首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Involvement of gap-junctional intercellular communication in the stimulation of growth was investigated in quiescent 3T3-L1 cells. When the cells in monolayer were growth-arrested by culture in a low concentration of calf serum, addition of dibutyryl cyclic AMP enhanced dye-coupling and suppressed the enhancement of DNA synthesis, induced by calf serum, in quiescent cells. 12-O-Tetradecanoylphorbol-13-acetate (TPA) suppressed dye-coupling in quiescent cells and enhanced DNA synthesis in both quiescent and serum-treated cells. When about 5000 cells were cultured in contact to form a colony, growth arrest of the cells was observed in the central region of such colonies rather than in the peripheral region, but addition of calf serum induced DNA synthesis in the cells in both the peripheral and central regions of the colonies. Addition of TPA enhanced serum-induced DNA synthesis in the cells in the central region of colonies rather than in the peripheral region. These results suggest that the ability of quiescent cells to escape from growth arrest is inversely correlated to the extent of gap-junctional intercellular communication.  相似文献   

2.
Mastoparan, a basic tetradecapeptide isolated from wasp venom, is a novel mitogen for Swiss 3T3 cells. This peptide induced DNA synthesis in synergy with insulin in a concentration-dependent manner; half-maximum and maximum responses were achieved at 14 and 17 microM, respectively. Mastoparan also stimulated DNA synthesis in the presence of other growth promoting factors including bombesin, insulin-like growth factor-1, and platelet-derived growth factor. The synergistic mitogenic stimulation by mastoparan can be dissociated from activation of phospholipase C. Mastoparan did not stimulate phosphoinositide breakdown, Ca2+ mobilization or protein kinase C-mediated phosphorylation of a major cellular substrate or transmodulation of the epidermal growth factor receptor. In contrast, mastoparan stimulated arachidonic acid release, prostaglandin E2 production, and enhanced cAMP accumulation in the presence of forskolin. These responses were inhibited by prior treatment with pertussis toxin. Hence, mastoparan stimulates arachidonic acid release via a pertussis toxin-sensitive G protein in Swiss 3T3 cells. Arachidonic acid, like mastoparan, stimulated DNA synthesis in the presence of insulin. The ability of mastoparan to stimulate mitogenesis was reduced by pertussis toxin treatment. These results demonstrate, for the first time, that mastoparan stimulates reinitiation of DNA synthesis in Swiss 3T3 cells and indicate that this peptide may be a useful probe to elucidate signal transduction mechanisms in mitogenesis.  相似文献   

3.
Fifteen oxygenated sterols at the concentration of 25 μg/ml were tested on DNA synthesis of phytohemagglutinin stimulated human lymphocytes. In a cholesterol containing medium, the inhibitory effect was strictly dependent of the side chain structure of the sterol and only due to an hydroxylation at position 25. Three oxygenated sterols, which slightly inhibited DNA synthesis, strongly suppressed the peak of 3-hydroxy-3-methylglutaryl CoA reductase activity that normally precedes DNA synthesis. The 25-hydroxycholesterol suppressed the reductase activity even at 5 μg/ml, but was active on DNA synthesis only at 25 μg/ml; at this concentration, the later the 25-hydroxycholesterol was added, the weaker the inhibition of DNA synthesis was. Hence the sterol synthesis related to the early increase of 3-hydroxy-3-methylglutaryl CoA reductase activity is probably not essential to the cellular division. Several hypothesis on the mechanism of action of the 25-hydroxycholesterol are discussed.  相似文献   

4.
On the basis of previous data that 1,25(OH)2D3 suppressed both helper and suppressor activities of CD4 and CD8 cells in the pokeweek mitogen-stimulated culture, we examined the further effect of 1,25(OH)2D3 on both cells to define how 1,25(OH)2D3 is involved in the deterioration of their functions. 1,25(OH)2D3 suppressed the pokeweed mitogen and phytohemagglutinin-induced DNA synthesis of CD4 and CD8 cells. The suppression by 1,25(OH)2D3 of DNA synthesis was caused by a time lag in reaching maximal response. 1,25(OH)2D3 also suppressed interleukin-2 production of CD4 and CD8 cells. 1,25(OH)2D3 did not, however, affect their interleukin-2 receptor expression detected within 24 hr after phytohemagglutinin stimulation. In addition, 1,25(OH)2D3 failed to suppress DNA synthesis of CD4 and CD8 cells when cultured with a large amount of interleukin-2. Suppression by 1,25(OH)2D3 of proliferation and interleukin-2 production in CD4 and CD8 cells would bring about the decrease of their helper or suppressor functions by inhibiting their expansion or maturation.  相似文献   

5.
The present studies were undertaken to investigate the effect of C-atrial natriuretic peptide (ANP)(4-23) and several peptide fragments containing 12 amino acids from different regions of the cytoplasmic domain of natriuretic peptide receptor (NPR)-C on cell proliferation in the absence or presence of angiotensin (ANG) II, endothelin (ET)-1, and arginine vasopressin (AVP) in A-10 vascular smooth muscle cells (VSMC). The peptide fragments used have either complete G(i) activator sequences K(461)-H(472) (peptide 1) and H(481)-H(492) (peptide 3) or partial G(i) activator sequences R(469)-K(480) (peptide 2) and I(465)-H(472) (peptide Y) with truncated COOH or NH(2) terminus, respectively. The other peptide used had no structural specificity (Q(473)-K(480), peptide X) or was the scrambled peptide control for peptide 1 (peptide Z). ANG II, ET-1 and AVP significantly stimulated DNA synthesis in these cells as determined by [(3)H]thymidine incorporation that was inhibited by peptides 1, 2, and 3 and not by peptides X, Y, and Z in a concentration-dependent manner, with an apparent K(i) between 1 and 10 nM. In addition, C-ANP(4-23), which interacts with NPR-C, also inhibited DNA synthesis stimulated by vasoactive peptides; however, the inhibition elicited by C-ANP(4-23) was not additive with the inhibition elicited by peptide 1. On the other hand, basal DNA synthesis in these cells was not inhibited by C-ANP(4-23) or the peptide fragments. Furthermore, vasoactive peptide-induced stimulation of DNA synthesis was inhibited by PD-98059 and wortmannin, and this inhibition was potentiated by peptide 1. In addition, peptide 1 also inhibited vasoactive peptide-induced phosphorylation of ERK1/2 and AKT and enhanced expression of G(i)alpha proteins. These data suggest that C-ANP(4-23) and small peptide fragments containing 12 amino acids irrespective of the region of the cytoplasmic domain of NPR-C inhibit proliferative responses of vasoactive peptides through G(i)alpha protein and MAP kinase/phosphatidylinositol 3-kinase/AKT pathways.  相似文献   

6.
Bombesin is a potent mitogen for Swiss 3T3 cells and acts synergistically with insulin and other growth factors. We show here that addition of bombesin to quiescent Swiss 3T3 cells causes a striking increase in the levels of c-fos and c-myc mRNAs. Enhanced expression of c-fos (122 +/- 14-fold) occurred within minutes of peptide addition followed by increased expression of c-myc (82 +/- 16-fold). The concentrations of peptide required for half-maximal increase in the levels of c-fos and c-myc mRNAs were 1.0 and 0.9 nM, respectively. The peptide [D-Arg1, D-Pro2, D-Trp7,9, Leu11] substance P which inhibits the binding of bombesin to its receptor and bombesin-stimulated DNA synthesis in Swiss 3T3 cells blocked the increase in c-fos and c-myc mRNA levels promoted by bombesin. Down-regulation of protein kinase C by long-term exposure to phorbol esters prevented c-fos and c-myc induction by bombesin. This and other results indicate that the induction of these proto-oncogenes by bombesin could be mediated by the coordinated effects of protein kinase C activation and Ca2+ mobilization. The marked synergistic effect between bombesin and insulin was used to assess whether the increase in the induction of c-fos and c-myc is an obligatory event in cell activation. In the presence of insulin, bombesin stimulated DNA synthesis at subnanomolar concentrations but had only a small effect on c-fos and c-myc mRNA levels. This apparent dissociation of mitogenesis from proto-oncogene induction was even more dramatic in 3T3 cells with down-regulated protein kinase C. In these cells bombesin stimulated DNA synthesis in the presence of insulin but failed to enhance c-fos and c-myc mRNA levels at comparable concentrations. Thus, the induction of c-fos and c-myc may be a necessary step in the mitogenic response initiated by ligands that act through activation of protein kinase C but the expression of these proto-oncogenes may not be an obligatory event in the stimulation of mitogenesis in 3T3 cells by mitogens that utilise other signalling pathways.  相似文献   

7.
The migration of vascular smooth muscle cells from the media to intima and their subsequent proliferation are critical causes of arterial wall thickening. In atherosclerotic lesions increases in the thickness of the vascular wall and the impairment of oxygen diffusion capacity result in the development of hypoxic lesions. We investigated the effect of hypoxia on the migration of human coronary artery smooth muscle cells (CASMCs) via HIF-1alpha-dependent expression of thrombospondin-1 (TSP-1). When the cells were cultured under hypoxic conditions, mRNA and protein levels of TSP-1, and mRNA levels of integrin beta(3) were increased with the increase in HIF-1alpha protein. DNA synthesis and migration of the cells were stimulated under the conditions, and a neutralizing anti-TSP-1 antibody apparently suppressed the migration, but not DNA synthesis. The migration was also inhibited by RGD peptide that binds to integrin beta(3). Furthermore, the migration was completely suppressed in HIF-1alpha-knockdown cells exposed to hypoxia, while it was significantly enhanced in HIF-1alpha-overexpressing cells. These results suggest that the hypoxia induces the migration of CASMCs, and that the migration is elicited by TSP-1 of which induction is fully dependent on the stabilization of HIF-1alpha, in autocrine regulation. Thus we suggest that HIF-1alpha plays an important role in the pathogenesis of atherosclerosis.  相似文献   

8.
Vasoactive intestinal peptide synergistically stimulated initiation of DNA synthesis in Swiss 3T3 cells. The peptide stimulated [3H]thymidine incorporation in the presence of insulin and either forskolin or an inhibitor of cAMP phosphodiesterase in a concentration-dependent manner. Half-maximal effect was obtained at 1 nM. At mitogenic concentrations, VIP stimulated a marked accumulation (eightfold) of cAMP. In contrast to other growth-promoting neuropeptides, VIP did not induce an increase in cytosolic free Ca2+ or an activation of protein kinase C. We conclude that neuropeptides can modulate long-term cell proliferation through multiple signaling pathways.  相似文献   

9.
1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) dose-dependently suppressed immunoglobulin (Ig) production of human B cells, as evaluated by IgG-plaque-forming cells (IgG-PFC) in the culture of pokeweed mitogen (PWM)-activated B cells. Similar suppressive effect of 1,25(OH)2D3 on Ig production of B cells was observed in the Staphylococcus aureus Cowan I(SAC)-induced Ig-producing system. The mean percentage of inhibitions at a concentration of 10(-9) M were 60.0 +/- 8.2% (mean +/- SE, n = 6) and 65.1 +/- 4.7% (n = 10) in PWM- and SAC-stimulated cultures, respectively. The suppression was strongly exhibited only when 1,25(OH)2D3 was added at the start of the 6-day culture, accompanied by a decrease in DNA synthesis of B cells in both culture systems. On the other hand, the addition of 1,25(OH)2D3 on day 4, when DNA synthesis reached at plateau and IgG-PFC began to be detectable, had no noticeable affect on either the number of PFC or DNA synthesis of B cells. Furthermore, 1,25(OH)2D3 suppressed Ig production even when B cells were exposed to the agent for 4 hr after the activation with PWM or SAC, but not before the activation. These results indicate that 1,25(OH)2D3 inhibits B cell proliferation before differentiation to Ig-secreting cells, consequently reducing Ig production; and that its action appears to be mediated by the cytosol receptors expressed on activated B cells. Thus, the agent may serve as an immunoregulating hormone in vivo, as well as in vitro.  相似文献   

10.
Increasing evidence shows that labile intracellular zinc is metabolically important. Depletion of labile intracellular zinc using chelators suppresses DNA synthesis. In this study, we tested the hypothesis that labile intracellular zinc could be modulated via varying zinc nutrition. This could result in an altered availability of labile intracellular zinc, which, in turn, could influence zinc-dependent cellular events involved in cell proliferation and ultimately suppress growth. Labile intracellular zinc was detected by using N-(6-methoxy-8-quinolyl)-para-toluenesulfonamide (TSQ), a membrane-permeable fluorescence probe. After 48 h culture in a zinc-depleted medium, labile intracellular zinc in 3T3 cells was diminished along with a suppressed DNA synthesis and cell proliferation. In contrast, supplementation of zinc to the zinc-depleted medium increased the labile intracellular zinc and promoted DNA synthesis and cell proliferation. Furthermore, growth factor-dependent stimulation of DNA synthesis and cell proliferation was also accompanied by increased labile intracellular zinc. Together, our data showed an association between the labile intracellular zinc, detected using TSQ, and 3T3 cell growth, suggesting that labile intracellular zinc could be an important cellular link between zinc nutrition and growth.  相似文献   

11.
Apoptotic cell death and increased production of amyloid b peptide (Ab) are pathological features of Alzheimer's disease (AD), although the exact contribution of apoptosis to the pathogenesis of the disease remains unclear. Here we describe a novel pro-apoptotic function of calsenilin/DREAM/KChIP3. By antisense oligonucleotide-induced inhibition of calsenilin/DREAM/KChIP3 synthesis, apoptosis induced by Fas, Ca2+-ionophore, or thapsigargin is attenuated. Conversely, calsenilin/DREAM/KChIP3 expression induced the morphological and biochemical features of apoptosis, including cell shrinkage, DNA laddering, and caspase activation. Calsenilin/DREAM/KChIP3-induced apoptosis was suppressed by caspase inhibitor Z-VAD and by Bcl-XL, and was potentiated by increasing cytosolic Ca2+, expression of Swedish amyloid precursor protein mutant (APPSW) or presenilin 2 (PS2), but not by a PS2 deletion lacking its C-terminus (PS2/411stop). In addition, calsenilin/DREAM/KChIP3 expression increased Ab42 production in cells expressing APPsw, which was potentiated by PS2, but not by PS2/411stop, which suggests a role for apoptosis-associated Ab42 production of calsenilin/DREAM/KChIP3.  相似文献   

12.
The effects of a 4 h incubation of rat thyroid lobes, in the presence of calcitonin (CT) and calcitonin gene-related peptide (CGRP) on the incorporation of 3H-thymidine into DNA, were investigated. In other groups the thyroid lobes were incubated during exposure to CT and thyrotropin (TSH), and to CGRP together with TSH. All concentrations of CT (10(-6)-10(-8) M) revealed a tendency towards lowering 3H-thymidine uptake, but the effect was not statistically significant. The influence of CGRP was dose-dependent; the lowest concentration of CGRP (10(-9) M) significantly enhanced DNA synthesis in the incubated rat thyroids; an intermediate dose of the peptide (10(-8) M) had no effect, while the highest concentration of CGRP (10(-7) M) decreased 3H-thymidine incorporation. Calcitonin (10(-7) M), as well as CGRP (10(-8) M), suppressed the stimulatory effect of TSH on 3H-thymidine incorporation.  相似文献   

13.
C-type natriuretic peptide (CNP) which potently stimulates particulate guanylate cyclase activity in cultured rat vascular smooth muscle cells (VSMC) inhibited serum-induced DNA synthesis of the cells 10-fold more effectively than alpha-human atrial natriuretic peptide (alpha-hANP). The inhibitory effect of CNP was mimicked by 8-bromo-cGMP. The proliferation of VSMC was also suppressed by CNP more potently than alpha-hANP, while the peptide was less active for cGMP augmentation and for vasorelaxation than alpha-hANP in isolated rat aorta. These results suggest that CNP may be a growth regulating factor of VSMC rather than a vasodilator.  相似文献   

14.
An earlier report indicated that a 26-amino-acid peptide (SA), comprised of the nuclear localization signal (NLS) of fibroblast growth factor-1 (FGF-1) and a membrane-permeable peptide, was able to stimulate DNA synthesis after it was taken up by NIH3T3 fibroblasts. Here, we report that SA, but not a mutant with the NLS motif destroyed, induced DNA synthesis in BALB/c3T3 murine fibroblasts, human vascular endothelial (HUVE) cells, and primary cultured hepatocytes, although the activity was weaker than that of FGF-1. The kinetics of SA-induced DNA synthesis and G1cyclin expression were similar to those elicited by FGF-1, indicating that SA induces cell cycle progression. Kinetic analysis also suggested that SA stimulates only a fraction of the DNA replication in BALB/c3T3 cells. At high cell densities, SA-induced G1cyclin expression and DNA synthesis were more strongly inhibited than those induced by FGF-1. SA did not induce cell division in HUVE and BALB/c3T3 cells and did not interfere with FGF-1-stimulated proliferation of HUVE cells. These results indicate that SA is able to partially induce cell cycle progression through a contact-inhibition sensitive signaling pathway, but it is insufficient to support cell mitosis. We also suggest that signaling by SA does not interfere with that of FGF-1.  相似文献   

15.
ts20 is a temperature-sensitive mutant cell line derived from BALB/3T3 cells. DNA synthesis in the mutant decreased progressively after an initial increase during the first 3 h at the restrictive temperature. RNA and protein synthesis increased for 20 h and remained at a high level for 40 h. Cells were arrested in S phase as determined by flow microfluorimetry, and DNA chain elongation was retarded as measured by fiber autoradiography. Infection with polyomavirus did not bypass the defect in cell DNA synthesis, and the mutant did not support virus DNA replication at the restrictive temperature. After shift down to the permissive temperature, cell DNA synthesis was restored whereas virus DNA synthesis was not. Analysis of virus DNA synthesized at the restrictive temperature showed that the synthesis of form I and replicative intermediate DNA decreased concurrently and that the rate of completion of virus DNA molecules remained constant with increasing time at the restrictive temperature. These studies indicated that the mutation inhibited ongoing DNA synthesis at a step early in elongation of nascent chains. The defect in virus and cell DNA synthesis was expressed in vitro. [3H]dTTP incorporation was reduced, consistent with the in vivo data. The addition of a high-salt extract prepared from wild-type 3T3 cells preferentially stimulated the incorporation of [3H]dTTP into the DNA of mutant cells at the restrictive temperature. A similar extract prepared from mutant cells was less effective and was more heat labile as incubation of it at the restrictive temperature for 1 h destroyed its ability to stimulate DNA synthesis in vitro, whereas wild-type extract was not inactivated until incubated at that temperature for 3 h.  相似文献   

16.
Inhibition of DNA synthesis and cell proliferation of mouse 3T3 cells by aphidicolin did not affect the expression of cyclin, a nuclear protein whose synthesis correlates with cell proliferation, as determined by quantitative two-dimensional gel electrophoresis analysis. Serum stimulation of quiescent 3T3 cells revealed that cyclin synthesis increases shortly before DNA synthesis. Inhibition of DNA synthesis by aphidicolin in serum-stimulated quiescent cells did not affect the increase of cyclin following stimulation. These results demonstrate that cyclin synthesis is not coupled to DNA synthesis and that it is one of the latest events before DNA replication.  相似文献   

17.
Plasma membranes derived from NR-6 cells, a variant line of Swiss mouse 3T3 cells that does not have cell surface receptors for epidermal growth factor (EGF), inhibited EGF-induced stimulation of DNA synthesis by 50% in serum-starved, subconfluent 3T3 cells. Membranes derived from SV3T3 cells were much less effective in inhibiting EGF-induced DNA synthesis. This inhibition on DNA synthesis by NR-6 membranes was not a direct effect of membranes on EGF, nor could it be overcome by high concentrations of EGF. NR-6 membranes were most effective when added 3 h before EGF addition and had little effect when added 2 h or more after EGF. NR-6 membranes also reduced the stimulation of DNA synthesis induced by platelet-derived growth factor or fibroblast growth factor in serum-starved 3T3 cells. These findings indicate that membrane- membrane interactions between nontransformed cells may diminish their ability to proliferate in response to serum polypeptide growth factors.  相似文献   

18.
Cycloprodigiosin hydrochloride (cPrG-HCl), a member of the prodigiosin family of compounds, has been reported to act as an H(+)/Cl(-) symporter. This compound induces apoptosis in several cancer cells and acts as an antitumor drug in animal models. In this study, we found a novel function of cPrG-HCl; to suppress cell death in PC12 cells, which is caused by protein synthesis inhibitors cycloheximide and actinomycin D. cPrG-HCl activated Akt and suppressed apoptosis, and this was accompanied by inhibition of caspase-3 activity and DNA fragmentation independently of its H(+)/Cl(-) symporter activity. Wortmannin, a phosphatidylinositol 3-kinase (PI3K) inhibitor, and dominant-negative Ras attenuated the anti-apoptotic activity of cPrG-HCl, which indicates that cPrG-HCl activated the Ras-PI3K-Akt pathway suppressing apoptosis. On the other hand, serum-deprivation-induced apoptosis was not suppressed by cPrG-HCl.  相似文献   

19.
The effects of tumor necrosis factor-alpha (TNF-alpha) on DNA synthesis in AH66 rat hepatoma cells and rat hepatocytes were analysed by means of [3H]thymidine incorporation. DNA synthesis in AH66 cells was suppressed when AH66 cells were directly incubated with TNF-alpha. When primary culture of rat Kupffer cells was incubated with hepatocyte conditioned media pretreated with TNF-alpha (0-200 U/ml), and AH66 cells were then treated with these hepatocyte/Kupffer cell-conditioned media, TNF-alpha used in the pretreatment caused a dose-dependent increase in DNA synthesis in AH66 cells with a maximum effect amounting to a more than 10-fold increase. In contrast, DNA synthesis in primary culture of rat hepatocytes was not stimulated by the TNF-alpha-pretreated hepatocyte/Kupffer cell conditioned media. These results suggest that TNF-alpha-mediated hepatocyte-Kupffer cell interaction selectively promotes proliferation of rat hepatoma cells.  相似文献   

20.
The vasoactive peptide endothelin is shown to be a potent mitogen for Swiss 3T3 cells. Although endothelin has little effect on DNA synthesis when added alone to cells in serum-free medium, the peptide synergizes very strongly with several other growth factors. A half-maximal response to endothelin is observed at approx. 0.3 nM, with a maximal effect at 3 nM. Over the same concentration range, endothelin stimulates a 2-fold increase in the accumulation of cellular inositol phosphates. Endothelin may prove to be a useful additional agonist for studying the signalling pathways involved in the control of 3T3-cell proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号