首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The uptake and degradation of a homologous rat serum asialoglycoprotein, 125I-asialoorosomucoid, and the effects on this metabolism by leupeptin, a proteinase inhibitor, were studied in the perfused rat liver. 125I-Asialoorosomucoid was rapidly taken up by the liver (t1/2 = 5.7 min) and acid-soluble degradation products began to appear in the circulating perfusate medium after 20-30 min. These products accounted for 60-65% of the initially added radioactivity after 90 min of perfusion. The early events in the galactose-mediated uptake of 125I-asialoorosomucoid were unchanged by the presence of leupeptin. However, the appearance of acid-soluble degradation products was greatly reduced when livers had been pretreated with the inhibitor (1.0 mg for 60 min). This effect corresponded with an increase in acid-precipitable material being located within the lysosomal-rich fraction from homogenates of leupeptin-treated livers. Leupeptin inhibited degradation of 125I-asialoorosomucoid by approx. 85% relative to control values over 90 min of perfusion. Inhibition of asialoorosomucoid degradation was also demonstrated in vitro. Leupeptin (1.0 mM) reduced hydrolysis of this glycoprotein substrate by greater than 50% during a 24 h incubation with isolated lysosomal enzymes. The thiol proteinases, cathepsin B, H and L, which are known to be inhibited by leupeptin, are apparently involved in initiating digestion of rat 125I-asialoorosomucoid within liver lysosomes. As a result of inhibition by leupeptin both in the perfused liver and in vitro very limited changes occurred in the native molecular weight of the starting glycoprotein.  相似文献   

2.
Perfused rat livers took up asialo-glycophorin, a glycoprotein derived from human erythrocyte membraneds, with a t12 for the clearance of 7 min. As a comparison, asialo-orosomucoid was taken up by this system with a t12 of 3.5 min. Both proteins were digested and their 125I labels were released to the perfusate as free 125I?. EGTA completely inhibited uptake of these glycoproteins, but not uptake of denatured bovine serum albumin. Addition of Ca2+ reversed the inhibition nearly completely. Isolated hepatocytes had an uptake rate of approximately 3 ng/min per 106 cells for the asialo forms of glycophorin, orosomucoid and fetuin. Cellular uptake of each of these asialoglycoproteins could be inhibited by one of the other proteins. Asialo-fetuin caused a 95% inhibition of the uptake rate of asialo-orosomucoid by the perfused liver. This fetal calf glycoprotein had a similar inhibitory effect on asialo-glycophorin, but only after an initial 40% of the asialo-glycophorin had been taken up by the liver at an almost normal rate during the first 30 min of perfusion. The possiblity of an alternative hepatic removal system for asialo-glycophorin is suggested.  相似文献   

3.
Low temperature and the lysosomotropic agent, chloroquine, were used to study the degradation of 125I-insulin in a perfused rat liver. Insulin (1.5 × 10?9m) was removed from the perfusate at 35 °C with a T12 of 12 min, and this process was slowed to 35 min at a temperature of 17 °C. Essentially no degradation of 125I-insulin took place in the liver at 17 °C. After 90 min at that temperature 64% of the liver radioactivity had accumulated in the microsomal fraction of the tissue homogenate, while at 35 °C 60% of the radioactive material was in the supernatant fraction. Greater than 80% of the supernatant radioactivity was acid soluble. Rapid warming of a 17 °C-treated liver to 35 °C allowed the accumulated 125I-insulin in the microsomal fraction to be degraded to acid-soluble products in the normal manner. Chloroquine (0.2 mm) also caused the liver to degrade insulin more slowly. At 60 min after adding 125I-insulin to the chloroquine-treated liver, 50% of the radioactivity in the tissue was still present in the lysosome-rich fraction of the homogenate, while less than 10% was in this fraction in a control liver. The effects of low temperature show transfer of insulin to its degradative site is rate limiting for hormone catabolism and the inhibition by chloroquine suggests lysosomes have a role in insulin degradation by the liver.  相似文献   

4.
Diacytosis of 125I-asialoorosomucoid by rat hepatocytes was studied by preincubating the cells with the labelled ligand at 37°C for 30 min or 18°C for 2 h, washing free of cell surface receptor-bound tracer at 4°C and then reincubating at 37°C. The cells preloaded at 37°C released a maximum of 18% of the total intracellular ligand as undegraded molecules after 1 h of incubation with an apparent first-order rate constant of 0.018 min?1 (t12 = 39 min). When the preloaded cells were incubated in the presence of 100 μg/ml unlabelled asialoorosomucoid or 5 mM ethylene glycol bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid, the amount of the released ligand increased to 32 and 37%, respectively, without apparent change in kinetics, indicating that these agents prevented rebinding of the released ligand. In the presence of 5 μM colchicine, 20 μM cytochalasin B, 20 μM chloroquine, 10 mM NH4Cl, 10 μM monensin or 20 μM leupeptin, degradation of the preloaded ligand was inhibited, whereas the release of the ligand was either slightly increased or unchanged. Similar effects of leupeptin, colchicine and asialoocrosomucoid were observed with cells preloaded at 18°C. These results indicate that diacytosis of 125I-asialoorosomucoid occurs from a prelysosomal compartment via a route insensitive to inhibition by the inhibitors of ligand degradation.  相似文献   

5.
Plasma kinetics and liver metabolism of iodanated human corticosteroid-binding protein have been studied in ovariectomized female rats. 125I-labeled human corticosteroid-binding globulin prepared by a modified chloramine T reaction was shown to be physically intact and biologically active. Intravenously injected 125I-labeled human corticosteroid-binding globulin was shown to give a complex clearance pattern from the plasma, with half-lives of 7.5 and 51 min. Estrogen injections had no effect on plasma clearance rate. Direct involvement of liver plasma membrane receptors for asialoglycoproteins in 125I-labeled human corticosteroid-binding globulin metabolism was demonstrated in vivo and in vitro using asialofetuin as a competitive inhibitor. 125I-labeled human asialo-corticosteroid-binding globulin was cleared from the plasma with a half-life of less than 1 min, while the simultaneous injection of 5 mg asialofetuin maintained the circulating plasma levels. Asialofetuin also slowed the clearance of intact 125I-labeled human corticosteroid-binding globulin from the plasma (t12=90 min). Binding of 125I-labeled human asialo-corticosteroid-binding globulin to rat liver plasma membranes in vitro was inhibited in a dose-dependent manner by asialofetuin, but not by intact human corticosteroid-binding globulin or fetuin. 125I-labeled human corticosteroid-binding globulin did not bind significantly to the membranes. It is concluded that human corticosteroid-binding globulin clearance from rat plasma is rapid and that the carbohydrate moiety of human corticosteroid-binding globulin is involved in its clearance and catabolism by the liver.  相似文献   

6.
Leupeptin is a peptide which inhibits several of the lysosomal proteases. When this compound was added in low concentrations to a perfused liver, the degradation of 125I-asialo-fetuin by the liver was dramatically slowed. When 5 mg leupeptin were added to the perfusate 1 h prior to the radioactive glycoprotein, the liver retained from 70 to 90% or the radioisotope 60 min after infusing 125I-asialo-fetuin. However, untreated livers contained less than 20% of the radioactivity at that time. Subcellular fractionation experiments showed that the radioactivity accumulated in the heavy and light mitochondrial fractions (ML) of the homogenate. At 80 min after the glycoprotein was added, almost 40% of the radioactivity was still located with these fractions. Very similar inhibitory effects were seen upon treating rats intravenously with 5 mg of leupeptin 60 min prior to injection of 125I-labelled asialo-fetuin. A 7 fold increase in liver radioactivity was observed 6 hrs after the glycoprotein had been given to the treated animals. Purified human liver cathepsin B digested fetuin to about 3% of total hydrolysis and the major peptide fragment produced had an SDS-electrophoretic mobility equivalent to that of ovalbumin.  相似文献   

7.
The subcellular distribution of 125I-insulin in the perfused rat liver was compared with the subcellular distribution of the lysosomally targeted asialoglycoprotein, 125I-asialofetuin. The use of Percoll density gradient medium provided excellent separation of lysosomes from the subcellular membrane fractions. Following perfusion with 125I-asialofetuin, a distinct peak of TCA-precipitable radioactivity could be observed in the lysosomal region of the gradient. In contrast, the gradient distribution of TCA-precipitable radioactivity following perfusion with physiological concentrations of 125I-insulin was unimodal, the observed peak corresponding to the distribution of intracellular membrane marker enzymes. Leupeptin, an inhibitor of lysosomal proteolysis, inhibited the degradation of 125I-asialofetuin but had no effect on 125I-insulin degradation. In addition, leupeptin produced a marked increase in TCA-precipitable radioactivity in the lysosome rich region of gradients prepared from livers perfused with 125I-asialofetuin. No such effect was observed following perfusion with 125I-insulin. These findings are consistent with an initial localization of the internalized insulin molecule with the membraneous system of the liver cell rather than the lysosomal system.  相似文献   

8.
Maximal heme occupancy, the maximal proportion of total catalase heme present in the form of Compound I, is found to be 0.4 both in the enzyme isolated from rat liver and in the peroxisomal enzyme as present in the intact cells of perfused rat liver. This indicates that the ratio of second order rate constants for catalatic decomposition and for formation of Compound I, k4′k1, is equal in vitro and in vivo.Catalase was isolated from rat liver, and the extinction coefficients for Compound I and for cyanide-catalase at 640 minus 660 nm were determined. The measurement of heme occupancy of catalase in hemoglobin-free perfused rat liver was made possible by wavelength scanning as well as by dual wavelength absorbance photometry. Thus, Compound I and cyanide-catalase were demonstrated in the red region and in the Soret band region.Meeting the particular needs of organ photometry, specific metabolic transitions were used to visualize specific transitions of absorbing pigments. Compound I is specifically demonstrated by its decomposition by the hydrogen donor, methanol. A measure for total catalase heme is provided by formation of cyanide-catalase. The cyanide concentrations required are well below appearance of possible interference by other cyanide-binding hemoproteins at 640–660 nm.  相似文献   

9.
We used perfused rat livers to investigate the role of endosomes versus lysosomes in the hydrolysis of endocytosed material. When perfusions were performed at 37 degrees C with 125I-asialoorosomucoid, 125I-galactosylated albumin, or 125I-mannosylated albumin, there was a 15-min lag before trichloroacetic acid-soluble degradation products were detected. Furthermore, no hydrolysis was detected at 16 degrees C, indicating that there was no significant prelysosomal degradation of these proteins. Since detection by this method depends on extensive hydrolysis, we subsequently used three small synthetic molecules from which fluorescent products are generated by a single cleavage. These were 4-methylumbelliferyl sulfate, 4-methylumbelliferyl phosphate, and 4-methylumbelliferyl-beta-D-glucosaminide, which are substrates for aryl sulfatase, acid phosphatase, and beta-hexosaminidase, respectively. Using the first two compounds, hydrolysis was detected after 3 min at 37 degrees C and still occurred, albeit to a reduced extent, at 16 and 4 degrees C. This indicates that aryl sulfatase and acid phosphatase are active prelysosomally. We found a different result with 4-methylumbelliferyl-beta-D-glucosaminide. At 37 degrees C, there was a greater than 15-min lag before hydrolysis products were measured; furthermore, hydrolysis ceased at 16 degrees C, indicating that beta-hexosaminidase is active lysosomally. Taken together, these findings show that there is selective activation and/or delivery of hydrolases along the endocytic pathway.  相似文献   

10.
The kinetics of fructose uptake was determined in perfused rat liver during steady-state fructose elimination. On the basis of the corresponding values of fructose concentration in the affluent and in the effluent medium, and the fructose and ATP concentration in biopsies, the kinetics of membrane transport and intracellular phosphorylation in the intact organ was calculated according to a model system. Carrier-mediated fructose transport has a high Km (67 mM) and V (30 μmoles · min?1 ·g?1). The calculated kinetic constants of the intracellular phosphorylation were compared with values obtained with an acid-treated rat liver high speed supernatant (values given in parentheses). Km with fructose 1.0 mM (0.7 mM), Km with ATP 0.54 mM (0.37 mM), V 10.3 μmoles · min?1 · g?1 (10.1 μmoles · min?1 · g?1, calculated on the basis of the highest measured rate of fructose uptake correcting the ATP concentration to saturating values). The kinetics of fructose uptake reveals that at Physiological fructose concentrations the membrane transport limits the rate of fructose uptake, thus protecting the liver from severe depletion of adenine nucleotides.  相似文献   

11.
In the rat hepatocyte, the internalization and degradation of asialoglycoproteins and the secretion of plasma and biliary proteins require specific intracellular sorting of vesicles. To aid in the biochemical characterization of these different vesicular pathways, we examined the effects of the ionophore monensin on the uptake and degradation of 125I-asialoorosomucoid (ASOR) and on the secretion of plasma and biliary proteins by the in situ perfused rat liver. In control livers, 77% of injected 125I-ASOR was extracted on first pass; 93% of the extracted radioactivity was released back into the circulation (totally degraded and some intact ASOR was found); and approximately 2% was recovered in the bile, some of which was intact. Monensin treatment decreased first pass uptake of 125I-ASOR to 57% and abruptly blocked the release of radioactivity into the perfusate and the bile. When hepatic proteins were biosynthetically labeled with 3H-leucine, monensin treatment dramatically reduced and delayed the secretion of newly synthesized proteins into both the perfusate and the bile. In contrast with control livers, in which secretion of protein into the perfusate preceded secretion of protein into the bile, TCA-precipitable 3H-protein appeared in bile about 20 min before TCA-precipitable 3H-protein appeared in the perfusate in monensin-treated livers. Thus, monensin treatment in the perfused liver blocked the degradation of asialoglycoproteins and inhibited the secretion of plasma proteins but had less effect on biliary protein secretion. These data document physiologic effects of monensin in an intact organ and suggest that biochemical distinctions between different vesicular pathways exist in the rat hepatocyte.  相似文献   

12.
Tritium-labeled leupeptin was used to study how this tripeptide proteinase inhibitor interacts with the liver, including the mechanism of its transport into the cell, its subcellular distribution after uptake, and its metabolism once in the tissue. Experiments were done in situ and in a perfused liver. At low concentrations (1 to 10 μm) the uptake of radioactive inhibitor was competed by chemically reduced leupeptin. At high concentrations at least up to 400 μm the uptake was directly proportional to the external concentration of tripeptide. Entry into the tissue essentially stopped at low temperature (<21 °C). [3H]Leupeptin initially was located in the soluble fraction of the liver homogenate and by 15 to 30 min became concentrated in the lysosome-rich fraction. During 2 h of perfusion almost 50% of [3H]leupeptin that had entered the liver was secreted intact into the bile. In addition, a portion of the leupeptin that remained in the liver was degraded during this time period.  相似文献   

13.
The reactivity of rat liver glutathione (GSH) peroxidase with two hydroperoxides was determined using integrated rate equations. The bimolecular rate constant for the reaction of GSH peroxidase with linoleic acid hydroperoxide is approximately four times the rate constant with cumene hydroperoxide. The reactivity toward reduced glutathione is not altered by different hydroperoxides. The t12 for lipid hydroperoxide in rat liver is approximated at 9.5 × 10?5 min.  相似文献   

14.
15.
The effect of chronic streptozotocin-induced diabetes was studied on intestinal microvillous membrane surface carbohydrate groups. After 7 weeks of diabetes, purified microvillous membranes were prepared from rat small intestine and surface galactoproteins identified by labeling with galactose oxidase/sodium boro[3H]hydride. Membrane surface sialic acid residues were labeled using the sodium metaperiodate/sodium boro[3H]hydride technique. Membranes were solubilized in SDS and protein labeling analyzed by acrylamide electrophoresis. Membranes from diabetic rats showed an 81% increase in galactoprotein labeling (P< 0.02) while labeling of sialic acid residues was unchanged. The greatest increase in galactoprotein labeling occurred in protein monomers of Mr 116 000–200 000, where there was a 155% increase in labeling (P< 0.005). These results indicate that intestinal microvillous membrane protein glycosylation is altered in chronic diabetes. This increase in surface membrane carbohydrates could explain the decreased rates of proteolytic degradation previously described for at least one microvillous protein. An increase in membrane galactose groups has also been noted in hepatocyte and kidney glomerular basement membranes, which suggests the presence of a systematic change in membrane protein glycosylation occurring as a result of the diabetic state.  相似文献   

16.
NADPH reduces both liver microsomal cytochrome P-450 and cytochrome b5. In the presence of CO, ferrous cytochrome P-450 can slowly transfer electrons to amaranth, an azo dye. This reaction is followed by the reoxidation of cytochrome b5 which proceeds at essentially the same rate as does cytochrome P-450 oxidation. It is suggested that cytochrome b5 directly reduces cytochrome P-450 in rat liver microsomes.  相似文献   

17.
18.
The distribution of HCO3?-ATPase activity was studied in cell fractions prepared from homogenates of rat liver. The level of mitochondrial contamination in the microsomal fraction depended on the fractionation procedure and on the method of homogenization. With proper care, microsomes with undetectable mitochondrial contamination could be prepared. These microsomes had no detectable HCO3?-ATPase activity. Approximately 85 % of the total HCO3?-ATPase activity of the post 6000 x g · min supernatant was recovered in the mitochondrialfraction. The properties of this mitochondrial HCO3?-ATPase were not distinguishable from those of the various microsomal HCO3?-ATPase previously described by other investigators.  相似文献   

19.
20.
Insulin binding to human fetal plasma liver membranes was studied in preparations segregated into three pools according to length of gestation: 15–18 weeks (Pool A), 19–25 weeks (Pool B), and 26–31 weeks (Pool C). Receptor numbers, calculated by extrapolation of Scatchard plots to the X axis, increased from 25 × 1010 sites per 100 μg protein in the youngest group (Pool A) to 46 × 1010 sites per 100 μg protein in Pool B. No further increase in receptor number was seen in Pool C. The affinity constant for insulin at tracer concentrations, Ke (“empty site”), was 1.53 × 108M?1 in Pool A and was only slightly higher than Kf (“filled site”). Ke was higher in Pool B, 1.75 × 108M?1, and in Pool C reached a value of 5.63 × 108M?1. In Pool C Kf was 2.3 × 108M?1. Insulin binding of liver plasma membranes from rat fetuses aged 14, 16, 18, and 21 (term) days and adults was also studied. Maximum binding capacity tended to increase with gestational age and was 130 × 1010 sites per 100 μg protein at term, which was in excess of that found in adult rats (89–90 × 1010). In addition, Ke increased from 0.75 × 108M?1 at 14 days to 3.02 × 108M?1 at term, a value higher than that found in pregnant and nonpregnant adults. Dissociation of insulin in the presence of high concentrations of insulin was significantly enhanced in tissues from 18-day and term fetuses and adults, but not in membranes from fetal rats aged 14 and 16 days. These data appear to indicate that site-site interactions are not present in early fetal existence. These changes in insulin binding with increased length of gestation are not ascribable to changes in relative proportions of hematopoietic and parenchymal tissue. Human fetal plasma liver membranes demonstrated elevated insulin binding with increased gestational age, but comparison of fetal and adult liver could not be done. However, newborn human infants have been shown to have a higher capacity for binding insulin to circulating monocytes than adults. Also, human fetuses apparently lack the capability to diminish monocyte receptors in the presence of hyperinsulinemia. These experiments show that an increase in insulin receptor binding capacity and affinity also occurs in the liver of the rat fetus at term as compared to the adult rat. The reasons and mechanisms underlying enhanced capacity for insulin binding by fetal and newborn members of human and rodent species are not known.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号