共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Pulmonary surfactant protein B (SP-B) facilitates the rapid transfer of phospholipids from bilayer stores into air-liquid interfacial films along the breathing cycle, and contributes to the formation of a surface-associated multilayer reservoir of surfactant to optimize the stability of the respiratory interface. To obtain more insights into the mechanisms underlying this transfer and multilayer formation, we established a simple model system that captures different features of SP-B action. We monitored the formation of supported planar bilayers from the collapse of intact phospholipid vesicles on a silica surface using a technique called quartz crystal microbalance with dissipation, which provides information on changes in membrane thickness and viscosity. At physiologically relevant concentrations, SP-B dramatically alters vesicle collapse. This manifests itself as a reduced buildup of intact vesicles on the surface before collapse, and allows the stepwise buildup of multilayered deposits. Accumulation of lipids in these multilayer deposits requires the presence of SP-B in both the receptor and the arriving membranes, surrounded by a comparable phospholipid charge. Thus, the quartz crystal microbalance with dissipation system provides a useful, simplified way to mimic the effect of surfactant protein on vesicle dynamics and permits a detailed characterization of the parameters governing reorganization of surfactant layers. 相似文献
3.
《Journal of molecular biology》2021,433(3):166749
Pulmonary surfactant is a lipid-protein complex that coats the alveolar air-liquid interface, enabling the proper functioning of lung mechanics. The hydrophobic surfactant protein SP-B, in particular, plays an indispensable role in promoting the rapid adsorption of phospholipids into the interface. For this, formation of SP-B ring-shaped assemblies seems to be important, as oligomerization could be required for the ability of the protein to generate membrane contacts and to mediate lipid transfer among surfactant structures. SP-B, together with the other hydrophobic surfactant protein SP-C, also promotes permeability of surfactant membranes to polar molecules although the molecular mechanisms underlying this property, as well as its relevance for the surface activity of the protein, remain undefined. In this work, the contribution of SP-B and SP-C to surfactant membrane permeability has been further investigated, by evaluation of the ability of differently-sized fluorescent polar probes to permeate through giant vesicles with different lipid/protein composition. Our results are consistent with the generation by SP-B of pores with defined size in surfactant membranes. Furthermore, incubation of surfactant with an anti-SP-B antibody not only blocked membrane permeability but also affected lipid transfer into the air-water interface, as observed in a captive bubble surfactometer device. Our findings include the identification of SP-C and anionic phospholipids as modulators required for maintaining native-like permeability features in pulmonary surfactant membranes. Proper permeability through membrane assemblies could be crucial to complement the overall role of surfactant in maintaining alveolar equilibrium, beyond its biophysical function in stabilizing the respiratory air-liquid interface. 相似文献
4.
The presence of cholesterol is critical in defining a dynamic lateral structure in pulmonary surfactant membranes. However, an excess of cholesterol has been associated with impaired surface activity of surfactant. It has also been reported that surfactant protein SP-C interacts with cholesterol in lipid/protein interfacial films. In this study, we analyzed the effect of SP-C on the thermodynamic properties of phospholipid membranes containing cholesterol, and the ability of lipid/protein complexes containing cholesterol to form and respread interfacial films capable of producing very low surface tensions upon repetitive compression-expansion cycling. SP-C modulates the effect of cholesterol to reduce the enthalpy associated with the gel-to-liquid-crystalline melting transition in dipalmitoylphosphatidylcholine (DPPC) bilayers, as analyzed by differential scanning calorimetry. The presence of SP-C affects more subtly the effects of cholesterol on the thermotropic properties of ternary membranes, mimicking more closely the lipid composition of native surfactant, where SP-C facilitates the miscibility of the sterol. Incorporation of 1% or 2% SP-C (protein/phospholipid by weight) promotes almost instantaneous adsorption of suspensions of DPPC/palmitoyloleoylphospatidylcholine (POPC)/palmitoyloleoyl-phosphatidylglycerol (POPG) (50:25:15, w/w/w) into the air-liquid interface of a captive bubble, in both the absence and presence of cholesterol. However, cholesterol impairs the ability of SP-C-containing films to achieve very low surface tensions in bubbles subjected to compression-expansion cycling. Cholesterol also substantially impairs the ability of DPPC/POPC/POPG films containing 1% surfactant protein SP-B to mimic the interfacial behavior of native surfactant films, which are characterized by very low minimum surface tensions with only limited area change during compression and practically no compression-expansion hysteresis. However, the simultaneous presence of 2% SP-C practically restores the compression-expansion dynamics of cholesterol- and SP-B-containing films to the efficient behavior shown in the absence of cholesterol. This suggests that cooperation between the two proteins is required for lipid-protein films containing cholesterol to achieve optimal performance under physiologically relevant compression-expansion dynamics. 相似文献
5.
The hydrophobic lung surfactant SP-B is essential for respiration. SP-B promotes spreading and adsorption of surfactant at the alveolar air-water interface and may facilitate connections between the surface layer and underlying lamellar reservoirs of surfactant material. SP-B63–78 is a cationic and amphipathic helical peptide containing the C-terminal helix of SP-B. 2H NMR has been used to examine the effect of SP-B63–78 on the phase behavior and dynamics of bicellar lipid dispersions containing the longer chain phospholipids DMPC-d54 and DMPG and the shorter chain lipid DHPC mixed with a 3∶1∶1 molar ratio. Below the gel-to-liquid crystal phase transition temperature of the longer chain components, bicellar mixtures form small, rapidly reorienting disk-like particles with shorter chain lipid components predominantly found around the highly curved particle edges. With increasing temperature, the particles coalesce into larger magnetically-oriented structures and then into more extended lamellar phases. The susceptibility of bicellar particles to coalescence and large scale reorganization makes them an interesting platform in which to study peptide-induced interactions between lipid assemblies. SP-B63–78 is found to lower the temperature at which the orientable phase transforms to the more extended lamellar phase. The peptide also changes the spectrum of motions contributing to quadrupole echo decay in the lamellar phase. The way in which the peptide alters interactions between bilayered micelle structures may provide some insight into some aspects of the role of full-length SP-B in maintaining a functional surfactant layer in lungs. 相似文献
6.
R. Arroyo A. Martín-González M. Echaide A. Jain W.H. Brondyk J. Rosenbaum F. Moreno-Herrero J. Pérez-Gil 《Journal of molecular biology》2018,430(10):1495-1509
Pulmonary surfactant protein D (SP-D) is a glycoprotein from the collectin family that is a component of the lung surfactant system. It exhibits host defense and immune regulatory functions in addition to contributing to the homeostasis of the surfactant pool within the alveolar airspaces. It is known that the SP-D monomer forms trimers, which further associate into higher-order oligomers. However, the pathway and the interactions involved in the assembly of SP-D oligomers are not clearly understood. In the current study, a recombinant form of full-length human SP-D (rhSP-D) has been qualitatively and quantitatively studied by atomic force microscopy (AFM) and electrophoresis, with the aim to understand the conformational diversity and the determinants defining the oligomerization of the protein. The rhSP-D preparation studied is a mixture of trimers, hexamers, dodecamers and higher-order oligomeric species, with dodecamers accounting for more than 50% of the protein by mass. Similar structures were also found in hSP-D obtained from proteinosis patients, with the largest fuzzy-ball-like oligomers being more abundant in these samples. The proportion of dodecamer is increased under acidic conditions, accompanied by a conformational change into more compact configurations. Two hexamers appear to be the minimal necessary unit for dodecamer formation, with stabilization of the dodecamer occurring via non-covalent, ionic, and hydrophobic interactions between the individual N-terminal domains and the proximal area of the SP-D collagen stems. 相似文献
7.
Interfacial behavior was studied in pulmonary surfactant model systems containing an amphiphilic α-helical peptide (Hel 13-5), which consists of 13 hydrophobic and five hydrophilic amino acid residues. Fully saturated phospholipids of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG) were utilized to understand specific interactions between anionic DPPG and cationic Hel 13-5 for pulmonary functions. Surface pressure (π)-molecular area (A) and surface potential (ΔV)-A isotherms of DPPG/Hel 13-5 and DPPC/DPPG (4:1, mol/mol)/Hel 13-5 preparations were measured to obtain basic information on the phase behavior under compression and expansion processes. The interaction leads to a variation in squeeze-out surface pressures against a mole fraction of Hel 13-5, where Hel 13-5 is eliminated from the surface on compression. The phase behavior was visualized by means of Brewster angle microscopy, fluorescence microscopy, and atomic force microscopy. At low surface pressures, the formation of differently ordered domains in size and shape is induced by electrostatic interactions. The domains independently grow upon compression to high surface pressures, especially in the DPPG/Hel 13-5 system. Under the further compression process, protrusion masses are formed in AFM images in the vicinity of squeeze-out pressures. The protrusion masses, which are attributed to the squeezed-out Hel 13-5, grow larger in lateral size with increasing DPPG content in phospholipid compositions. During subsequent expansion up to 35 mN m−1, the protrusions retain their height and lateral diameter for the DPPG/Hel 13-5 system, whereas the protrusions become smaller for the DPPC/Hel 13-5 and DPPC/DPPG/Hel 13-5 systems due to a reentrance of the ejected Hel 13-5 into the surface. In this work we detected for the first time, to our knowledge, a remarkably large hysteresis loop for cyclic ΔV-A isotherms of the binary DPPG/Hel 13-5 preparation. This exciting phenomenon suggests that the specific interaction triggers two completely independent processes for Hel 13-5 during repeated compression and expansion: 1), squeezing-out into the subsolution; and 2), and close packing as a monolayer with DPPG at the interface. These characteristic processes are also strongly supported by atomic force microscopy observations. The data presented here provide complementary information on the mechanism and importance of the specific interaction between the phosphatidylglycerol headgroup and the polarized moiety of native surfactant protein B for biophysical functions of pulmonary surfactants. 相似文献
8.
SP-BCTERM, a cationic, helical peptide based on the essential lung surfactant protein B (SP-B), retains a significant fraction of the function of the full-length protein. Solid-state 2H- and 31P-NMR were used to examine the effects of SP-BCTERM on mechanically oriented lipid bilayer samples. SP-BCTERM modified the multilayer structure of bilayers composed of POPC, POPG, POPC/POPG, or bovine lipid extract surfactant (BLES), even at relatively low peptide concentrations. The 31P spectra of BLES, which contains ∼1% SP-B, and POPC/POPG with 1% SP-BCTERM, look very similar, supporting a similarity in lipid interactions of SP-BCTERM and its parent protein, full-length SP-B. In the model systems, although the peptide interacted with both the oriented and unoriented fractions of the lipids, it interacted differently with the two fractions, as demonstrated by differences in lipid headgroup structure induced by the peptide. On the other hand, although SP-BCTERM induced similar disruptions in overall bilayer orientation in BLES, there was no evidence of lipid headgroup conformational changes in either the oriented or the unoriented fractions of the BLES samples. Notably, in the model lipid systems the peptide did not induce the formation of small, rapidly tumbling lipid structures, such as micelles, or of hexagonal phases, the observation of which would have provided support for functional mechanisms involving peptide-induced lipid flip-flop or stabilization of curved lipid structures, respectively. 相似文献
9.
10.
We study the impact of the addition of particles of a range of sizes on the phase transition behavior of lung surfactant under compression. Charged particles ranging from micro- to nanoscale are deposited on lung surfactant films in a Langmuir trough. Surface area versus surface pressure isotherms and fluorescent microscope observations are utilized to determine changes in the phase transition behavior. We find that the deposition of particles close to 20 nm in diameter significantly impacts the coexistence of the liquid-condensed phase and liquid-expanded phase. This includes morphological changes of the liquid-condensed domains and the elimination of the squeeze-out phase in isotherms. Finally, a drastic increase of the domain fraction of the liquid-condensed phase can be observed for the deposition of 20-nm particles. As the particle size is increased, we observe a return to normal phase behavior. The net result is the observation of a critical particle size that may impact the functionality of the lung surfactant during respiration. 相似文献
11.
Akihisa?T. Kodama Chin-Chang Kuo Thomas Boatwright Michael Dennin 《Biophysical journal》2014,107(7):1573-1581
We study the impact of the addition of particles of a range of sizes on the phase transition behavior of lung surfactant under compression. Charged particles ranging from micro- to nanoscale are deposited on lung surfactant films in a Langmuir trough. Surface area versus surface pressure isotherms and fluorescent microscope observations are utilized to determine changes in the phase transition behavior. We find that the deposition of particles close to 20 nm in diameter significantly impacts the coexistence of the liquid-condensed phase and liquid-expanded phase. This includes morphological changes of the liquid-condensed domains and the elimination of the squeeze-out phase in isotherms. Finally, a drastic increase of the domain fraction of the liquid-condensed phase can be observed for the deposition of 20-nm particles. As the particle size is increased, we observe a return to normal phase behavior. The net result is the observation of a critical particle size that may impact the functionality of the lung surfactant during respiration. 相似文献
12.
Lucy C. Sullivan Christopher B. Daniels Ian D. Phillips Sandra Orgeig Jeffrey A. Whitsett 《Journal of molecular evolution》1998,46(2):131-138
Surface tension is reduced at the air–liquid interface in the lung by a mixture of lipids and proteins termed pulmonary surfactant.
This study is the first to provide evidence for the presence of a surfactant-specific protein (Surfactant Protein A—SP-A)
in the gas-holding structures of representatives of all the major vertebrate groups. Western blot analysis demonstrated cross-reactivity
between an antihuman SP-A antibody and material lavaged from lungs or swimbladders of members from all vertebrate groups.
Immunocytochemistry localized this SP-A–like protein to the air spaces of lungs from the actinopterygiian fish and lungfish.
Northern blot analysis indicated that regions of the mouse SP-A cDNA sequence are complementary to lung mRNA from all species
examined. The presence of an SP-A–like protein and SP-A mRNA in members of all the major vertebrate groups implies that the
surfactant system had a single evolutionary origin in the vertebrates. Moreover, the evolution of the surfactant system must
have been a prerequisite for the evolution of airbreathing. The presence of SP-A in the goldfish swimbladder demonstrates
a role for the surfactant system in an organ that is no longer used for airbreathing.
Received: 5 March 1997 / Accepted: 14 June 1997 相似文献
13.
The effects of bovine pulmonary surfactant-associated protein B (SP-B) on molecular packing of model membrane lipids (7:1 DPPC/DPPG) were studied by fluorescence anisotropy. The bilayer surface was markedly ordered by SP-B below the gel to fluid phase transition temperature (Tc) while it was only slightly ordered above this temperature as indicated by surface-sensitive probes 6-NBD-PC and 6-NBD-PG. The effects of SP-B on fluorescence anisotropy were concentration dependent, reaching maximal activity at 1-2% protein to phospholipid by weight. Anisotropy measurements of interior-selective fluorescent probes (cis-parinaric acid and DPH) imply that addition of SP-B into the phospholipid shifted the Tc of the model membrane but did not alter lipid order at the membrane interior. Since fluorescence anisotropy studies with trans-parinaric acid, an interior-sensitive probe with high affinity for gel-phase lipids, did not detect any changes in lipid packing or Tc, it is likely that SP-B resides primarily in fluid-phase domains. Fluorescence lifetime measurements indicated that two conformers of the NBD-PC probe exist in this DPPC/DPPG model membrane system. Fluorescence intensity measurements generated with NBD-PC and NBD-PG, in conjunction with information from lifetime measurements, support the concept that SP-B increases the distribution of the short-lifetime conformer in the gel phase. In addition, the anisotropy and intensity profiles of NBD-PG in the model membrane indicate that bovine SP-B interacts selectively with phosphatidylglycerol. 相似文献
14.
Matthias Griese Stephanie Heinrich Felix Ratjen Michael Kabesch Karl Paul Manfred Ballmann Ernst Rietschel Matthias Kappler 《PloS one》2012,7(12)
Background
The state of oligomerization of surfactant associated protein-A (SP-A) monomers differs between individuals. This likely affects SP-A’s functional properties and could thereby influence clinical status in patients with lung diseases. In this study we focus on SP-A structure in cystic fibrosis (CF) compared to both healthy subjects and disease controls.Methods
SP-A composition and function were assessed in both bronchoalveolar lavage (BAL) fluid and serum of 46 CF patients with mild disease, 25 patients with chronic bronchitis and 22 healthy subjects by gel chromatography and a functional agglutination assay. Relation of SP-A agglutination ability to disease severity of the subjects was explored.Results
SP-A was present in seven major oligomeric forms with the majority of SP-A being structurally organized as complex oligomeric forms. More complex oligomeric forms were associated with better SP-A function with regard to its agglutination ability. These forms were more frequently observed in BAL than in serum, but there were no differences between disease groups. In CF patients, more complex forms of SP-A were associated with better lung function.Conclusions
Organizational structure of SP-A affects its functional activity and is linked to disease severity in CF. 相似文献15.
16.
17.
肺表面活性物质是位于肺泡上皮细胞表面的由关键性脂质蛋白质组成的具有多种功能的复合物。肺表面活性物质中各组成部分的联合效应是肺保持稳定性和宿主防御传染病病原体的基础。在此,就肺表面活性物质的主要成分、结构、功能及其与肺感染的关系做一简要综述。 相似文献
18.
目的:构建携带人SP-B蛋白+1580 SNP不同等位基因的转基因小鼠并进行细菌性肺炎模型的造模。方法:利用受精卵原核注射技术将hSP-B基因整合至小鼠染色体上获得F0代小鼠,将其与mSP-B基因敲除鼠进行交配,逐步去除转基因小鼠体内m SP-B基因。利用PCR技术鉴定小鼠基因型,通过测序确定+1580位点的等位基因。将铜绿假单胞菌经支气管灌注接种至小鼠肺内进行细菌性肺炎造模,对照组注射等量灭菌生理盐水。结果:F2代小鼠只表达人SP-B蛋白而不表达鼠SP-B蛋白,蛋白表达量与人肺内含量相近,即为构建成功的转基因小鼠。3个小鼠家系+1580位点等位基因为T,1个家系为C。细菌接种(1×10~6CFU/mouse)后24小时,小鼠肺泡内炎症渗出明显,大量中性粒细胞浸润,SP-B蛋白含量明显降低,但不同等位基因间在此条件下无明显差异。结果:成功构建只表达人SP-B蛋白的转基因小鼠模型,细菌性肺炎模型造模成功,为今后进一步研究人SP-B蛋白的生理功能及+1580基因多态性与肺疾病的关系提供了有力的工具。 相似文献
19.
Yongyu Wang Phillip J. Kuan Chao Xing Jennifer T. Cronkhite Fernando Torres Randall L. Rosenblatt J. Michael DiMaio Lisa N. Kinch Nick V. Grishin Christine Kim Garcia 《American journal of human genetics》2009,84(1):52-59
Idiopathic pulmonary fibrosis (IPF) is a lethal scarring lung disease that affects older adults. Heterozygous rare mutations in the genes encoding telomerase are found in ~15% of familial cases. We have used linkage to map another disease-causing gene in a large family with IPF and adenocarcinoma of the lung to a 15.7 Mb region on chromosome 10. We identified a rare missense mutation in a candidate gene, SFTPA2, within the interval encoding surfactant protein A2 (SP-A2). Another rare mutation in SFTPA2 was identified in another family with IPF and lung cancer. Both mutations involve invariant residues in the highly conserved carbohydrate-recognition domain of the protein and are predicted to disrupt protein structure. Recombinant proteins carrying these mutations are retained in the endoplasmic reticulum and are not secreted. These data are consistent with SFTPA2 germline mutations that interfere with protein trafficking and cause familial IPF and lung cancer. 相似文献
20.
Sui Lin Machiko Ikegami Changsuk Moon Anjaparavanda P. Naren John M. Shannon 《The Journal of biological chemistry》2015,290(30):18559-18574
Pulmonary surfactant, a mixture of proteins and phospholipids, plays an important role in facilitating gas exchange by maintaining alveolar stability. Saturated phosphatidylcholine (SatPC), the major component of surfactant, is synthesized both de novo and by the remodeling of unsaturated phosphatidylcholine (PC) by lyso-PC acyltransferase 1 (LPCAT1). After synthesis in the endoplasmic reticulum, SatPC is routed to lamellar bodies (LBs) for storage prior to secretion. The mechanism by which SatPC is transported to LB is not understood. The specificity of LPCAT1 for lyso-PC as an acyl acceptor suggests that formation of SatPC via LPCAT1 reacylation is a final step in SatPC synthesis prior to transport. We hypothesized that LPCAT1 forms a transient complex with SatPC and specific phospholipid transport protein(s) to initiate trafficking of SatPC from the endoplasmic reticulum to the LB. Herein we have assessed the ability of different StarD proteins to interact with LPCAT1. We found that LPCAT1 interacts with StarD10, that this interaction is direct, and that amino acids 79–271 of LPCAT1 and the steroidogenic acute regulatory protein-related lipid transfer (START) domain of START domain-containing protein 10 (StarD10) are sufficient for this interaction. The role of StarD10 in trafficking of phospholipid to LB was confirmed by the observation that knockdown of StarD10 significantly reduced transport of phospholipid to LB. LPCAT1 also interacted with one isoform of StarD7 but showed no interaction with StarD2/PC transfer protein. 相似文献