首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We investigate harvest-induced adaptive changes in age and size at maturation by modelling both plastic variation and evolutionary trajectories. Harvesting mature individuals displaces the reaction norm for age and size at maturation toward older ages and larger sizes and rotates it clockwise, whereas harvesting immature individuals has the reverse qualitative effect. If both immature and mature individuals are harvested, the net effect has approximately the same trend as when harvesting immature individuals only. This stems from the sensitivity of the evolutionary response, which depends on the maturity state of harvested individuals, but also on the type of harvest mortality (negatively or positively density dependent, density independent) and the value of three life-history parameters (natural mortality, growth rate and the trade-off between growth and reproduction). Evolutionary changes in the maturation reaction norm have strong repercussions for the mean size and the density of harvested individuals that, in most cases, result in the reduction of biomass--a response that population dynamical models would overlook. These results highlight the importance of accounting for evolutionary trends in the long-term management of exploited living resources and give qualitative insights into how to minimize the detrimental consequences of harvest-induced evolutionary changes in maturation reaction norms.  相似文献   

2.
Female‐biased sexual dimorphism in size at maturity is a common pattern observed in freshwater fishes with indeterminate growth, yet can vary in magnitude among populations for reasons that are not well understood. According to sex‐specific optimization models, female‐biased sexual size dimorphism can evolve due to sexual selection favouring earlier maturation by males, even when sexes are otherwise similar in their growth and mortality regimes. The magnitude of sexual size dimorphism is expected to depend on mortality rate. When mortality rates are low, both males and females are expected to mature at older ages and larger sizes, with size determined by the von Bertalanffy growth equation. The difference between size at maturity in males and females becomes reduced when maturing at older ages, closer to asymptotic size. This phenomenon is called von Bertalanffy buffering. The predicted relationship between the magnitude of female‐biased sexual dimorphism in age and size at maturity and mortality rate was tested in a comparative analysis of lake whitefish Coregonus clupeaformis from 26 populations across a broad latitudinal range in North America. Most C. clupeaformis populations displayed female‐biased sexual dimorphism in size and age at 50% maturity. As predicted, female‐biased sexual size dimorphism was less extreme among lower mortality, high‐latitude populations.  相似文献   

3.
It is widely believed (following the 1957 hypothesis of G. C. Williams) that greater rates of “extrinsic” (age- and condition-independent) mortality favor more rapid senescence. However, a recent analysis of mammalian life tables failed to find a significant correlation between minimum adult mortality rate and the rate of senescence. This article presents a simple theoretical analysis of how extrinsic mortality should affect the rate of senescence (i.e., the rate at which probability of mortality increases with age) under different evolutionary and population dynamical assumptions. If population dynamics are density independent, extrinsic mortality should not alter the senescence rate favored by natural selection. If population growth is density dependent and populations are stable, the effect of extrinsic mortality depends on the age specificity of the density dependence and on whether survival or reproduction (or both) are functions of density. It is possible that higher extrinsic mortality will increase the rate of senescence at all ages, decrease the rate at all ages, or increase it at some ages while decreasing it at others. Williams's hypothesis is most likely to be supported when density dependence acts primarily on fertility and does not differentially decrease the fertilities of older individuals. Patterns contrary to Williams's prediction are possible when density dependence acts primarily on the survival or fertility of later ages or when most variation in mortality rates is due to variation in nonextrinsic mortality.  相似文献   

4.
Sexual size dimorphism in species with asymptotic growth after maturity   总被引:3,自引:1,他引:2  
If animals mature at small sizes and then grow to larger asymptotic sizes, many factors can affect male and female size distributions. Standard growth equations can be used to study the processes affecting sexual size dimorphism in species with asymptotic growth after maturity. This paper first outlines the effects of sex differences in growth and maturation patterns on the direction and degree of sexual dimorphism. The next section considers the effects of variation in age structure or growth rates on adult body sizes and sexual size dimorphism. Field data from a crustacean, fish, lizard and mammal show how information on a species' growth and maturation patterns can be used to predict the relationships between male size, female size and sexual size dimorphism expected if a series of samples from the same population simply differed with respect to their ages or growth rates. The last section considers ecological or behavioural factors with different effects on the growth, maturation, survival or movement patterns of the two sexes. This study supports earlier suggestions that information on growth and maturation patterns may be useful, if not essential, for comparative studies of sexual size dimorphism in taxa with asymptotic growth after maturity.  相似文献   

5.
Information on aging, maturation, and growth is important for understanding life histories of organisms. In extinct dinosaurs, such information can be derived from the histological growth record preserved in the mid-shaft cortex of long bones. Here, we construct growth models to estimate ages at death, ages at sexual maturity, ages at which individuals were fully-grown, and maximum growth rates from the growth record preserved in long bones of six sauropod dinosaur individuals (one indeterminate mamenchisaurid, two Apatosaurus sp., two indeterminate diplodocids, and one Camarasaurus sp.) and one basal sauropodomorph dinosaur individual (Plateosaurus engelhardti). Using these estimates, we establish allometries between body mass and each of these traits and compare these to extant taxa. Growth models considered for each dinosaur individual were the von Bertalanffy model, the Gompertz model, and the logistic model (LGM), all of which have inherently fixed inflection points, and the Chapman-Richards model in which the point is not fixed. We use the arithmetic mean of the age at the inflection point and of the age at which 90% of asymptotic mass is reached to assess respectively the age at sexual maturity or the age at onset of reproduction, because unambiguous indicators of maturity in Sauropodomorpha are lacking. According to an AIC-based model selection process, the LGM was the best model for our sauropodomorph sample. Allometries established are consistent with literature data on other Sauropodomorpha. All Sauropodomorpha reached full size within a time span similar to scaled-up modern mammalian megaherbivores and had similar maximum growth rates to scaled-up modern megaherbivores and ratites, but growth rates of Sauropodomorpha were lower than of an average mammal. Sauropodomorph ages at death probably were lower than that of average scaled-up ratites and megaherbivores. Sauropodomorpha were older at maturation than scaled-up ratites and average mammals, but younger than scaled-up megaherbivores.  相似文献   

6.
JAN RYSER 《Journal of Zoology》1988,216(4):673-685
Growth and maturation in a Swiss population of Rana temporaria were studied in 1983 and 1984 by means of skeletochronology. Resting line (growth ring) diameters were used to back-calculate individual body sizes in previous years; these permitted establishment of an average growth curve and determination of individual ages and sizes at first reproduction. Growth was rapid up to maturation, but continued thereafter at a decreased rate. Males were larger than females at age two but females grew faster thereafter, causing sexual dimorphism in adult body sizes. Body size distributions for both years and for frogs recaptured and first captured in 1984 were established. Growth in immatures was positively, but in adults negatively correlated with body size, with considerable variation at all sizes. Individual adult sizes were positively correlated with body sizes at the end of the first year. Average individual age at first reproduction was 2.8 years in males and 3.1 years in females (range in both sexes two to four years). There is no evidence for a two-year-cycle of reproduction.  相似文献   

7.
Size at maturity in ectotherms commonly declines with warming. This near‐universal phenomenon, formalised as the temperature–size rule, has been observed in over 80% of tested species, from bacteria to fish. The proximate cause has been attributed to the greater temperature dependence of development rate than growth rate, causing individuals to develop earlier but mature smaller in the warm. However, few studies have examined the ontogenetic progression of the temperature–size response at high resolution. Using marine planktonic copepods, we experimentally determined the progression of the temperature–size response over ontogeny. Temperature–size responses were not generated gradually from egg to adult, contrary to the predictions of a naïve model in which development rate was assumed to be more temperature‐dependent than growth rate, and the difference in the temperature dependence of these two rates remained constant over ontogeny. Instead, the ontogenetic progression of the temperature–size response in experimental animals was highly episodic, indicating rapid changes in the extent to which growth and development rates are thermally decoupled. The strongest temperature–size responses occurred temporally mid‐way through ontogeny, corresponding with the point at which individuals reached between ~5 and 25% of their adult mass. Using the copepod Oithona nana, we show that the temperature‐dependence of growth rate varied substantially throughout ontogeny, whereas the temperature dependence of development rate remained constant. The temperature‐dependence of growth rate even exceeded that of development rate in some life stages, leading to a weakening of the temperature–size response. Our analyses of arthropod temperature–size responses from the literature, including crustaceans and insects, support these conclusions more broadly. Overall, our findings provide a better understanding of how the temperature–size rule is produced over ontogeny. Whereas we find support for the generality of developmental rate isomorphy in arthropods (shared temperature dependence of development rate across life stages), this concept appears not to apply to growth rates.  相似文献   

8.
We used multiple regression and path analysis to examine the effects of regional and larger spatial scales of climatic/oceanic conditions on the growth, survival, and population dynamics of Hokkaido chum salmon (Oncorhynchus keta). Variability in the growth of chum salmon at ages 1 to 4 was estimated from scale analysis and the back-calculation method using scales of 4-year-old adults returning to the Ishikari River in Hokkaido, Japan, during 1943–2005. Growth of chum salmon at age 1 was less during the period from the 1940s to the mid-1970s compared to the period from the mid-1980s to the present. On the other hand, growth of chum salmon at ages 2, 3, and 4 has declined since the 1980s. Path analysis indicated that growth at age 1 in the Okhotsk Sea was directly affected by warmer sea surface temperatures associated with global warming. The increased growth at age 1 led directly to higher survival rates and indirectly to larger population sizes. Subsequently, in the Bering Sea, the larger population size was directly associated with decreased growth at age 3 and indirectly associated with shorter adult fork lengths despite the lack of relationships among sea surface temperature, zooplankton biomass, and growth at ages 2 to 4. Therefore, higher growth at age 1 related to global warming positively affected the survival rate of juvenile chum salmon in the Okhotsk Sea. The higher survival rates in turn appear to be causing a population density-dependent effect on growth at ages 2 to 4 and maturation in the Bering Sea due to limited carrying capacity.  相似文献   

9.
SUMMARY. We describe a model of zooplankton population dynamics that accounts for differences in mortality and physiology among animals of different ages or sizes. The model follows changes in numbers of individuals and changes in individual and egg biomass through time and it expresses mortality and net assimilation as functions of animal size.
We investigated the effect of egg size, age at first reproduction, and size at first reproduction on the per capita growth rates of populations growing under different conditions. In the absence of predation or when exposed to vertebrate predators that prefer large prey, populations achieve maximum growth rates when animals hatch from small eggs and reach maturity quickly at small sizes. Populations exposed to invertebrate predators that concentrate on small animals may increase r in two different ways. One way is for animals to increase juvenile survivorship by hatching from large eggs and by shortening the juvenile period. An alternative strategy is for animals to hatch from small eggs and to postpone maturity until they grow beyond the range of sizes available to their predators. Certain life history strategies maximize r if animals continue to grow after they reach maturity. By growing larger, non-primiparous females are able to hatch larger clutches and thereby increase the overall rate of population growth.
The model analysis shows how to assess age-dependent mortality rates from field data. The net rate of population increase and the age distribution of eggs together provide specific, quantitative information about mortality.  相似文献   

10.
Quantifying demographic parameters and variable vital rates, such as somatic growth rates, time to maturity, and reproductive longevity, is important for effective management of threatened and endangered populations such as sea turtles (Cheloniidae). To address these knowledge gaps, we applied skeletochronology to analyze and compare somatic growth rates and variation in life-history traits such as age and size at sexual maturity for 65 green turtles (Chelonia mydas) in the eastern Pacific Ocean (EP), along the west coast of the United States; turtles belonged to ≥2 nesting subpopulations that differed in body size (mean nesting size). Green turtles in the EP spend approximately 5 years in the oceanic stage before recruiting to nearshore habitats, males may be smaller and younger than females at maturation (x̅ = 17.7 ± 5.5 yr vs. 28.0 ± 8.2 yr), and younger age at sexual maturity was associated with smaller size at sexual maturity, suggesting that mean nesting body size may be reflective of maturation timing for subpopulations. Smaller body sizes for females nesting at Michoacán, Mexico (continental) rookeries, yielded a younger predicted age at sexual maturity (x̅ = ~17 yr) compared to females from Revillagigedo Islands, Mexico rookeries, which displayed larger body sizes and older age at sexual maturity (x̅ = ~30 yr). We consider possible mechanisms driving the observed divergence in life-history traits, including the possibility that earlier maturation (reduced generation length) for turtles in the Michoacán nesting subpopulation may be a response to intense harvesting in the past 50 years, and consideration of such anthropogenic impacts is warranted by population managers. Finally, our results indicate green turtles moved into nearshore neritic habitats at a young age (4–6 yr), emphasize the importance of protecting neritic habitats along the southwestern United States and northwestern Mexican coasts, and encourage the incorporation of variable maturation time in population recovery assessments.  相似文献   

11.
Many animal taxa exhibit a positive correlation between sexual size dimorphism and sex differences in age at maturity, such that members of the larger sex mature at older ages than members of the smaller sex. Previous workers have suggested that sexual bimaturation is a product of sex differences in growth trajectories, but to date no one has tested this hypothesis. The current study uses growth-based models to study relationships between sexual size dimorphism and sexual bimaturation in species with asymptotic growth after maturity. These models show that sex differences in asymptotic size would produce sexual bimaturation even if both sexes approach their respective asymptotic sizes at the same age, mature at the same proportion of asymptotic size and have otherwise equivalent growth and maturation patterns. Furthermore, our analyses show that there are three ways to reduce sexual bimaturation in sexually size-dimorphic species: (1) higher characteristic growth rates for members of the larger sex, (2) larger size at birth, hatching or metamorphosis for members of the larger sex or (3) smaller ratio of size at maturity to asymptotic size (relative size at maturity) for members of the larger sex. Of these three options, sex differences in relative size at maturity are most common in size-dimorphic species and, in both male-larger and female-larger species, members of the larger sex frequently mature at a smaller proportion of their asymptotic size than do members of the smaller sex. Information about the growth and maturation patterns of a taxon can be used to determine relationships between sexual size dimorphism and sexual bimaturation for the members of that taxon. This process is illustrated for Anolis lizards, a genus in which both sexes exhibit the same strong correlation (r 0.97) between size at maturity and asymptotic size, and in which the relative size at maturity is inversely related to asymptotic size for both sexes. As a result, sexually size-dimorphic species of anoles exhibit the expected pattern of a smaller relative size at maturity for members of the larger sex. However, for species in this genus, sex differences in the relative size at maturity are not strong enough to produce the same age at maturity for both sexes in sexually size-dimorphic species. Members of the larger sex (usually males) are still expected to mature at older ages than members of the smaller sex in Anolis lizards.  相似文献   

12.
Accurate age estimations are essential to archaeological and forensic analyses. However, reliability for adult skeletal age estimations is poor, especially for individuals over the age of 40 years. This is the first study to show that body size influences skeletal age estimation. The ??can et al., Lovejoy et al., Buckberry and Chamberlain, and Suchey‐Brooks age methods were tested on 764 adult skeletons from the Hamann‐Todd and William Bass Collections. Statures ranged from 1.30 to 1.93 m and body masses ranged from 24.0 to 99.8 kg. Transition analysis was used to evaluate the differences in the age estimations. For all four methods, the smallest individuals have the lowest ages at transition and the largest individuals have the highest ages at transition. Short and light individuals are consistently underaged, while tall and heavy individuals are consistently overaged. When femoral length and femoral head diameter are compared with the log‐age model, results show the same trend as the known stature and body mass measurements. The skeletal remains of underweight individuals have fewer age markers while those of obese individuals have increased surface degeneration and osteophytic lipping. Tissue type and mechanical loading have been shown to affect bone turnover rates, and may explain the differing patterns of skeletal aging. From an archaeological perspective, the underaging of light, short individuals suggests the need to revisit the current research consensus on the young mortality rates of past populations. From a forensic perspective, understanding the influence of body size will impact efforts to identify victims of mass disasters, genocides, and homicides. Am J Phys Anthropol 156:35–57, 2015 © 2014 Wiley Periodicals, Inc.  相似文献   

13.
Correlations between female investment in egg production and age, breeding experience and laying date have been reported in several seabird species. In general, clutch and egg sizes increase with female age and breeding experience but decrease with laying date. Positive correlations of clutch and egg size with age and breeding experience can be caused by an increase in reproductive investment with maturation or they may be an artefact of lower survival rates for individuals with poor-quality phenotypes. Negative correlations of clutch and egg size with laying date might signal an adaptive reduction in egg production or be due in part to variation among individuals. We examined the interactions of female age, breeding experience, laying date and clutch and egg size in Adélie Penguins Pygoscelis adeliae . Breeding experience strongly affected clutch size with 87.3% of all one-egg clutches laid by first-time breeders. In addition, increasing age had a positive influence on egg size and was associated with earlier laying dates. However, there was little evidence to suggest that either clutch or egg sizes are influenced by laying date. Laying dates and clutch and egg sizes did not affect a female's probability of returning to breed in the following year, indicating that increased investment is a product of maturation and not of the loss of poor-quality breeders from the population. Our results suggest that as female Adélie Penguins gain foraging and breeding experience they are able to initiate breeding earlier, to lay complete clutches of two eggs and to lay larger eggs.  相似文献   

14.
We used two different approaches involving two organizational levels and spatial scales to explore altitudinal and latitudinal variation in life histories of non-anadromous brown trout Salmo trutta. First, we studied the factors influencing the maturation of individuals from populations in northern Spain. Second, we explored the effects of altitude (range 40–1,340 m) and latitude (range 40.6–61.7°N) on longevity, maximum length, length and age at maturity, and fecundity, comparing Spanish and Norwegian populations. Individual maturation was determined by length, age, and sex, and at a given size and age individuals were more likely to mature at higher altitudes. Brown trout lived longer but attained smaller sizes at higher latitudes. Both males and females matured at an older age with increasing latitude, but latitude affected their life-history strategies differentially. Males matured at smaller sizes with increasing latitude and altitude, which may indicate that their maturation threshold depends on the growth potentiality of the river since they compete with other males from the same population. The opposite effects were detected in females. Since female fecundity increases strongly with size there may be a size below which maturation has strong fitness costs. Brown trout are extraordinarily plastic, allowing persistence in a wide variety of environments. In the context of climate change, latitudinally based studies are important to predict potential effects of climate change, especially at the southern edge of species distribution.  相似文献   

15.
Understanding the effect of population size on the key parameters of evolution is particularly important for populations nearing extinction. There are evolutionary pressures to evolve sequences that are both fit and robust. At high mutation rates, individuals with greater mutational robustness can outcompete those with higher fitness. This is survival-of-the-flattest, and has been observed in digital organisms, theoretically, in simulated RNA evolution, and in RNA viruses. We introduce an algorithmic method capable of determining the relationship between population size, the critical mutation rate at which individuals with greater robustness to mutation are favoured over individuals with greater fitness, and the error threshold. Verification for this method is provided against analytical models for the error threshold. We show that the critical mutation rate for increasing haploid population sizes can be approximated by an exponential function, with much lower mutation rates tolerated by small populations. This is in contrast to previous studies which identified that critical mutation rate was independent of population size. The algorithm is extended to diploid populations in a system modelled on the biological process of meiosis. The results confirm that the relationship remains exponential, but show that both the critical mutation rate and error threshold are lower for diploids, rather than higher as might have been expected. Analyzing the transition from critical mutation rate to error threshold provides an improved definition of critical mutation rate. Natural populations with their numbers in decline can be expected to lose genetic material in line with the exponential model, accelerating and potentially irreversibly advancing their decline, and this could potentially affect extinction, recovery and population management strategy. The effect of population size is particularly strong in small populations with 100 individuals or less; the exponential model has significant potential in aiding population management to prevent local (and global) extinction events.  相似文献   

16.
Genetic parameters of size through sexual maturity have been relatively unexplored for Pacific salmon. In this study, individually tagged coho salmon were raised in freshwater, and the heritabilities of size and growth rate were estimated at several intervals between 13 and 24 months of age (spawning). Heritability estimates for size were moderate to high from 13 to 19 months of age, ranging from 0.36 to 0.50, and lower from 21 months to spawning at 24 months, ranging from 0.17 to 0.32. Heritabilities of specific growth rates estimated over 3-month intervals were moderate from 16 to 21 months of age, ranging from 0.21 to 0.34. Genetic and phenotypic correlations between sizes measured at different ages were moderate to high, ranging from about 0.7 to 1.0. Correlations between growth rate and size indicated that the larger fish were the fastest growing between 16 and 19 months of age and were slower growing between 19 and 21 months of age.  相似文献   

17.
Summary The perennial monocarp Frasera speciosa (Gentianaceae) flowers at a wide range of sizes and ages with consequent variation in generation time (T), net replacement rate (R o) and intrinsic rate of increase (r). Values of r were calculated for hypothetical cohorts composed of individuals flowering at the same age. Maximum rates of r are achieved by plants which flower at the earliest possible age. Although older plants produce more flowers, this increase is not sufficient to compensate for the effect of increased T on r. Few plants in each population flower at the youngest possible age, and for the majority reproduction is delayed, generation times are longer and r lower than achieved by plants flowering at younger ages. Delayed reproduction may be favored by greater seed set, due to pollinator attraction to larger flower stalks, as well as broader seed dispersal which could increase the probability of seedling establishment. Delays greater than those observed may be selected against by decreasing probability of survival, a decrease in the rate of addition of flowers with increasing size, and slower transitions between leaf number classes in larger plants. Staggered reproduction by an individual's offspring, whether environmentally or genetically determined, has the effect of insuring survival in an environment with high variability in pollinator effectiveness (see d set), germination, and seedling establishment.  相似文献   

18.
Synopsis Field and laboratory studies were conducted for 3 years on the yellowtail rockfish,Sebastes flavidus, from Cordell Bank, California, in order to characterize the reproduction of this species whose northern stocks have declined. Research findings included reversal of the sex ratios and male-female ages and sizes at age throughout the annual cycle, heavier and longer, females at age than males after sexual maturation, maturation of females at 6 and males at 8 years, long reproductive lifespans, distinct male and female gonadosomatic index patterns over the annual cycle, age- and size-specific fecundity, no difference between potential and realized fecundity and the seasonal changes associated with gonadogenesis. The reproductive profile of the Cordell Bank yellowtail rockfish provided a base for comparison with northern populations that appeared to differ, especially in age and size.  相似文献   

19.
The reproductive biology of the serranid fish Plectropomus maculatus sampled from inshore waters of the Central Great Barrier Reef was studied based on histological analyses of gonad material. This species was shown to be a monandric protogynous hermaphrodite. The process of sex change foliowed the spawning period observed during September through November. Plectropomus: maculatus showed multiple spawning during this period. Sex change followed the usual protogynous mode with degeneration of ovarian germinal tissue accompanied by proliferation of male germinal tissue in the gonad. The sex structure of the sampled population was analysed based on age and size information. The size and age of first reproduction for females was 30.0cm s. L. and 2 years of age. The size and age of sex-transition was 35.4 cm s. L. and 4.4 years of age. The sex/size and sex/age relationships indicated that sex-change can occur over a broad range of sizes and ages. The sizes and age distributions of males and females P. maculates overlapped over 38% of the length range and over 42% of the maximum age observed.  相似文献   

20.
Recent environmental changes have influenced the ecology and biology of eastern Baltic cod. Declining somatic condition, maturation at smaller size and restricted size distribution of the population suggest that growth rates have decreased between the early 2000s and the 2010s. Extensive age estimation problems have until now precluded testing of this hypothesis. This study presents evidence for a decrease in somatic growth rate of Baltic cod. Temporal patterns of growth, condition and maturation were analysed based on two complementary analyses: length frequency mode progression derived from DATRAS bottom trawl survey data and known-age samples, where size at age was back-calculated from daily otolith growth patterns. In the known-age samples, growth was positively related to somatic condition at capture with maturity dependent differences. Immature individuals had experienced significantly lower growth and were in lower condition at capture than mature individuals. Growth rates in the known-age samples were estimated at 9.5, 7.8 and 5.7?cm per year for age classes 1, 2 and 3 respectively. Growth between age 2 and 3 decreased significantly from 8.8?cm in the 1997 year class to 7.6?cm in the 2010 year class. While the 2001 and 2004 known-age samples were representative for the population, the 2013 sample was biased towards individuals with a higher condition and growth. Complementary length frequency analysis following the length mode of fish from age 2 to age 3 confirmed growth estimates from the early 2000s, while suggesting a 37.5% lower growth in 2013 compared with 2005.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号