived by which, impacts of the dispersal rates on disease dynamics are also explored. Some numerical computations for \(\mathcal{R }_0\) in terms of dispersal rates are performed which show visually that the impacts could be very complicated: in certain range of the parameters, \(\mathcal{R }_0\) is increasing with respect to a dispersal rate while in some other range, it can be decreasing with respect to the same dispersal rate. The results can be useful to health organizations at various levels for setting guidelines or making policies for travels, as far as malaria epidemics is concerned.  相似文献   

19.
L-Pipecolic acid oxidase activity is deficient in patients with peroxisome biogenesis disorders (PBDs). Because its role, if any, in these disorders is unknown, the authors cloned the human gene to order to further study its functions. BLAST search of the translated sequence showed greatest homology to Bacillus sp. NS-129 monomeric sarcosine oxidase. The purified enzyme could use either L-pipecolic acid or sarcosine as a substrate. No homology was found to the peroxisomal D-amino acid oxidases. A further comparison of L-pipecolic acid oxidase to the two D-amino acid oxidases in peroxisomes showed that the proteins differed in many ways. First, both D-amino acid oxidase and L-pipecolic acid oxidase showed no enzyme activity in liver from Zell-weger syndrome patients; D-aspartate oxidase activity was unchanged from control levels. Although all were targeted to peroxisomes, their targeting signals differed. No L-pipecolic acid oxidase was found in brain or other tissues outside of liver and kidney. The D-amino acid oxidases were similarly and more widely distributed. Finally, although D-amino acid degradation is limited to peroxisomes in mammals, L-pipecolic acid can be oxidized in either mitochondria or peroxisomes, or both.  相似文献   

20.
Molecules acting as antioxidants capable of scavenging reactive oxygen species (ROS) are of utmost importance in the living cell. Vitamin C is known to be one of these molecules. In this study we have analyzed the reactivity of vitamin C toward the $ \cdot OH $ and $ \cdot OOH $ ROS species, in all acidic, neutral and basic media. In order to do so, density functional theory (DFT) have been used. More concretely, the meta-GGA functional MPW1B95 have been used. Two reaction types have been studied in each case: addition to the ring atoms, and hydrogen/proton abstraction. Our results show that $ \cdot OH $ is the most reactive species, while $ \cdot OOH $ displays low reactivity. In all three media, vitamin C reactions with two hydroxyl radicals show a wide variety of possible products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号