首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Phosphate starvation derepresses a high-affinity phosphate uptake system in Saccharomyces cerevisiae strain A294, while in the same time the low-affinity phosphate uptake system disappears. The protein synthesis inhibitor cycloheximide prevents the derepression, but has no effect as soon as the high-affinity system is fully derepressed. Two other protein synthesis inhibitors, lomofungin and 8-hydroxyquinoline, were found to interfere also with the low-affinity system and with Rb+ uptake. After incubation of the yeast cells in the presence of phosphate the high-affinity system is not derepressed, but the Vmax of the low-affinity system has decreased for about 35%. Phosphate supplement after derepression causes the high-affinity system to disappear to a certain extent while in the meantime the low-affinity system reappears. The results are compared with those found in the yeast Candida tropicalis for phosphate uptake.  相似文献   

2.
The high pH-maintaining capacity of yeast suspension after glucose-induced acidification, measured as its ability to neutralize added alkali, was found to be due mainly to actively extruded acidity (H+). The buffering action of passively excreted metabolites (CO2, organic acids) and cell surface polyelectrolytes contributed only 15–40% to the overall pH-maintaining capacity which was 10 mmol NaOH/l per pH unit between pH 3 and 4 and 3.5 mmol NaOH/l per pH unit between pH 4 and 7. The buffering capacity of yeast cell-free extract was still higher (up to 4.5-times) than that of glucose-supplied cell suspension; addition of glucose to the extract thus produced considerable titratable acidity but negligible net acidity. The glucose-induced acidification of yeast suspension was stimulated by univalent cations in the sequence K+ >Rb+ >>Li+ ~- Cs+ ~- Na+. The processes participating in the acidification and probably also in the creation of extracellular buffering capacity include excretion of CO2 and organic acids, net extrusion of H+ and K+ (in K+-free media; in K+-containing media this is preceded by an initial rapid K+ uptake), and movements of some anions (phosphate, chlorides). The overall process appears to be electrically silent.  相似文献   

3.
Previous communications from this laboratory have indicated that there exists a thiamine-binding protein in the soluble fraction of Saccharomyces cerevisiae which may be implicated to participate in the transport system of thiamine in vivo.In the present paper it is demonstrated that both activities of the soluble thiamine-binding protein and thiamine transport in S. cerevisiae are greatest in the early-log phase of the growth and decline sharply with cell growth. The soluble thiamine-binding protein isolated from yeast cells by conventional methods containing osmotic shock treatment appeared to be a glycoprotein with a molecular weight of 140 000 by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The apparent Kd of the binding for thiamine was 29 nM which is about six fold lower than the apparent Km (0.18 μM) of thiamine transport. The optimal pH for the binding was 5.5, and the binding was inhibited reversibly by 8 M urea but irreversibly by 8 M urea containing 1% 2-mercaptoethanol. Several thiamine derivatives and the analogs such as pyrithiamine and oxythiamine inhibited to similar extent both the binding of thiamine and transport in S. cerevisiae, whereas thiamine phosphates, 2-methyl-4-amino-5-hydroxymethylpyrimidine and O-benzoylthiamine disulfide did not show similarities in the effect on the binding and transport in vivo. Furthermore, it was demonstrated by gel filtration of sonic extract from the cells that a thiamine transport mutant of S. cerevisiae (PT-R2) contains the soluble binding protein in a comparable amounts to that in the parent strain, suggesting that another protein component is required for the actual translocation of thiamine in the yeast cell membrane. On the other hand, the membrane fraction prepared from S. cerevisiae showed a thiamine-binding activity with apparent Kd of 0.17μM at optimal pH 5.0 which is almost the same with the apparent Km for the thiamine transport system. The membrane-bound thiamine-binding activity was not only repressible by exogenous thiamine in the growth medium, but as well as thiamine transport it was markedly inhibited by both pyrithiamine and O-benzoylthiamine disulfide. In addition, it was found that membrane fraction prepared frtom PT-R2 has the thiamine-binding activity of only 3% of that from the parent strain of S. cerevisiae.These results strongly suggest that membrane-bound thiamine-binding protein may be directly involved in the transport of thiamine in S. cerevisiae.  相似文献   

4.
cdc 19.1 is a temperature-sensitive lesion in the genome of Saccharomyces cerevisiae. The phenotype of this mutant is a cell cycle specific arrest in G1, which is expressed at 37°C. In the present study, 31P- and 13C-NMR spectroscopy were used to analyze the metabolism of the mutant at the permissive and restrictive temperatures. Our results confirm previous findings which have indicated that cdc 19.1 contains temperature-sensitive pyruvate kinase activity. In contrast to previous findings, however, the present investigation demonstrates that restriction of pyruvate kinase activity in vivo takes as long as 24 h to be fully expressed. In addition, analysis by NMR has allowed us to assess the metabolic consequences of pyruvate kinase restriction which may contribute to the arrest of cell growth in the early G1 phase of the cell division cycle.  相似文献   

5.
Transport of l-proline into Saccharomyces cerevisiae K is mediated by two systems, one with a KT of 31 μM and Jmax of 40 nmol · s?1 · (g dry wt.)?1, the other with KT > 2.5 mM and Jmax of 150–165 nmol · s?1 · (g dry wt.)?1, The kinetic properties of the high-affinity system were studied in detail. It proved to be highly specific, the only potent competitive inhibitors being (i) l-proline and its analogs l-azetidine-2-carboxylic acid, sarcosine, d-proline and 3,4-dehydro-dl-proline, and (ii) l-alanine. The other amino acids tested behaved as noncompetitive inhibitors. The high-affinity system is active, has a sharp pH optimum at 5.8–5.9 and, in an Arrhenius plot, exhibits two inflection points at 15°C and 20–21°C. It is trans-inhibited by most amino acids (but probably only the natural substrates act in a trans-noncompetitive manner) and its activity depends to a considerable extent on growth conditions. In cells grown in a rich medium with yeast extract maximum activity is attained during the stationary phase, on a poor medium it is maximal during the early exponential phase. Some 50–60% of accumulated l-proline can leave cells in 90 min (and more if washing is done repeatedly), the efflux being insensitive to 0.5 mM 2,4-dinitrophenol and uranyl ions, to pH between 3 and 7.3, as well as to the presence of 10–100 mM unlabeled l-proline in the outside medium. Its rate and extent are increased by 1% d-glucose and by 10 μg nystatin per ml.  相似文献   

6.
The glucose transport system from Saccharomyces cerevisiae was solubilized from isolated plasma membranes by the nonionic detergent, octylglucoside. The transport system was reconstituted into proteoliposomes with removal of detergent from the extract by dialysis, followed by the addition of asolectin liposomes to the dialyzed proteins with a freeze-thaw and brief bath-sonication step. The reconstituted proteoliposomes exhibit specific carrier-mediated facilitated diffusion of d-glucose, including stimulated equilibrium exchange and influx counterflow. Furthermore, the reconstituted facilitated diffusion system shows substrate specificities similar to those of the intact cell d-glucose transport system.  相似文献   

7.
Saccharomyces cerevisiae NCYC 239 in the presence of glucose at temperatures under 303 K shows a time-dependent lowering of electrophoreric mobility υ. At temperatures above 303 K, this time-dependent change in υ is in the direction of increased mobilities. Cells suspended in buffer indicate a surface pKa of less than 4, whereas for cells suspended in buffered glucose it is impossible to derive a surface pKa. A kinetic study of the interaction of S. cerevisiae with glucose as a function of temperature allows calculation of an activation energy of 140 kJ·mol?1 for the combined processes of (i) uptake of glucose onto the cell wall, (ii) transfer through the cell wall and membrane, and (iii) the establishment of a steady glucose flux through the wall and membrane.  相似文献   

8.
9.
The molecular structure of the plasma membrane of the haploid strain Saccharomyces cerevisiae X-2180 1A has been studied by means of sodium dodecyl sulfate polyacrylamide gel electrophoresis. Protein and glycoprotein components have been identified and their apparent Mr determined. A glycoprotein showing an apparent Mr of 27 500 has been shown to be the main structural component. Treatment of the cells with cycloheximide prior to plasma membrane isolation resulted in a redistribution of the relative amounts of each protein band and a drastic reduction in the number of Schiff positive bands. It is postulated that treatment with this drug rids the plasma membrane of glycoprotein secretory components which are in the process of being secreted to the periplasmic space, thus allowing the study of the basic structural components of the organelle. The electrophoretic pattern of the internal membranes revealed close similarities with that of the plasma membrane and though two-dimensional electrophoresis might disclose greater differences, these similarities suggest a common origin for most of the components of both membranous systems. Finally, radioiodination techniques have been used in studying the asymmetric disposition of some of the components of the plasma membrane. At least five polypeptides were identified as located to the outer layer of the plasma membrane and two more glycopeptides were shown to span across the bilayer.  相似文献   

10.
Catabolite inactivation of phosphoenolpyruvate carboxykinase was studied in yeast spheroplasts using 0.9 M mannitol or 0.6 M potassium chloride as the osmotic support. In the presence of potassium chloride the rate of catabolite inactivation was nearly the same as that occurring in intact yeast cells under different conditions of incubation. However, in the presence of mannitol, catabolite inactivation in spheroplasts was prevented. The mannitol inhibition of catabolite inactivation was released by addition of ammonium or phosphate ions. At a concentration of 0.3 M ammonium or 0.06 M phosphate ions, the maximum rate of catabolite inactivation in spheroplasts suspended in mannitol was achieved and was comparable with that observed in spheroplasts incubated in 0.6 M potassium chloride as the osmotic stabilizer. Sodium sulfate (0.04 and 0.4 M) or potassium chloride (0.06 and 0.6 M) did not release the mannitol inhibition of catabolite inactivation in spheroplasts. In intact yeast cells, 0.9 M mannitol, 0.08 M ammonium or 0.1 M phosphate ions did not influence the rate of catabolite inactivation. The nature of the effects of mannitol, ammonium and phosphate ions on catabolite inactivation in yeast spheroplasts is disscussed.  相似文献   

11.
Plasma membranes from Saccharomyces cerevisiae were prepared by a new procedure involving lyticase treatment of the yeast cells. The plasma membranes were right-side-out, closed vesicles of uniform appearance with a sterol to phospholipid molar ratio of 0.365. The thermotropic behavior of these plasma membranes from wild-type yeast and from sterol mutants was examined by differential scanning calorimetry, fluorescence anisotropy and Arrhenius kinetics of plasma membrane enzymes. While differential scanning calorimetry failed to demonstrate any lipid transition, fluorescence anisotropy data indicated that lipid transitions were occurring in the plasma membranes of the yeast sterol mutants but not the sterol wild-type. The temperature dependence of the plasma membrane enzymes, chitin synthase and Mg2+-ATPase, was also investigated. The Arrhenius kinetics of chitin synthase did not reveal any transitions in either the sterol mutant or wild-type plasma membranes, yet the Arrhenius kinetics of the Mg2+-ATPase suggested that lipid transitions were occurring in both cases.  相似文献   

12.
In glucose-limited continuous cultures, a Crabtree positive yeast such as Saccharomyces cerevisiae displays respiratory metabolism at low dilution rates (D) and respirofermentative metabolism at high D. We hypothesized that the onset of fermentative metabolism is related with the catabolite repression or glucose repression effect. To test this hypothesis, we have investigated the physiological behavior in glucose-limited continuous cultures of S. cerevisiae strain CEN.PK122 and isogenic mutants, snf1 (cat1) and snf4 (cat3), defective in proteins involved in the release from glucose repression and the mutant in glucose repression mig1. We analyzed the behavior of the wild type and mutant strains at steady state in chemostat cultures as a function of D. Wild-type cells displayed respiratory metabolism up to a D of 0.2 h−1. snf1 and snf4 mutants started fermenting after a D of 0.1 and 0.15 h−1, respectively. The latter behavior was not due to an impairment of respiration since their specific rate of oxygen consumption was similar or even higher than that shown by the wild type. The snf1 strain displayed much lower yields than the wild type and the other mutants in the whole range of D studied. We conclude that the onset of fermentative metabolism in yeast growing in chemostat cultures is related with glucose repression.  相似文献   

13.
Saccharomyces cerevisiae nuclear membranes were prepared from isolated nuclei by digesting chromatin with deoxyribonuclease and ribonuclease, washing of residual nuclei with 0.5 M MgCl2, and discontinuous gradient centrifugation in buffered Ficoll solutions. Electron microscopic examination of the preparations showed single membrane and double membrane vesicles and membrane sheets. Pores or residual pores were often visible. In double membrane profiles the two unit membranes were often separated by the remains of the perinuclear cistern. The nuclear membrane fragments contained 58% protein, 23.8% phospholipid, 6% sterols, 7.1% neutral acylglycerols, 4.8% RNA, and 0.3% DNA. The phospholipid content of the membrane preparations was influenced by a phospholipase activity with acidic pH optimum.  相似文献   

14.
Genome analysis of the yeast Saccharomyces cerevisiae identified 68 genes encoding flavin-dependent proteins (1.1% of protein encoding genes) to which 47 distinct biochemical functions were assigned. The majority of flavoproteins operate in mitochondria where they participate in redox processes revolving around the transfer of electrons to the electron transport chain. In addition, we found that flavoenzymes play a central role in various aspects of iron metabolism, such as iron uptake, the biogenesis of iron–sulfur clusters and insertion of the heme cofactor into apocytochromes. Another important group of flavoenzymes is directly (Dus1-4p and Mto1p) or indirectly (Tyw1p) involved in reactions leading to tRNA-modifications. Despite the wealth of genetic information available for S. cerevisiae, we were surprised that many flavoproteins are poorly characterized biochemically. For example, the role of the yeast flavodoxins Pst2p, Rfs1p and Ycp4p with regard to their electron donor and acceptor is presently unknown. Similarly, the function of the heterodimeric Aim45p/Cir1p, which is homologous to the electron-transferring flavoproteins of higher eukaryotes, in electron transfer processes occurring in the mitochondrial matrix remains to be elucidated. This lack of information extends to the five membrane proteins involved in riboflavin or FAD transport as well as FMN and FAD homeostasis within the yeast cell. Nevertheless, several yeast flavoproteins, were identified as convenient model systems both in terms of their mechanism of action as well as structurally to improve our understanding of diseases caused by dysfunctional human flavoprotein orthologs.  相似文献   

15.
The activity of dehydrogenase in Saccharomyces cerevisiae was estimated by reduction of 2,3,5-triphenyltetrazolium chloride. By the adaptation of yeast to cadmium, the high activity of dehydrogenase was observed. Furthermore, the activity of dehydrogenase in Cd-resistant cells was increased by growing in medium containing CdSO4. However, the activity of dehydrogenase was inhibited by the addition of CdSO4 to the reaction mixture. The activity of dehydrogenase in Cd-sensitive cells was increased slightly by incubation with low concentrations of CdSO4.High activity of dehydrogenase in Cd-resistant cells was completely negated by the addition of cycloheximide to the incubation medium. The increase of dehydrogenase activity is due partly to de novo synthesis of protein.  相似文献   

16.
The existence of metabolically distinct pools of S-adenosyl-L-methionine in Saccharomyces cerevisiae and isolated rat hepatocytes was investigated. Utilizing a relatively long labeling period with [methyl-14C]methionine, a metabolically ‘stable’ pool was labeled. A subsequent short labeling with [methyl-3H]methionine selectively labeled a putative metabolically ‘labile’ pool. The existence of these distinguishable pools was ascertained by following the 3H and 14C label disappearance in S-adenosyl-L-methionine during the chase-period in label-free media containing cycloleycine to prevent futher synthesis of S-adenosyl-L-methionine. In both yeast and hepatocytes, the 3H14C ratio in S-adenosyl-L-methionine decreased sharply. The individual 3H and 14C decrease in S-adenosyl-L-methionine showed t12 values of 3 and 8 min for yeast and 4 and 18 min for hepatocytes. The results strongly indicate that at least two metabolically distinct S-adenosyl-L-methionine pools actually do exist in both systems. Subcellular fractionation revealed that the ‘labile’ pool exist in the cytosol for both yeast and hepatocytes while the ‘stable’ pool exists in the vacuolar and the mitochondrial fraction for the yeast and hepatocytes respectively. The S-adenosyl-L-methionine pools were also studied in normal yeast under anaerobic chase condition and petite mutant yeast. Sharply contrasting with aerobically chased normal yeast, both showed closely parallel 3H and 14C decreases in S-adenosyl-L-methionine.  相似文献   

17.
The regulation of induction of inositol dehydrogenase (EC 1.1.1.18) and gluconate kinase (EC 2.7.1.12) was studied in Bacillus subtilis. Inositol dehydrogenase is induced by myo-inositol and gluconate kinase is induced by D-gluconate. Both inductions were strongly repressed by rapidly metabolizable carbohydrates such as D-glucose, D-mannose, D-fructose and glycerol (D-glucose had the strongest repressive effect) but they were weakly repressed by slowly metabolizable carbohydrates. Although each carbohydrate exerted a stronger effect on the induction of inositol dehydrogenase than that of gluconate kinase, it showed a similar tendency with respect to the degree of repression of each induction. This catabolite repression could not be diminished by addition of cyclic AMP to medium. In addition, non-metabolizable D-glucose analogues had no or weak repressive effects. On the assumption that rapidly metabolizable carbohydrates might be metabolized to repress both inductions, it was investigated whether several mutants blocked in the Embden-Meyerhof pathway could produce metabolite(s) (repressor) to repress them. A phosphoglycerate kinase (EC 2.7.2.3) deficient mutant could produce the repressor from D-glucose, D-mannose, D-fructose and glycerol but other mutants could not produce it from carbohydrates unable to be metabolized ineach mutant. Thus, catabolite repression of both enzyme inductions seemed to be under similar regulation. The identification of the possible repressor of the induction of inositol dehydrogenase and gluconate kinase in vivo was discussed.  相似文献   

18.
In cultures of the mit? mutant strain Mb12 of Saccharomyces cerevisiae (carrying a mutation in the oli2 gene), 70% of the cells are petite mutants. More than 80% of the petites from Mb12 contain a particular mtDNA segment, denoted BB5, that is 880 bp long and carries a single MboI site. Thus, in cultures of Mb12, about 56% of the cells are petites containing the defective BB5 mtDNA genome, and only 30% are mit? cells containing parental Mb12 mtDNA. The BB5 mtDNA segment is also found in petites arising from the wild-type strain J69-1B (from which Mb12 was derived), but in this case mtDNA from only five out of 24 petites produced an 880 bp band after MboI digestion. Since J69-1B cultures carry a petite frequency of about 5%, approximately 1% of cells in J69-1B cultures contain the BB5 mtDNA segment. The difference between Mb12 and J69-1B cultures is reflected in the MboI digestion patterns of the respective mtDNAs. While Mb12 mtDNA contains a grossly superstoicheiometric 880 bp MboI fragment, the corresponding fragment in J69-1B mtDNA cannot be seen on stained gels, but can be readily visualized in Southern blots hybridized to a 32P-labelled DNA probe obtained from the 880 bp MboI fragment. The BB5 mtDNA segment was shown to contain the oril sequence (one of several very similar sequences in wild-type mtDNA thought to act as origins of replication of mtDNA) which confers the genetic property of very high suppressiveness on petites carrying this mtDNA. The efficient replication of BB5 mtDNA may contribute to its abundance in Mb12 cultures. Nevertheless, other factors must operate to influence the abundance of the BB5 mtDNA segment in cultures of different strains, the most important of which is likely to be the rate of excision of this mtDNA segment from the parental mtDNA genome.  相似文献   

19.
α-Aminoisobutyric acid is actively transported into yeast cells by the general amino acid transport system. The system exhibits a Km for α-aminoisobutyric acid of 270 μM, a Vmax of 24 nmol/min per mg cells (dry weight), and a pH optimum of 4.1–4.3. α-Aminoisobutyric acid is also transported by a minor system(s) with a Vmax of 1.7 nmol/min per mg cells. Transport occurs against a concentration gradient with the concentration ratio reaching over 1000:1 (in/out). The α-aminoisobutyric acid is not significantly metabolized or incorporated into protein after an 18 h incubation. α-Aminoisobutyric acid inhibits cell growth when a poor nitrogen source such as proline is provided but not with good nitrogen sources such as NH4+. During nitrogen starvation α-aminoisobutric acid strongly inhibits the synthesis of the nitrogen catabolite repression sensitive enzyme, asparaginase II. Studies with a mutant yeast strain (GDH-CR) suggest that α-aminoisobutyric acid inhibition of asparaginase II synthesis occurs because α-aminoisobutyric acid is an effective inhibitor of protein synthesis in nitrogen starved cells.  相似文献   

20.
An electrophoretic method has been devised to investigate the changes in the enzymes and isoenzymes of carbohydrate metabolism, upon adding glucose to derepressed yeast cells. (i) Of the glycolytic enzymes tested, enolase II, pyruvate kinase and pyruvate decarboxylase were markedly increased. This increase was accompanied by an overall increase in glycolytic activity and was prevented by cycloheximide, an inhibitor of protein synthesis. (ii) In contrast, respiratory activity decreased after adding glucose. This decrease was clearly shown to be the result of repression of respiratory enzymes. A rapid decrease within a few minutes of adding glucose, by analogy with the so-called ' Crabtree effect', was not observed in yeast. (iii) The gluconeogenic enzymes, fructose-1,6-bisphosphatase and malate dehydrogenase, which are inactivated after adding glucose, showed no significant changes in electrophoretic mobilities. Hence, there was no evidence of enzyme modifications, which were postulated as initiating degradation. However, it was possible to investigate cytoplasmic and mitochondrial malate dehydrogenase isoenzymes separately. Synthesis of the mitochondrial isoenzyme was repressed, whereas only cytoplasmic malate dehydrogenase was subject to glucose inactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号