首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Elevation of body temperature to a level similar to that attained during fever induces a disaggregation of polysomes in the mammalian retina and induction of a 74K heat shock protein (hsp74). Induced retinal hsp74 copurifies with twice cycled microtubules and also with purified intermediate filaments, is precipitated by antibodies prepared against purified Tau proteins and binds to calmodulin.  相似文献   

2.
The effects of elevated ambient temperature and addition of the psychotropic drug LSD on protein synthesis in the isolated rabbit retina were investigated. Two dimensional gel electrophoresis followed by fluorography of proteins synthesized in vitro demonstrated that synthesis of a heat shock protein of molecular weight 74,000 (74K) was induced by the elevation of temperature and not by the addition of LSD. The appearance of this heat shock protein was shown to be dependent upon the synthesis of new RNA as shown by the addition of actinomycin-D to the incubation medium. The newly synthesized heat shock protein was associated with both nuclear and cytoplasmic fractions.  相似文献   

3.
《Insect Biochemistry》1990,20(3):275-284
The transient synthesis of a class of proteins known as heat shock or stress response proteins was induced when Cf124 cells were incubated at high temperature. When cells were infected with Chilo iridescent virus and simultaneously heat shocked, heat shock protein (hsp) synthesis was delayed, and the shut-off of hsp synthesis was suppressed. In previously heat shocked cells, inhibition of hsp synthesis was dependent upon the multiplicity of infection, however, when infection preceded heat shock, the synthesis of hsp started immediately after heat shock. In all cases, hsp synthesis was dependent upon newly synthesized messenger RNA.  相似文献   

4.
At the heat shock temperature of 45 degrees C, there is a transient induction of the synthesis of heat shock proteins and repression of normal protein synthesis in cells of Neurospora crassa. Both conidiospores and mycelial cells resume normal protein synthesis after 60 min at high temperature. At the RNA level, however, these two developmental stages responded with different kinetics to elevated temperature. Heat shock RNAs (for hsp30 and hsp83) accumulated and declined more rapidly in spores than in mycelia, and during recovery spores accumulated mRNA that encoded a normal protein (the proteolipid subunit of the mitochondrial ATPase), whereas mycelia showed no increase in this normal RNA (for at least 120 min). Therefore, the resumption of normal protein synthesis in spores may depend upon accumulation of new mRNAs. In contrast, mycelial cells appeared to change their translational preference during continued incubation at elevated temperature, from a discrimination against normal mRNAs to a resumption of their translation into normal cellular proteins, exemplified by the ATPase proteolipid subunit whose synthesis was measured in the heat-shocked cells.  相似文献   

5.
6.
7.
8.
9.
When Saccharomyces cerevisiae cells grown at 23 degrees C were transferred to 36 degrees C, they initiated synthesis of heat shock proteins, acquired thermotolerance to a lethal heat treatment given after the temperature shift, and arrested their growth transiently at the G1 phase of the cell division cycle. The bcy1 mutant which resulted in production of cyclic AMP (cAMP)-independent protein kinase did not synthesize the three heat shock proteins hsp72A, hsp72B, and hsp41 after the temperature shift. The bcy1 cells failed to acquire thermotolerance to the lethal heat treatment and were not arrested at the G1 phase after the temperature shift. In contrast, the cyr1-2 mutant, which produced a low level of cAMP, constitutively produced three heat shock proteins and four other proteins without the temperature shift and was resistant to the lethal heat treatment. The results suggest that a decrease in the level of cAMP-dependent protein phosphorylation results in the heat shock response, including elevated synthesis of three heat shock proteins, acquisition of thermotolerance, and transient arrest of the cell cycle.  相似文献   

10.
A monoclonal antibody (29A) directed against rat liver heat shock protein M(r) 90,000 (hsp90) was produced. By Western immunoblotting of cytosols prepared from several different tissues and species, 29A was shown to specifically recognize only one band with M(r) approximately 90,000. Localization of hsp90 in human gingival fibroblasts was studied using the 29A antibody by indirect mono- and double-staining immunofluorescence and confocal laser scanning microscopy. The distribution was compared to that of the glucocorticoid receptor (GR) and various cytoskeletal structures. Cells were analyzed in interphase and mitosis under basal culture conditions, after heat shock and after microtubule and microfilament depolymerization, sometimes combined with heat shock. A major part of hsp90 immunoreactivity was diffusely distributed throughout the interphase cytoplasm, but a weak nuclear staining with non-stained nucleoli was also present, however, only detectable after methanol and not after formaldehyde/Triton X-100 fixation. Heat shock induced a time-dependent translocation of hsp90 from the cytoplasm to the cell nucleus reaching a plateau after 15 h. This compartment shift was reversible and also occurred in the absence of intact microtubules or intact microfilaments.  相似文献   

11.
Heat shock (25° C) of 10° C-acclimated rainbow trout Oncorhynchus mykiss led to increases in heat shock protein 70 (hsp70) mRNA in blood, brain, heart, liver, red and white muscle, with levels in blood being amongst the highest. Hsp30 mRNA also increased with heat shock in all tissues with the exception of blood. When rainbow trout blood was heat shocked in vitro , both hsp70 and hsp30 mRNA increased significantly. In addition, these in vitro experiments demonstrated that blood from fish acclimated to 17° C water had a lower hsp70 mRNA heat shock induction temperature than did 5° C acclimated fish (20 v. 25° C). The hsp30 mRNA induction temperature (25° C), however, was unaffected by thermal acclimation. While increases in hsp70 mRNA levels in blood may serve as an early indicator of temperature stress in fish, tissue type, thermal history and the particular family of hsp must be considered when evaluating stress by these molecular means.  相似文献   

12.
A single hyperthermic exposure can render cells transiently resistant to subsequent high temperature stresses. Treatment of rat embryonic fibroblasts with cycloheximide for 6 h after a 20-min interval at 45 degrees C inhibits protein synthesis, including heat shock protein (hsp) synthesis, and results in an accumulation of hsp 70 mRNA, but has no effect on subsequent survival responses to 45 degrees C hyperthermia. hsp 70 mRNA levels decreased within 1 h after removal of cycloheximide but then appeared to stabilize during the next 2 h (3 h after drug removal and 9 h after heat shock). hsp 70 mRNA accumulation could be further increased by a second heat shock at 45 degrees C for 20 min 6 h after the first hyperthermic exposure in cycloheximide-treated cells. Both normal protein and hsp synthesis appeared increased during the 6-h interval after hyperthermia in cultures which received two exposures to 45 degrees C for 20 min compared with those which received only one treatment. No increased hsp synthesis was observed in cultures treated with cycloheximide, even though hsp 70 mRNA levels appeared elevated. These data indicate that, although heat shock induces the accumulation of hsp 70 mRNA in both normal and thermotolerant cells, neither general protein synthesis nor hsp synthesis is required during the interval between two hyperthermic stresses for Rat-1 cells to express either thermotolerance (survival resistance) or resistance to heat shock-induced inhibition of protein synthesis.  相似文献   

13.
The response to heat stress in six yeast species isolated from Antarctica was examined. The yeast were classified into two groups: one psychrophilic, with a maximum growth temperature of 20°C, and the other psychrotrophic, capable of growth at temperatures above 20°C. In addition to species-specific heat shock protein (hsp) profiles, a heat shock (15°C–25°C for 3 h) induced the synthesis of a 110-kDa protein common to the psychrophiles, Mrakia stokesii, M. frigida, and M. gelida, but not evident in Leucosporidium antarcticum. Immunoblot analyses revealed heat shock inducible proteins (hsps) corresponding to hsps 70 and 90. Interestingly, no proteins corresponding to hsps 60 and 104 were observed in any of the psychrophilic species examined. In the psychrotrophic yeast, Leucosporidium fellii and L. scottii, in addition to the presence of hsps 70 and 90, a protein corresponding to hsp 104 was observed. In psychrotrophic yeast, as observed in psychrophilic yeast, the absence of a protein corresponding to hsp 60 was noted. Relatively high endogenous levels of trehalose which were elevated upon a heat shock were exhibited by all species. A 10 Celsius degree increase in temperature above the growth temperature (15°C) of psychrophiles and psychrotrophs was optimal for heat shock induced thermotolerance. On the other hand, in psychrotrophic yeast grown at 25°C, only a 5 Celsius degree increase in temperature was necessary for heat shock induced thermotolerance. Induced thermotolerance in all yeast species was coincident with hsp synthesis and trehalose accumulation. It was concluded that psychrophilic and psychrotrophic yeast, although exhibiting a stress response similar to mesophilic Saccharomyces cerevisiae, nevertheless had distinctive stress protein profiles. Received: August 7, 1997 / Accepted: October 22, 1997  相似文献   

14.
15.
We have compared the effects of a mild heat shock and febrile temperatures on heat-shock protein (hsp) synthesis and development of stress tolerance in T lymphocytes. Our previous studies demonstrated that febrile temperatures (less than or equal to 41 degrees C) induced the synthesis of hsp110, hsp90, and the constitutive or cognate form of hsp70 (hscp70; a weak induction of the strongly stress-induced hsp70 was also observed. In the studies reported herein, we demonstrate that a mild heat shock (42.5 degrees C) reverses this ratio; that is, hsp70 and not hscp70 is the predominate member of this family synthesized at this temperature. Modest heat shock also enhanced the synthesis of hsp110 and hsp90. In order to assess the relationship between hsp synthesis and the acquisition of thermotolerance, purified T cells were first incubated at 42.5 degrees C (induction temperature) and then subsequently subjected to a severe heat-shock challenge (45 degrees C, 30 min). T cells first incubated at a mild heat-shock temperature were capable of total protein synthesis at a more rapid rate following a severe heat shock than control cells (induction temperature 37 degrees C). This phenomenon, which has been previously termed translational tolerance, did not develop in cells incubated at the febrile temperature (induction temperature 41 degrees C). Protection of translation also extended to immunologically relevant proteins such as interleukin-2 and the interleukin-2 receptor. Because clonal expansion is a critical event during an immune response, the effects of hyperthermic stress on DNA replication (mitogen-induced T cell proliferation) was also evaluated in thermotolerant T cells. DNA synthesis in control cells (induction temperature 37 degrees C) was severely inhibited following heat-shock challenge at 44 degrees C or 45 degrees C; in contrast, T cells preincubated at 42.5 degrees C rapidly recovered their DNA synthetic capacity. T cells preincubated at a febrile temperature were moderately protected against hyperthermic stress. The acquisition of thermotolerance was also associated with enhanced resistance to chemical (ethanol)-induced stress but not to heavy metal toxicity (cadmium) or dexamethasone-induced immunosuppression. These studies suggest that prior hsp synthesis may protect immune function against some forms of stress (e.g., febrile episode) but would be ineffective against others such as elevated glucocorticoid levels which normally occur during an immune response.  相似文献   

16.
17.
The ability to synthesize a 68,000- to 70,000-Da protein (hsp) in heat-shocked early Xenopus laevis embryos is dependent on the stage of development. Whereas late blastula and later stage embryos synthesize hsp68-70 after heat shock, cleavage stages are incompetent with respect to hsp synthesis. In vitro translation experiments and RNA blot analyses demonstrate that enhanced synthesis of hsp68-70 is associated with an accumulation of hsp68-70 mRNA. Examination of the effect of heat shock on preexisting actin mRNA reveals that heat shock promotes a reduction in the levels of actin mRNA in cleavage embryos but has no discernible effect on actin mRNA levels in neurula embryos. Finally, the acquisition of the heat-shock response (i.e., synthesis of hsp68-70 and accumulation of hsp70 mRNA) during early Xenopus development is correlated with the acquisition of thermotolerance.  相似文献   

18.
Binding of heat shock proteins to the avian progesterone receptor.   总被引:13,自引:4,他引:9       下载免费PDF全文
The protein composition of the avian progesterone receptor was analyzed by immune isolation of receptor complexes and gel electrophoresis of the isolated proteins. Nonactivated cytosol receptor was isolated in association with the 90-kilodalton (kDa) heat shock protein, hsp90, as has been described previously. A 70-kDa protein was also observed and was shown by Western immunoblotting to react with an antibody specific to the 70-kDa heat shock protein. Thus, two progesterone receptor-associated proteins are identical, or closely related, to heat shock proteins. When the two progesterone receptor species, A and B, were isolated separately in the absence of hormone, both were obtained in association with hsp90 and the 70-kDa protein. However, activated receptor isolated from oviduct nuclear extracts was associated with the 70-kDa protein, but not with hsp90. A hormone-dependent dissociation of hsp90 from the cytosolic form of the receptor complex was observed within the first hour of in vivo progesterone treatment, which could explain the lack of hsp90 in nuclear receptor complexes. In a cell-free system, hsp90 binding to receptor was stabilized by molybdate but disrupted by high salt. These treatments, however, did not alter the binding of the 70-kDa protein to receptor. Association of the 70-kDa protein with the receptor could be disrupted by the addition of ATP at elevated temperatures (23 degrees C). The receptor-associated 70-kDa protein is an ATP-binding protein, as demonstrated by its affinity labeling with azido[32P]ATP. These results indicate that the two receptor-associated proteins interact with the progesterone receptor by different mechanisms and that they are likely to affect the structure or function of the receptor in different ways.  相似文献   

19.
20.
The heat shock response has been studied extensively, yet the molecular signals that trigger the response remain elusive. The dogma of the heat shock response contends that denatured proteins initiate the response, but evidence is accumulating to point to a more complex system in which at least more than one signal is involved in this process. Thermal stress initiates changes in cellular phospholipid membrane physical state, which when acted upon by phospholipases may release lipid mediators that could serve as triggering signals during the heat shock response. We have examined the heat shock response in freshly isolated leukocytes from the pronephros of rainbow trout (Oncorhynchus mykiss). In this study, we show that leukocytes isolated from rainbow trout acclimated to 5 or 19°C express elevated levels of heat shock protein 70 (hsp70) mRNA when heat shocked at 5°C above their respective acclimation temperature and supplementation with exogenous docosahexaenoic acid or arachidonic acid followed by heat shock enhanced levels of hsp70 mRNA. The time course for docosahexaenoic acid induced enhancement of hsp70 mRNA was accelerated compared with heat shock alone, and staurosporine inhibited the docosahexaenoic acid induced increase of hsp70 mRNA. We also provide evidence that phospholipase A2 is involved in the heat shock response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号