首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The oligosaccharides of chick embryo type I procollagen were isolated from the carboxyl-terminal propeptide fragment by exhaustive digestion with papain and pronase, and then purified as a mixture of glycopeptides. The structures of the oligosaccharides were established by high-resolution 1H-NMR spectroscopy and found to be a mixture with respect to the non-reducing terminal residues as shown below:
The percentages refer to the relative amount of those mannose residues present in the mixture. The data suggest that the oligosaccharides are a microheterogeneous mixture of high-mannose type glycans containing between six and nine mannose residues per carbohydrate unit. Such carbohydrate chains, although not uncommon for glycoproteins, had never been found before for collagen or collagen-related compounds.  相似文献   

2.
A combination of reverse phase and normal phase high pressure liquid chromatography has been used to separate the reduced oligosaccharides produced by alkaline borohydride degradation of a blood group A ovarian cyst mucin glycoproteins. Fourteen compounds, ranging in size from a monosaccharide to a decasaccharide, have been isolated preparatively using a Zorbax C-18 reverse phase column eluted with water and a MicroPak AX-5 normal phase column eluted with aqueous acetonitrile. The purity of the products and their structures were determined from the fully assigned high field proton NMR spectra. The resonances of exchangeable amide protons, observed by the Redfield selective pulse sequence in H2O, were assigned by decoupling to the resonances of H2 of the 2-acetamido sugars. Nuclear Overhauser effects were used to establish the relationship of the anomeric protons and those of the aglycone. In exception to earlier proposals that nuclear Overhauser effect on irradiation of the anomeric proton should always be observed at the proton attached to the aglycone carbon, we find that for the linkage of GalNAcp(1----3)Gal, nuclear Overhauser effect on irradiation of the alpha-anomeric proton resonance is observed not at H3 but at H4 of galactose. A combination of NMR methods and enzymatic degradation was employed to determine the structures of 13 different oligosaccharides of which seven have not previously been reported. These oligosaccharides, which terminate with beta-Gal, alpha-Fuc, beta-GlcNAc, and alpha-GalNAc, account for 75% of the total glycoprotein carbohydrate, the remainder being isolated as a mixture of glycopeptides and a high molecular weight polysaccharide whose NMR spectrum implies a simple repeating subunit structure closely related to that of the oligosaccharides.  相似文献   

3.
A method is described for determining the intracellular pH of intact erythrocytes by 1H NMR. The determination is based on the pH dependence of the chemical shifts of resonances for carbon-bonded protons of an indicator molecule (imidazole) in intact cells. The imidazole is introduced into the erythrocytes by incubation in an isotonic saline solution of the indicator. The pH dependence of the chemical shifts of the imidazole resonances is calibrated from 1H NMR spectra of the imidazole-containing red cell lysates whose pH is varied by the addition of acid or base and measured directly with a pH electrode. To reduce in intensity or eliminate the much more intense envelope of resonances from the hemoglobin, the 1H NMR measurements are made by either the spin-echo Fourier transform technique or by the transfer-of-saturation by cross-relaxation method.  相似文献   

4.
We studied mannose-containing glycopeptides and glycoproteins of subconfluent and confluent intestinal epithelial cells in culture. Cells were labelled with d-[2-3H]mannose for 24h and treated with Pronase or trypsin to release cell-surface components. The cell-surface and cell-residue fractions were then exhaustively digested with Pronase and the resulting glycopeptides were fractionated on Bio-Gel P-6, before and after treatment with endo-β-N-acetylglucosaminidase H to distinguish between high-mannose and complex oligosaccharides. The cell-surface glycopeptides were enriched in complex oligosaccharides as compared with residue glycopeptides, which contained predominantly high-mannose oligosaccharides. Cell-surface glycopeptides of confluent cells contained a much higher proportion of complex oligosaccharides than did glycopeptides from subconfluent cells. The ability of the cells to bind [3H]concanavalin A decreased linearly with increasing cell density up to 5 days in culture and then remained constant. When growth of the cells was completely inhibited by either retinoic acid or cortisol, no significant difference was observed in the ratio of complex to high-mannose oligosaccharides in the cell-surface glycopeptides of subconfluent cells. Only minor differences were found in total mannose-labelled glycoproteins between subconfluent and confluent cells by two-dimensional gel analysis. The adhesion of the cells to the substratum was measured at different stages of growth and cell density. Subconfluent cells displayed a relatively weak adhesion, which markedly increased with increased cell density up to 6 days in culture. It is suggested that alterations in the structure of the carbohydrates of the cell-surface glycoproteins are dependent on cell density rather than on cell growth. These changes in the glycopeptides are correlated with the changes in adhesion of the cells to the substratum.  相似文献   

5.
《Journal of molecular biology》2019,431(12):2369-2382
Characterization of proteins using NMR methods begins with assignment of resonances to specific residues. This is usually accomplished using sequential connectivities between nuclear pairs in proteins uniformly labeled with NMR active isotopes. This becomes impractical for larger proteins, and especially for proteins that are best expressed in mammalian cells, including glycoproteins. Here an alternate protocol for the assignment of NMR resonances of sparsely labeled proteins, namely, the ones labeled with a single amino acid type, or a limited subset of types, isotopically enriched with 15N or 13C, is described. The protocol is based on comparison of data collected using extensions of simple two-dimensional NMR experiments (correlated chemical shifts, nuclear Overhauser effects, residual dipolar couplings) to predictions from molecular dynamics trajectories that begin with known protein structures. Optimal pairing of predicted and experimental values is facilitated by a software package that employs a genetic algorithm, ASSIGN_SLP_MD. The approach is applied to the 36-kDa luminal domain of the sialyltransferase, rST6Gal1, in which all phenylalanines are labeled with 15N, and the results are validated by elimination of resonances via single-point mutations of selected phenylalanines to tyrosines. Assignment allows the use of previously published paramagnetic relaxation enhancements to evaluate placement of a substrate analog in the active site of this protein. The protocol will open the way to structural characterization of the many glycosylated and other proteins that are best expressed in mammalian cells.  相似文献   

6.
We have carried out detailed structural studies of the glycopeptides of glycoprotein gD of herpes simplex virus types 1 and 2. We first examined and compared the number of N-asparagine-linked oligosaccharides present in each glycoprotein. We found that treatment of either pgD-1 or pgD-2 with endo-β-N-acetylglucosaminidase H (Endo H) generated three polypeptides which migrated more rapidly than pgD on gradient sodium dodecyl sulfate-polyacrylamide gels. Two of the faster-migrating polypeptides were labeled with [3H]mannose, suggesting that both pgD-1 and pgD-2 contained three N-asparagine-linked oligosaccharides. Second, we characterized the [3H]mannose-labeled tryptic peptides of pgD-1 and pgD-2. We found that both glycoproteins contained three tryptic glycopeptides, termed glycopeptides 1, 2, and 3. Gel filtration studies indicated that the molecular weights of these three peptides were approximately 10,000, 3,900, and 1,800, respectively, for both pgD-1 and pgD-2. Three methods were employed to determine the size of the attached oligosaccharides. First, the [3H]mannose-labeled glycopeptides were treated with Endo H, and the released oligosaccharide was chromatographed on Bio-Gel P6. The size of this molecule was estimated to be approximately 1,200 daltons. Second, Endo H treatment of [35S]methionine-labeled glycopeptide 2 reduced the molecular size of this peptide from approximately 3,900 to approximately 2,400 daltons. Third, glycopeptide 2 isolated from the gD-like molecule formed in the presence of tunicamycin was approximately 2,200 daltons. From these experiments, the size of each N-asparagine-linked oligosaccharide was estimated to be approximately 1,400 to 1,600 daltons. Our experiments indicated that glycopeptides 2 and 3 each contained one N-asparagine-linked oligosaccharide chain. Although glycopeptide 1 was large enough to accommodate more than one oligosaccharide chain, the experiments with Endo H treatment of the glycoprotein indicated that there were only three N-asparagine-linked oligosaccharides present in pgD-1 and pgD-2. Further studies of the tryptic glycopeptides by reverse-phase high-performance liquid chromatography indicated that all of the glycopeptides were hydrophobic in nature. In the case of glycopeptide 2, we observed that when the carbohydrate was not present, the hydrophobicity of the peptide increased. The properties of the tryptic glycopeptides of pgD-1 were compared with the properties predicted from the deduced amino acid sequence of gD-1. The size and amino acid composition compared favorably for glycopeptides 1 and 2. Glycopeptide 3 appeared to be somewhat smaller than would be predicted from the deduced sequence of gD-1. It appears that all three potential glycosylation sites predicted by the amino acid sequence are utilized in gD-1 and that a similar number of glycosylation sites are present in gD-2.  相似文献   

7.
Human vascular endothelial cells synthesize lactosaminoglycan-type glycoproteins which are found both associated with cells and secreted into the culture medium. Pronase-derived glycopeptides prepared from [3H]glucosamine-labeled glycoproteins were found to contain about 10% of the labeled products as a large size (Mr > 5000) 3H-labeled glycopeptide. Digestion of these 3H-labeled glycopeptides with endo-β-galactosidase resulted in the release of smaller size saccharides, which were characterized as having the structure sialic acid → Gal → GlcNAc → Gal. Treatment of [3H]glucosamine-labeled cells with melittin caused 3H-labeled glycoconjugates to be released from the cells. Separation of released glycoproteins from proteoglycans by DEAE-cellulose chromatography indicated that melittin had released 25% of the total 3H-labeled glycoproteins from the cell and 3% of the 3H-labeled proteoglycans. The 3H-labeled glycoproteins were digested with Pronase and the resulting 3H-labeled glycopeptides were fractionated on Sephadex G-50. The large size fraction (Mr > 5000) now comprised about 30% of these released 3H-labeled glycopeptides. These high molecular weight 3H-labeled glycopeptides were degraded with endo-β-galactosidase but not with testicular hyaluronidase. Analysis of the released 3H-labeled glycoproteins indicated a preferential release of glycoproteins of 70–90 kDa enriched in lactosaminoglycan-type oligosaccharides.  相似文献   

8.
In order to understand the role of the glycans in glycoproteins in solution, structural information obtained by NMR spectroscopy is obviously required. However, the assignment of the NMR signals from the glycans in larger glycoproteins is still difficult, mainly due to the lack of appropriate methods for the assignment of the resonances originating from the glycans. By using [U-13C6,2H7]glucose as a metabolic precursor, we have successfully prepared a glycoprotein whose glycan is uniformly labeled with 13C and partially with D at the sugar residues. The D to H exchange ratios at the C1-C6 positions of the sugar residues have been proven to provide useful information for the spectral assignments of the glycan in the glycoprotein. This is the first report on the residue-specific assignment of the anomeric resonances originating from a glycan attached to a glycoprotein by using the metabolic incorporation of hydrogen from the medium into a glycan labeled with [U-13C6,2H7]glucose.  相似文献   

9.
The envelope membrane glycoprotein gC of HSV-1 was purified from Triton X-100 extracts of virus-infected BHK-21 or HEp-2 cells by a single step immuno-affinity column using monoclonal anti-gC antibody. The analysis of the purified [3H]G1cN labeled glycoprotein gC (by gel filtration on Bio-Gel P4) before and after digestion with endo-β-N-acetylglucosaminidase (endo D) indicated that gC contains Asn-linked “complex type” oligosaccharides. No “high mannose” type oligosaccharides were detected. Fractionation of radio-labeled glycopeptides of gC on a column of concanavalin A-sepharose suggested that glycopeptides have “diantennary” and “triantennary” and/or “tetra antennary” structures. Tunicamycin inhibited the incorporation of [14C]GalN or [3H]GlcN into gC in HSV-1 infected BHK-21 or HEp-2 cells. Gel filtration analysis of [3H]GlcN labeled gC following β-elimination reaction failed to indicate O-glycosidically linked oligosaccharides.  相似文献   

10.
Glycoproteins secreted by the yeast Kluyveromyces lactis are usually modified by the addition at asparagines-linked glycosylation sites of heterogeneous mannan residues. The secreted glycoproteins in K. lactis that become hypermannosylated will bear a non-human glycosylation pattern and can adversely affect the half-life, tissue distribution and immunogenicity of a therapeutic protein. Here, we describe engineering a K. lactis strain to produce non-hypermannosylated glycoprotein, decreasing the outer-chain mannose residues of N-linked oligosaccharides. We investigated and developed the method of two-step homologous recombination to knockout the OCH1 gene, encoding α1,6-mannosyltransferase and MNN1 gene, which is homologue of Saccharomyces cerevisiae MNN1, encoding a putative α1,3-mannosyltransferase. We found the Kloch1 mutant strain has a defect in hyperglycosylation, inability in adding mannose to the core oligosaccharide. The N-linked oligosaccharides assembled on a secretory glycoprotein, HSA/GM–CSF in Kloch1 mutant, contained oligosaccharide Man13–14GlcNAc2, and in Kloch1 mnn1 mutant, contained oligosaccharide Man9–11GlcNAc2, whereas those in the wild-type strain, consisted of oligosaccharides with heterogeneous sizes, Man>30GlcNAc2. Taken together, these results indicated that KlOch1p plays a key role in the outer-chain mannosylation of N-linked oligosaccharides in K. lactis. The KlMnn1p, was proved to be certain contribution to the outer hypermannosylation, most possibly encodes α1,3-mannosyltransferase. Therefore, the Kloch1 and Kloch1 mnn1 mutants can be used as a foundational host to produce glycoproteins lacking the outer-chain hypermannoses and further maybe applicable to be a promising system for yeast therapeutic protein production.  相似文献   

11.
A series of paramagnetic probes for Dnp binding antibodies has been developed by cupling a metal chelating group onto the immunodominant Dnp-group. The approach is illustrated for protein 315. The haptens used in the present study are of the form N-Dnp-2-aminoethyl (phosphate)n and the paramagnetic ion chosen in Mn(II). The use of proton high resolution nuclear magnetic resonances (n.m.r.) difference spectroscopy allows quantitative measurements of the perturbation caused by the Mn(II) on several of the protein resonances. The sum of the distances between the metal and the ring centres of the two histidine residues, His 97L and His 102H, in the third hypervariable regions of the light (L) and heary (H) chain is found to be 20 ± 1 Å. This is in good agreement with the value of 19.4 a between the two histidines calculated from the coordinates of the predicted model of padlan et. al.4  相似文献   

12.
In this study, a set of nuclear magnetic resonance experiments, some of them commonly used in the study of 13C-labeled proteins and/or nucleic acids, is applied for the structure determination of uniformly 13C-enriched carbohydrates. Two model substances were employed: one compound of low molecular weight [(UL-13C)-sucrose, 342 Da] and one compound of medium molecular weight (13C-enriched O-antigenic polysaccharide isolated from Escherichia coli O142, ~10 kDa). The first step in this approach involves the assignment of the carbon resonances in each monosaccharide spin system using the anomeric carbon signal as the starting point. The 13C resonances are traced using 13C–13C correlations from homonuclear experiments, such as (H)CC–CT–COSY, (H)CC–NOESY, CC–CT–TOCSY and/or virtually decoupled (H)CC–TOCSY. Based on the assignment of the 13C resonances, the 1H chemical shifts are derived in a straightforward manner using one-bond 1H–13C correlations from heteronuclear experiments (HC–CT–HSQC). In order to avoid the 1 J CC splitting of the 13C resonances and to improve the resolution, either constant-time (CT) in the indirect dimension or virtual decoupling in the direct dimension were used. The monosaccharide sequence and linkage positions in oligosaccharides were determined using either 13C or 1H detected experiments, namely CC–CT–COSY, band-selective (H)CC–TOCSY, HC–CT–HSQC–NOESY or long-range HC–CT–HSQC. However, due to the short T2 relaxation time associated with larger polysaccharides, the sequential information in the O-antigen polysaccharide from E. coli O142 could only be elucidated using the 1H-detected experiments. Exchanging protons of hydroxyl groups and N-acetyl amides in the 13C-enriched polysaccharide were assigned by using HC–H2BC spectra. The assignment of the N-acetyl groups with 15N at natural abundance was completed by using HN–SOFAST–HMQC, HNCA, HNCO and 13C-detected (H)CACO spectra.  相似文献   

13.
Ferredoxin isolated from Halobacterium of the Dead Sea (HFd) was found to be stable and retain its conformation in 4–0.5 M salt solutions. Reconstitution of the denatured protein to the oxidized form in 2H2O indicated that the resonances shifted to the 8–10 ppm region, which include 18 protons, are nonexchangeable -NH protons. The C2H and C4H resonances of His-119 were assigned in both oxidized and reduced HFd. pH titration curves of these resonances yielded a pKa for this His of 6.57 ± 0.1 and 6.65 ± 0.1 in oxidized and reduced HFd, respectively. pH titration curves, T1 relaxation times, and the temperature dependence of the chemical shift were obtained for resonances between 6 and 10 ppm of oxidized HFd. In oxidized HFd a paramagnetically shifted resonance was observed at 15 ppm with 1 H intensity, and an anti-Curie temperature dependence. In reduced HFd eight resonances each with 1 H intensity were shifted downfield by 10–50 ppm and one resonance with 1 H intensity was shifted upfield to ?6.8 ppm. Four of these resonances exhibited an anti-Curie temperature dependence, two exhibited a moderate Curie dependence, and three were temperature independent.  相似文献   

14.
Populations of enriched glial precursor cells and astrocytes isolated from primary cultures of newborn rat brain were used to study the synthesis of sulfated glycoproteins. Both cell types incorporated [3H]glucosamine and [35S]sulfate into carbohydrate side chains of proteoglycans and glycoproteins. The rate of incorporation of [3H]glucosamine into the oligosaccharides and the pattern of distribution of the label into high mannose and complex glycopeptides recovered from the glycoproteins appeared to be similar for the two glial cell types. However, clear differences were noted in the rate of oligosaccharide sulfation activities. Thus the cultures of precursor glia were about four times more active than cultures enriched in astroglia in their ability to incorporate [35S]sulfate into glycoproteins.  相似文献   

15.
The biosynthesis and the processing of asparagine-linked oligosaccharides of cellular membrane glycoproteins were examined in monolayer cultures of BHK21 cells and human diploid fibroblasts after pulse-and pulse-chase labeling with [2-3H] mannose. After pronase digestion, radiolabeled glycopeptides were characterized by high-resolution gel filtration, with or without additional digestion with various exoglycosidases and endoglycosidases. Pulse-labeled glycoproteins contained a relatively homogenous population of neutral oligosaccharides (major species: Man9GlcNAc2ASN). The vast majority of these asparagine-linked oligosaccharides was smaller than the major fraction of lipid-linked oligosaccharides from the cell and was apparently devoid of terminal glucose. After pulse-chase or long labeling periods, a significant fraction of the large oligomannosyl cores was processed by removal of mannose units and addition of branch sugars (NeuNAc-Gal-GlcNAc), resulting in complex acidic structures containing three and possibly five mannoses. In addition, some of the large oligomannosyl cores were processed by the removal of only several mannoses, resulting in a mixture of neutral structures with 5–9 mannoses. This oligomannosyl core heterogeneity in both neutral and acidic oligosaccharides linked to asparagine in cellular membrane glycoproteins was analogous to the heterogeneity reported for the oligosaccharides of avian RNA tumor virus glycoproteins (Hunt LA, Wright SE, Etchison JR, Summers DF: J Virol 29:336, 1979).  相似文献   

16.
Summary The molecular mechanism of reduced incorporation of radioactively labeled mannose into hamster liver glycoconjugates during the progression of vitamin A deficiency was investigated. In particular the in vivo incorporation of [2-3H]mannose into GDP-mannose, dolichyl phosphate mannose (Dol-P-Man), lipid-linked oligosaccharides, and glycopeptides of hamster liver was examined. Hamsters maintained on a vitamin A-free diet showed a reduction in the incorporation of mannose into GDP-mannose about 10 days before clinical signs of vitamin A deficiency could be observed. The decrease in [2-3H]mannose incorporated into GDP-mannose was accompanied by a reduction in label incorporated into Dol-P-Man, lipid linked oligosaccharides and glycopeptides, which became more severe with the progression of vitamin A deficiency. By the time they reached a plateau stage of growth, hamsters fed the vitamin A-free diet showed a 50% reduction in the amount of [2-3H]mannose converted to GDP-mannose, and the radioactivity associated with Dol-P-Man and glycopeptides was reduced by approximately 60% as compared to retinoic acid-supplemented controls. These results strongly indicate that the reduced incorporation of mannose into lipidic intermediates and glycoproteins observed during vitamin A deficiency is due to impaired GDP-mannose synthesis.Abbreviations Dol-P-Man Dolichyl Phosphate Mannose - Dol-P Dolichyl Phosphate  相似文献   

17.
Carbohydrate moieties derived from the G glycoprotein of Vesicular Stomatitis Virus (VSV) grown in parental Chinese hamster ovary (CHO) cells and the glycosylation mutant Lec4 have been analyzed by high-field 1H NMR spectroscopy. The major glycopeptides of CHOVSV and Lec4VSV were purified by their ability to bind to concanavalin A-Sepharose. The carbohydrates in this fraction are of the biantennary, complex type with heterogeneity in the presence of α(2,3)-linked sialic acid and α(1,6)-linked fucose residues. A minor CHOVSV glycopeptide fraction, which does not bind to concanavalin A-Sepharose but which binds to pea lectin-agarose, was also investigated by 1H NMR spectroscopy. These carbohydrates are complex moieties which appear to contain N-acetylglucosamine in β(1,6) linkage. Their spectral properties are most similar to those of a triantennary complex oligosaccharide containing a 2,6-disubstituted mannose α(1,6) residue. Carbohydrates of this type are not found among the glycopeptides of VSV grown in the Lec4 CHO glycosylation mutant.  相似文献   

18.
Solid-state nuclear magnetic resonance spectroscopy was used to study the motion of 2H and 19F probes attached to the skeletal muscle actin residues Cys-10, Lys-61 and Cys-374. The probe resonances were observed in dried and hydrated G-actin, F-actin and F-actin-myosin subfragment-1 complexes. Restricted motion was exhibited by 19F probes attached to Cys-10 and Cys-374 on actin. The dynamics of probes attached to dry cysteine powder or F-actin were very similar and the binding of myosin had little effect indicating that the local probe environment imposes the major influence on motion in the solid state. Correlation times determined for the solid state probes indicated that they were undergoing some rapid internal motion in both G-actin and F-actin such as domain twisting. The probe size influenced the motion in G-actin and appeared to sense monomer rotation but not in F-actin where segmental mobility and intramonomer co-ordination appeared to dominate.  相似文献   

19.
Natural abundance 13C nuclear magnetic resonance spectroscopy (13C NMR) was used to study the mode of binding of Mn2+ and Cu2+ to the cyclitol, cis-inositol. Resonance linewidths and the electron nuclear relaxation rates [(T1e)?1 values] were used to establish that a unique binding site exists for these metal-ions on this cyclitol involving only the three axial hydroxyl groups. This work may aid in the development of new organometallic complexes used as paramagnetic relaxation agents in magnetic resonance imaging research.  相似文献   

20.
The 3-carboxamido-13C resonance of NADP+ in its complex with Lactobacilluscasei dihydrofolate reductase and folate has been studied as a function of pH. At low pH a single resonance is observed, while at high pH two resonances are observed, neither of which has the same chemical shift as that seen at low pH. The rates of interconversion between the three states of the complex represented by these resonances are < 19 s?1 at 11°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号