首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Concanavalin A strongly agglutinates purified fragments of immature and mature rat brain myelin, but only weakly agglutinates mature bovine and human myelin fragments. A sensitive method involving [3H]concanavalin binding to sodium dodecyl sulphate/polyacrylamide gels was used to detect the concanavalin A-binding proteins in purified myelin. When applied to mature rat brain myelin proteins that had been labelled in vivo with [14C]fucose, the distribution of the [3H]concanavalin A on the gel was very similar to that of [14C]fucose with the major peak corresponding to the major myelin-associated glycoprotein. The technique revealed that the immature form of the myelin-associated glycoprotein with a slightly larger apparent molecular weight also bound concanavalin A, and that in purified immature rat myelin the quantitative importance of some of the other glycoproteins in binding concanavalin A was increased relative to the myelin-associated glycoprotein. The separated proteins of bovine and human myelin bound more [3H]-concanavalin A than those of rat myelin. In these species, the myelin-associated glycoprotein was a major concanavalin A-binding protein, although two higher-molecular-weight glycoproteins also bound significant quantities of [3H]concanavalin A. The results indicate that there are receptors for concanavalin A on the surface of rat, bovine and human myelin membranes and suggest that the myelin-associated glycoprotein is one of the principal receptors.  相似文献   

2.
The cell surface glycoprotein γ-glutamyl transpeptidase (GGT) was isolated from healthy human kidney and liver to characterize its glycosylation in normal human tissue in vivo. GGT is expressed by a single cell type in the kidney. The spectrum of N-glycans released from kidney GGT constituted a subset of the N-glycans identified from renal membrane glycoproteins. Recent advances in mass spectrometry enabled us to identify the microheterogeneity and relative abundance of glycans on specific glycopeptides and revealed a broader spectrum of glycans than was observed among glycans enzymatically released from isolated GGT. A total of 36 glycan compositions, with 40 unique structures, were identified by site-specific glycan analysis. Up to 15 different glycans were observed at a single site, with site-specific variation in glycan composition. N-Glycans released from liver membrane glycoproteins included many glycans also identified in the kidney. However, analysis of hepatic GGT glycopeptides revealed 11 glycan compositions, with 12 unique structures, none of which were observed on kidney GGT. No variation in glycosylation was observed among multiple kidney and liver donors. Two glycosylation sites on renal GGT were modified exclusively by neutral glycans. In silico modeling of GGT predicts that these two glycans are located in clefts on the surface of the protein facing the cell membrane, and their synthesis may be subject to steric constraints. This is the first analysis at the level of individual glycopeptides of a human glycoprotein produced by two different tissues in vivo and provides novel insights into tissue-specific and site-specific glycosylation in normal human tissues.  相似文献   

3.
The N-linked glycans from the 52/54-kDa medium protein and cell wall beta-fructosidase, two glycoproteins secreted by carrot suspension culture cells, were characterized. Carrot cells were labelled with [3H]glucosamine or [3H]fucose. The 52/54-kDa medium protein was isolated from the culture medium and beta-fructosidase from cell walls. The purified proteins were digested with trypsin and glycopeptides were isolated and sequenced. Glycans obtained from individual glycopeptides were separated by gel filtration chromatography and characterized by concanavalin A chromatography, by treatments with exoglycosidases and by sugar composition analysis. The 52/54-kDa medium protein and cell wall beta-fructosidase have one high-mannose-type glycan similar to those from yeast and animal glycoproteins. In addition, the 52/54-kDa medium protein has three complex-type and cell wall beta-fructosidase two complex-type glycans per polypeptide. The complex-type glycans isolated from individual glycosylation sites are fairly large and very heterogeneous. The smallest of these glycans has the structure [Xyl](Man)3[Fuc](GlcNAc]2Asn (square brackets indicating branching) whereas the larger ones carry additional sugars like terminal N-acetylglucosamine and possibly rhamnose and arabinose in the case of the 52/54-kDa medium protein and only arabinose in the case of cell wall beta-fructosidase. These terminal sugars are linked to the alpha-mannose residues of the glycan cores. The 52/54-kDa medium protein is secreted with large and homogeneous complex glycans, their heterogeneity originates from slow processing after secretion. The complex glycans from cell wall beta-fructosidase are processed before the enzyme is integrated into the cell wall.  相似文献   

4.

Background

A variety of N-glycans attached to protein are known to involve in many important biological functions. Endoplasmic reticulum (ER) and Golgi localized enzymes are responsible to this template-independent glycan synthesis resulting glycoforms at each asparagine residues. The regulation mechanism such glycan synthesis remains largely unknown.

Methodology/Principal Findings

In order to investigate the relationship between glycan structure and protein conformation, we analyzed a glycoprotein of Drosophila melanogaster, chaoptin (Chp), which is localized in photoreceptor cells and is bound to the cell membrane via a glycosylphosphatidylinositol anchor. Detailed analysis based on mass spectrometry revealed the presence of 13 N-glycosylation sites and the composition of the glycoform at each site. The synthetic pathway of glycans was speculated from the observed glycan structures and the composition at each N-glycosylation site, where the presence of novel routes were suggested. The distribution of glycoforms on a Chp polypeptide suggested that various processing enzymes act on the exterior of Chp in the Golgi apparatus, although virtually no enzyme can gain access to the interior of the horseshoe-shaped scaffold, hence explaining the presence of longer glycans within the interior. Furthermore, analysis of Chp from a mutant (RNAi against dolichyl-phosphate α-d-mannosyltransferase), which affects N-glycan synthesis in the ER, revealed that truncated glycan structures were processed. As a result, the distribution of glycoforms was affected for the high-mannose-type glycans only, whereas other types of glycans remained similar to those observed in the control and wild-type.

Conclusions/Significance

These results indicate that glycan processing depends largely on the backbone structure of the parent polypeptide. The information we obtained can be applied to other members of the LRR family of proteins.  相似文献   

5.
Ascitic fluid haptoglobins 1-1, 2-1 and 2-2 and their tryptic glycopeptides were fractionated by affinity chromatography on Con A-Sepharose. Three peaks were obtained, corresponding to non-binding, weakly binding and strongly binding fractions. Concanavalin A-non-binding and concanavalin A-binding fractions of haptoglobin and of glycopeptide III 2-2 consisted of a series of polymers with increasing molecular mass, except for the non-binding fraction of glycopeptide III 1-1. After reduction there was no difference between the subunit composition of the glycopeptides and their concanavalin A fraction. Concanavalin A-non-binding fractions from haptoglobin 2-1 and glycopeptides III 1-1 and III 2-2 did not form an active complex with hemoglobin and, in crossed immunodiffusion, showed a reaction of partial identity with haptoglobin 2-1, glycopeptides III 1-1, III 2-2 and their concanavalin A-binding fractions. Concanavalin A-binding fractions of the above preparations exhibited with hemoglobin higher peroxidase activity than before their separation on Con A-Sepharose and immunodiffusion gave a reaction of identity among themselves and with unfractionated preparations. The concanavalin A-binding glycopeptide III is the biologically active part of the haptoglobin beta-chain.  相似文献   

6.
Two endogenous cerebellar mannose binding lectins have been isolated in an active form by immunoaffinity chromatography employing their respective immobilized antibodies. One of them, termed cerebellar soluble lectin (CSL), was extracted in the absence of detergents, whereas the other, called Receptor 1 (R1), was soluble only in the presence of detergents. Tests of inhibition of agglutination of erythrocytes were performed with mono-, oligo and polysaccharides, as well as glycoconjugates of known structures. On the basis of agglutinating activities these 2 lectins are different from the previously reported lectins in brain, since they were not inhibited by galactosides and lactosides and were only marginally inhibited by glycosaminoglycans. CSL and R1 were better inhibited by mannose-rich glycopeptides as compared to the corresponding oligosaccharides. The different inhibition patterns obtained with glycans of known structures indicated that these lectins are very discriminative. Although CSL and R1 have similar specificities, they differed in their binding properties towards glycopeptides of ovalbumin. Both lectins showed considerable affinity for endogenous cerebellar glycopeptides, also rich in mannose. These glycopeptides belong to a few endogenous Con A-binding cerebellar glycoprotein subunits and are not present on other endogenous Con A-binding glycoproteins. In the forebrain, where CSL and R1 were also present, at least some of the glycoproteins interacting with the lectins were different from that observed in the cerebellum. Our data overall suggest that specific cell recognition in the nervous system could be invoked via the interactions between widely distributed lectins and cell-specific glycoproteins.  相似文献   

7.
The carbohydrate portion of the G glycoprotein of vesicular stomatitis virus (VSV) grown in CHO cells (CHO/VSV) has been fractionated on BioGelP6, concanavalin A-Sepharose, and pea lectin-agarose. The results suggest that, in addition to sialic acid and fucose heterogeneity, the asparagine-linked complex carbohydrate moieties of CHO/VSV also display branching heterogeneity. Although the majority of the glycopeptides bind to concanavalin A-Sepharose in a manner typical of certain biantennary carbohydrate structures, a significant proportion do not bind to the lectin. The latter behavior is typical of tri- or tetraantennary (branched) carbohydrate structures. The CHO/VSV glycopeptides which do not bind to concanavalin A-Sepharose separate into bound and unbound fractions on pea lectin-agarose suggesting that they include at least two different types of (branched) carbohydrate structures. Glycopeptides from the G glycoprotein of VSV grown in two, independently derived CHO glycosylation mutants which belong to complementation group 4 (Lec4 mutants) were examined in the same manner. In contrast to glycopeptides from CHO/VSV, glycopeptides from Lec4/VSV which passed through concanavalin A-Sepharose did not contain a component which subsequently bound to pea lectin-agarose. A glycopeptide fraction with these lectin-binding properties was also missing from cell surface glycopeptides derived from Lec4 cells. The combined results are consistent with the hypothesis that Lec4 CHO glycosylation mutants lack a glycosyltransferase activity responsible for the addition of a (branch) N-acetylglucosamine residue linked β1,6 to mannose.  相似文献   

8.
Human alpha 1-acid glycoprotein (AGP) was separated into a non-bound (AGP-A; 46%), a retarded (AGP-B; 39%) and a bound fraction (AGP-C; 15%) using concanavalin A (ConA)-Sepharose chromatography. The apparent molecular masses, as determined by SDS-PAGE, of the three fractions were 43.5, 42.3 and 41.2 kDa, respectively. The occurrence of N-linked di-, tri- and tetraantennary glycans on these three molecular forms (AGP-A, -B, and -C) was studied by sequential lectin-affinity chromatography of the 14C-labelled glycopeptides. These were obtained by extensive pronase treatment followed by N-[14C]acetylation of the peptide moieties. The glycopeptides of AGP-A did not bind to ConA-Sepharose whereas for AGP-B and AGP-C 18% and 44%, respectively, of the glycopeptides were bound as diantennary structures. Glycopeptide fractions of all three forms of AGP which were not bound to ConA-Sepharose were shown to contain equal amounts of both tri- and tetraantennary glycans by chromatography with Phaseolus vulgaris leukoagglutinating lectin (L-PHA). With the assumption that each molecule contains five glycosylation sites, it could be shown that AGP-A contains no diantennary structures whereas AGP-B and AGP-C contain one and two diantennary structures, respectively. In addition each of the molecular forms contains equal amounts of tri- and tetraantennary structures on the remaining glycosylation sites. The results of this study, therefore, exclude a uniformity of glycan chains in the three molecular forms of AGP. The degree of sialylation of each of the molecular forms was investigated by chromatography on L-PHA-agarose and Ricinus communis agglutinin-I--agarose both before and after desialylation of the glycopeptides. It was shown that about 90% of the biantennary glycans of both AGP-B and AGP-C were disialylated while the remainder were monosialylated. The degree of sialylation of the tri- and tetraantennary glycans was identical for the three molecular forms. In each case, one or more terminal galactose residues occurred on at least 20% of the tri- and 65% of the tetraantennary chains. It is suggested that the decrease in the exposure of galactose residues from AGP-A to AGP-C is related to the concomittant decrease in branching of the glycans of the three molecular forms. The relevance of these findings to studies on the function of AGP during inflammatory and liver diseases is discussed.  相似文献   

9.
Improved diagnosis of psoriasis, by new biomarkers, is required for evaluating the progression rate of the disease and the response to treatment. Haptoglobin (Hpt), a glycoprotein secreted by hepatocytes and other types of cells including keratinocytes, was found with glycan changes in psoriasis and other diseases. We previously reported that Hpt isolated from plasma of psoriatic patients is more fucosylated than Hpt of healthy subjects. The aim of this study was to compare the glycosylation pattern of Hpt isolated from skin scales or plasma of patients with psoriasis with that of Hpt from cornified epidermal layer or plasma of healthy subjects. High performance liquid chromatography analysis of the glycans isolated from the protein backbone revealed that glycan patterns from skin and plasma of patients were similar, and mostly displayed quantitative rather than qualitative differences from normal pattern. Biotin-labeled lectins were used to evaluate quantitative differences in the glycoforms of Hpt from plasma and psoriatic skin scales. Hpt from skin and plasma of patients showed more fucosylated and branched glycans than Hpt from plasma of healthy subjects. Tryptic glycopeptides of Hpt were also analyzed by mass spectrometry, and a decreased amount of sialylated glycan chains was found in glycopeptides of skin Hpt, as compared with Hpt from plasma. High levels of glycans with fucosylated and tetra-antennary chains were detected on the peptide NLFLNHSENATAK from Hpt of psoriatic patients. Our data demonstrate that specific changes in glycan structures of Hpt, such as enhanced glycan branching and fucose content, are associated with psoriasis, and that differences between circulating and skin Hpt do exist. A lower extent of glycan fucosylation and branching was found in Hpt from plasma of patients in disease remission. Altered glycoforms might reflect changes of Hpt function in the skin, and could be used as markers of the disease.  相似文献   

10.
Four glycopeptides (I, IIA, IIB, III) with different oligosaccharide structures were isolated from purified mouse thymocyte Thy-1 glycoprotein. The glycoprotein was digested with Pronase, and the glycopeptide fraction was isolated by gel filtration and acetylated with [3H]acetic anhydride. The different glycan structures were separated by affinity chromatography on concanavalin A-Sepharose 4B and lentil lectin-Sepharose 4B. Size determinations of intact and exoglycosidase- and endoglycosidase-digested glycopeptides were performed by gel filtration on Bio-Gel P-6, calibrated with glycopeptides of known structure. On the basis of these experiments and on the behaviour of the glycopeptides on the lectin columns, the following structures of the oligosaccharide chains were proposed: I, triantennary 'complex-type' with terminal fucose; IIA, biantennary 'complex-type' without fucose; IIB, biantennary 'complex-type' with fucose; III, a mixture of 'high-mannose' chains containing either five or six mannose residues (approx. 50% of each). Amino acid analysis of the glycopeptides showed that the predominant oligosaccharide at glycosylation-site Asn-23 was of 'high-mannose' type, whereas the other two sites (Asn-75 and Asn-99) were glycosylated with 'complex-type' chains. Both these sites were shown to be variably glycosylated. The major glycans linked to Asn-75 were of structures I and IIB, whereas all three 'complex-type' chains were represented at Asn-99. The results presented explain the previously reported carbohydrate heterogeneity of thymocyte Thy-1 glycoprotein.  相似文献   

11.
Isolation of Postsynaptic Densities from Day-Old Chicken Brain   总被引:3,自引:3,他引:0  
Synaptic plasma membranes from chicken brain were used to isolate a postsynaptic density (PSD) fraction using an aqueous two-phase polymer system and the detergent n-octyl glucoside. The protein and glycoprotein composition and the morphology of the day-old chicken brain PSD fraction were compared with a PSD fraction isolated from 12-week-old chicken brain. The PSD fraction from day-old chicken brain contained predominantly PSDs although, like the fraction from 12-week-old chicken, there was some membrane contamination. The major polypeptides in the day-old chicken fraction resolved by polyacrylamide gel electrophoresis comigrated with alpha- and beta-tubulin (Mr 57,000 and 55,000) and actin (Mr 45,000). The major PSD polypeptide (mPSDp) of 12-week-old chicken forebrain, which has a molecular weight of 52,000 was not a major component in day-old chicken. A polypeptide of molecular weight 63,000 was also far more prominent in the 12-week-old chicken PSD fraction whereas the reverse was true for a polypeptide of 31,000. Day-old chicken brain PSDs contained at least 14 concanavalin A-binding glycoproteins of high (greater than 85,000) molecular weight, the two most prominent having molecular weights of 170,000 and 180,000. In contrast to the polypeptide composition, the glycoprotein pattern of day-old chicken PSDs was very similar to that of the 12-week-old bird. Intraperitoneally injected [3H]fucose was incorporated into the glycoproteins of synaptic plasma membranes and PSDs from day-old chickens.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
After exhaustive pronase digestion, purification by gel filtration and affinity chromatography on concanavalin A, three glycopeptide fractions were obtained from rat hemopexin. Two fractions (I and II) were concanavalin A non-reactive and one (III) was concanavalin A reactive. On the basis of carbohydrate composition, methylation analysis and proton nuclear magnetic resonance spectroscopy, the primary structure of the glycan in fraction III is proposed as being a mixture of mono- and di-sialo-diantennae of the N-glycosidic, N- acetyllactosamine type. Hydrazinolysis of glycopeptides not binding to concanavalin A yielded mixtures of oligosaccharides for both fractions. These oligosaccharides were separated by HPLC; the molar composition of each of them is given. These data suggest that rat hemopexin contains, among others, a diantennary structure bearing three sialic acid residues.  相似文献   

13.
Although the function of many glycoproteins in the nervous system of fruit flies is well understood, information about the glycosylation profile and glycan attachment sites for such proteins is scarce. In order to fill this gap and to facilitate the analysis of N-linked glycosylation in the nervous system, we have performed an extensive survey of membrane-associated glycoproteins and their N-glycosylation sites isolated from the adult Drosophila brain. Following subcellular fractionation and trypsin digestion, we used different lectin affinity chromatography steps to isolate N-glycosylated glycopeptides. We identified a total of 205 glycoproteins carrying N-linked glycans and revealed their 307 N-glycan attachment sites. The size of the resulting dataset furthermore allowed the statistical characterization of amino acid distribution around the N-linked glycosylation sites. Glycan profiles were analyzed separately for glycopeptides that were strongly and weakly bound to Concanavalin A (Con A), or that failed to bind Concanavalin A, but did bind to wheat germ agglutinin (WGA). High- or paucimannosidic glycans dominated each of the profiles, although the wheat germ agglutinin-bound glycan population was enriched in more extensively processed structures. A sialylated glycan structure was unambiguously detected in the wheat germ agglutinin-bound fraction. Despite the large amount of starting material, insufficient amount of glycopeptides was retained by the Wisteria floribunda (WFA) and Sambucus nigra columns to allow glycan or glycoprotein identification, providing further evidence that the vast majority of glycoproteins in the adult Drosophila brain carry primarily high-mannose, paucimannose, and hybrid glycans. The obtained results should facilitate future genetic and molecular approaches addressing the role of N-glycosylation in the central nervous system (CNS) of Drosophila.  相似文献   

14.
In order to explore whether individual N-linked glycans in a given glycoprotein may be processed to different end products and at the same time prepare a number of well characterized glycopeptides as substrates for glycopeptide hydrolases, we have prepared the individual glycopeptides representing the four major glycosylation sites in ovomucoid and the three sites in asialofetuin. The individual glycopeptides were characterized by amino acid sequence determination before and after removal of the glycan by peptide:N-glycanase (amidase), and the liberated glycans were subjected to mass spectrometric analysis. As expected from available sugar analyses of the individual glycans in ovomucoid, no major differences were detected between the four glycosylation sites in this glycoprotein, but a definite trend toward less processed (less extensively branched) species was observed in going from site 1 to 4. In fetuin, for which the glycan pool is known to be made up of about two-thirds triantennary and one-third biantennary structures, the analysis of the three glycopeptides gave triantennary to biantennary ratios of 75/25, 67/33, and 70/30, respectively, demonstrating that the three sites are processed to a very similar, albeit perhaps not identical, extent. All the glycopeptides obtained in these studies, including the CNBr-produced glycopeptide from ovalbumin, were purified by a set series of steps, gel filtration on Sephadex G-50 followed by ion-exchange chromatography on DE52 and/or reverse phase high performance liquid chromatography. Based on the results, these procedures appear to have general application for the preparation of glycopeptides.  相似文献   

15.
In an attempt to evaluate the effects of the protein matrix on the specificity of glycoprotein processing in Golgi membranes, we have developed a model neoglycoprotein consisting of biotinylated glycans bound noncovalently to avidin (Chen, V. J., and Wold, F. (1986) Biochemistry 25, 939-444) with which the protein effect on processing can be evaluated as the difference in substrate efficiency between a free biotinylated glycan and the same biotinylated glycan bound to avidin. The avidin (streptavidin)-glycan complex stability was found to be proper for the experimental design; the complex remains intact for extended periods of incubation at the concentrations used, but the glycan can be completely liberated and recovered by heating the complex at 95 degrees C for 10 min in the presence of a 10-fold molar excess of biotin. By measuring the relative rates of [14C]sugar incorporation into the free and bound substrates it was demonstrated that the protein indeed influences the processing reactions; under conditions where free glycans such as biotinyl-Asn-Glc-NAc2-Man5 and 6-(biotinamido)hexanoyl-Asn-Glc-NAc2-Man5 could be converted to the biantennary products R-Asn-GlcNAc2-Man3-GlcNAc2-Gal2-sialyl2 in the presence of UDP-GlcNAc, UDP-Gal and CMP-sialic acid and Golgi enzymes, the avidin-bound derivative without the extension arm gave only low levels of product and the streptavidin-bound one remained unaltered. The presence of the extension arm in the substrates significantly improved the yield of some products in the complex, apparently by reducing or eliminating the avidin inhibition of the early steps, but not of the late ones. There are consequently two types of effect of the protein matrix on processing efficiency. One is expressed only when the glycan is close to the protein surface and affecting primarily early steps (mannosidases and GlcNAc transferases). The other is apparently independent of the proximity of the glycan core and the protein, and affects primarily late steps, in particular the incorporation of the second sialic acid residue into a biantennary complex glycan.  相似文献   

16.
Haptoglobin is an acute phase glycoprotein, secreted by hepatocytes and other types of cells including keratinocytes. Haptoglobin has been suggested to impair the immune response, inhibit gelatinases in the extracellular matrix and promote angiogenesis, but its role in psoriasis is obscure to date. Changes in haptoglobin glycan structure were observed in several diseases. The aim of this study was to investigate whether haptoglobin displays glycan variations in psoriasis. We found that the pattern of plasma haptoglobin glycoforms, following two-dimensional electrophoresis, exhibited significant quantitative differences in spot intensities between patients and controls. Quantitative and qualitative differences in glycan mass, between patients and controls, were found by mass spectrometry of glycopeptides from tryptic digests of protein isolated from both patients and controls. The number of distinct fucosylated glycoforms of peptides NLFLNHSENATAK and MVSHHNLTTGATLINEQWLLTTAK was higher in patients than in controls, but no fucosylated glycan was detected on peptide VVLHPNYSQ-VDIGLIK in either case. The number of peptides with distinct triantennary and tetraantennary glycans was higher in patients than in controls. Abundance or structure of specific glycans, which are present in haptoglobin from patients and are different or missing in normal haptoglobin, might be associated with disease activity.  相似文献   

17.
Most purification procedures used previously to isolate α1-acid glycoprotein (AGP) from plasma can lead to some alterations in its carbohydrate moiety. An immunoaffinity chromatographic method is proposed for purifying in one step rat plasma AGP without any detectable modification of its glycan moiety. Crossed immunoaffinoelectrophoresis with concanavalin A before and after purification showed identical patterns, suggesting no glycan selection during the purification. In the same way no desialylation occurred during the purification step. This immunoaffinity chromatographic procedure provided evidence of a decreased level of fucosyl residues in turpentine oil rat plasma AGP compared with normal rat plasma AGP.  相似文献   

18.
The [3H]mannose-labelled glycopeptides from two lectin-resistant lines of Chinese-hamster ovary cells were fractionated by chromatography on lentil lectin-Sepharose and concanavalin A-agarose columns and subsequently analysed by gel filtration in comparison with the glycopeptides of the parental cell line. Essentially all of the [3H]mannose-labelled asparaginyl-oligosaccharides from the 'single-mutant' cells selected for resistance to phytohaemagglutinin and the 'double-mutant' cells selected for additional resistance to concanavalin A were not bound to lentil lectin, whereas approximately one-sixth of the parental-cell glycopeptides were bound and specifically eluted with alpha-methyl mannoside. These bound and eluted glycopeptides represented a specific subset of the complex acidic-type asparaginyl-oligosaccharides. The percentage of radiolabelled glycopeptides and oligosaccharides from each cell line that were specifically bound to concanavalin A was consistent with the relative sensitivities of the three cell lines to this lectin. The major radiolabelled species in the endoglycosidase digest of the 'double-mutant'-cell glycopeptides (Man4GlcNAc1-size neutral oligosaccharides) were not bound to concanavalin A, whereas essentially all of the other neutral-type oligosaccharides were bound. In addition, the larger neutral-type oligosaccharides (Man8--9GlcNAc1) were more strongly bound to concanavalin A than were either the smaller neutral-type or the di-antennary acidic-type structures.  相似文献   

19.
The majority of synaptic plasma membrane components are glycosylated. It is now widely accepted that this post-translational modification is crucial during the establishment, maintenance and function of the nervous system. Despite its significance, structural information about the glycosylation of nervous system specific glycoproteins is very limited. In the present study the major glycan structures of the chicken synaptic plasma membrane (SPM) associated glycoprotein glycans were determined. N-glycans were released by hydrazinolysis, labelled with 2-aminobenzamide, treated with neuraminidase and subsequently fractionated by size exclusion chromatography. Individual fractions were characterized by the combination of high-pressure liquid chromatography, exoglycosidase treatment or reagent array analysis method (RAAM). In addition to oligomannose-type glycans, core-fucosylated complex glycans with biantennary bisecting glycans carrying the LewisX epitope were most abundant. The overall chicken glycan profile was strikingly similar to the rat brain glycan profile. The presence of the LewisX determinant in relatively large proportions suggests a tissue-specific function for these glycans.  相似文献   

20.
The complex asparagine-linked glycans of plant glycoproteins, characterized by the presence of beta 1-->2 xylose and alpha 1-->3 fucose residues, are derived from typical mannose9(N-acetylglucosamine)2 (Man9GlcNAc2) N-linked glycans through the activity of a series of glycosidases and glycosyl transferases in the Golgi apparatus. By screening leaf extracts with an antiserum against complex glycans, we isolated a mutant of Arabidopsis thaliana that is blocked in the conversion of high-manne to complex glycans. In callus tissues derived from the mutant plants, all glycans bind to concanavalin A. These glycans can be released by treatment with endoglycosidase H, and the majority has the same size as Man5GlcNAc1 glycans. In the presence of deoxymannojirimycin, an inhibitor of mannosidase I, the mutant cells synthesize Man9GlcNAc2 and Man8GlcNAc2 glycans, suggesting that the biochemical lesion in the mutant is not in the biosynthesis of high-mannose glycans in the endoplasmic reticulum but in their modification in the Golgi. Direct enzyme assays of cell extracts show that the mutant cells lack N-acetyl glucosaminyl transferase I, the first enzyme in the pathway of complex glycan biosynthesis. The mutant plants are able to complete their development normally under several environmental conditions, suggesting that complex glycans are not essential for normal developmental processes. By crossing the complex-glycan-deficient strain of A. thaliana with a transgenic strain that expresses the glycoprotein phytohemagglutinin, we obtained a unique strain that synthesizes phytohemagglutinin with two high-mannose glycans, instead of one high-mannose and one complex glycan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号