首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structural specificity of the allosteric inhibitor of phosphoenolpyruvate carboxylas [EC 4.1.1.31] of Escherichia coli W was investigated using native enzyme and photooxidized enzyme which was desensitized to L-aspartate. Inhibitory activity was expressed in terms of the concentration of the compound required for 50% inhibition (I0.5). For the native enzyme, L-aspartate and L-malate were the strongest inhibitors with I0.5 values of about 0.10-0.15 mM among about 20 componds tested. For the photooxidized enzyme, oxaloacetate and L-malate were relatively strong inhibitors wiht I0.5 values of about 11-16 mM. The results obtained suggest that the inhibition of the native enzyme mainly reflects allosteric inhibition.  相似文献   

2.
The inhibition of aspartate aminotransferase (L-aspartate: 2-oxoglutarate aminotransferase, EC 2.6.1.1) by L-hydrazinosuccinate has been studied. The velocity of the enzyme reaction decreased with time when the reaction was initiated by the addition of enzyme to a mixture of the assay components and L-hydrazinosuccinate, while it increased slowly from a low level when a preincubated mixture of the enzyme and the inhibitor was added to the reaction mixture to initiate the reaction. Nearly 50% decrease in the initial reaction velocity was produced by a prolonged preincubation of the enzyme with the inhibitor, both at low concentrations of about 2 nM. These findings indicate that the inhibition is of the slow- and tight-binding type. The time-course of the reaction of the enzyme and the inhibitor, examined by the change in activity, was not in accord with single-step mechanisms, but rather appeared to follow biphasic kinetics. The inhibition could be fully reversed only in the presence of L-cysteine sulfinate or large excess of L-aspartate to convert the regenerated enzyme to its pyridoxamine form. The time-course of the reversal followed pseudo-first-order kinetics. Quantitative analysis of the experimental data has shown that the results are consistent with a mechanism of enzyme-inhibitor interaction which involves a reaction of two consecutive, reversible steps. The overall inhibition constant for L-hydrazinosuccinate was calculated to be approx. 0.2 nM.  相似文献   

3.
Inhibition studies of crystallized rat liver argininosuccinate synthetase [EC 6.3.4.5] are described. 1. L-Argininosuccinate, L-histidine, and L-tryptophan inhibited the enzyme activity at saturating amounts of the substrates. 2. L-Norvaline, L-argininosuccinate, L-arginine, L-isoleucine, and L-valine competitively inhibited the enzyme activity at a low concentration of L-citrulline, with Ki values of 1.3 x 10(4) M, 2.5 X 10(-4) M, 6.7 X 10(-4) M, 6.3 X 10(-4) M, and 6.0 x 10(-4) M, respectively. 3. L-Argininosuccinate and L-arginine competitively inhibited the enzyme activity at a low concentration of L-aspartate, with Ki values of 9.5 x 10(-4) M and 1.2 x 10(-3) M, respectively. 4. The modes of inhibition by L-histidine were mixed-noncompetitive, uncompetitive, and noncompetitive types with respect to L-citrulline, L-aspartate, and ATP, respectively. 5. When the enzyme was preincubated with L-citrulline, the enzyme activity was slightly increased in the presence of a low concentration of L-histidine in the assay mixture. 6. The conformation of the enzyme was markedly changed by the addition of L-histidine as judged from the CD spectrum. This change was partially reversed by incubation with L-citrulline.  相似文献   

4.
Cell-free extracts of Rhizopus arrhizus contain exclusively cytosolic pyruvate carboxylase and NAD-glutamate dehydrogenase, a single mitochondrial isoenzyme of NADP-isocitrate dehydrogenase, and both mitochondrial and cytosolic isoenzymes of NADP-malate dehydrogenase (decarboxylating). Other enzymes examined have sub-cellular localisations similar to those characteristic of mammalian liver. Purified preparations of R. arrhizus pyruvate carboxylase are subject to partial regulatory inhibition by L-aspartate and 2-oxoadipate. L-Glutamate acts as a less effective analogue of L-aspartate while 2-oxoglutarate is ineffective. Competition studies indicate the presence of separate inhibitory sites for L-aspartate and 2-oxoadipate. Under routine assay conditions R. arrhizus pyruvate carboxylase shows significant activation by acyl derivatives of coenzyme A with long chain acyl CoA being more effective than acetyl-CoA. This activation is no longer observed in the presence of high concentrations of pyruvate, MgATP2- and HCO-3. The concentrations of L-aspartate and 2-oxoadipate required to give 50% inhibition ([I]0.5), and the maximal extents of inhibition, are increased by addition of acetyl-CoA. Acetyl-CoA increases the sigmoidal character of the relationship: initial rate/[L-aspartate], but decreases this parameter for the relationship: initial rate/[2-oxoadipate]. The studies indicate that R. arrhizus possesses an entirely cytosolic pathway for the conversion of glucose to fumaric acid and that both the organisation of pyruvate metabolism and the regulation of pyruvate carboxylase differ significantly in this organism as compared to that proposed previously for Aspergillus nidulans.  相似文献   

5.
Oral administration of D-aspartate to mice for 2 weeks by addition of the amino acid to drinking water produced a nearly 4-fold increase in liver D-aspartate oxidase (EC 1.4.3.1) activity, whereas no increase was induced by L-aspartate administered in the same way. Administration of D-aspartate also produced a small significant increase in the kidney enzyme activity, but L-aspartate administration increased the activity as well. The enzyme activity in the brain and muscle was not affected by administration of either D- or L-aspartate. Intraperitoneal administration of D-aspartate increased the enzyme activity only in the liver, and other compounds tested, including D-glutamate and D-alanine, could not replace D-aspartate. The results indicate a specific relationship between D-aspartate and D-aspartate oxidase and suggest that the amino acid is, in fact, a physiological substrate of the enzyme.  相似文献   

6.
1. Cell-free extracts from culture epimastigotes of Trypanosoma cruzi contained two forms of NADP+-linked 'malic' enzyme (EC 1.1.1.40), I and II, with the same molecular weight but different electrophoretic mobilities and kinetic and regulatory properties. 2. The apparent Km for L-malate was lower for 'malic' enzyme I, with hyperbolic kinetics, whereas the kinetic pattern for 'malic' enzyme II was slightly sigmoidal (h 1.4). The kinetics for NADPH were hyperbolic for 'malic' enzyme I, and very complex for 'malic' enzyme II, suggesting both positive and negative co-operativity. 3. 'Malic' enzyme II was markedly inhibited by adenine nucleotides; AMP was the the most effective, at least in the presence of an excess of MnCl2. 'Malic' enzyme I was much less affected by the nucleotides. Both enzyme forms were inhibited by oxaloacetate, competitively towards L-malate, but the apparent Ki for 'malic' enzyme I (9 microM) was 10-fold lower than the value for 'malic' enzyme II. 'Malic' enzyme II, but not 'malic' enzyme I, was activated by L-aspartate and succinate (apparent Ka of 0.12 and 0.5 mM respectively); the activators caused a decrease in the apparent Km for L-malate and, to a lesser extent, in the apparent Km for NADP+. L-Aspartate, but not succinate, increased the apparent Vmax. 4. The inhibition by AMP suggests regulation by energy charge, with the L-malate-decarboxylation reaction catalysed by 'malic' enzyme II fulfilling a biosynthetic role. The inhibition by oxaloacetate and the activation by succinate are probably involved in the regulation of the 'partial aerobic fermentation' of glucose which yields succinate as final product. The activation by L-aspartate would facilitate the catabolism of this amino acid, when present in excess in the growth medium.  相似文献   

7.
1. The steady-state kinetics of the bisubstrate reaction catalysed by aspartate transcarbamoylase purified from wheat (Triticum vulgare)-germ have been studied at 25 degrees C, pH 8.5 AND I 0.10-0.12. Initial-velocity and product-inhibition results are consistent with an ordered sequential mechanism in which carbamoyl phosphate is the first substrate to bind, followed by L-aspartate, and carbamoyl aspartate is the first product to leave, followed by Pi. The order of substrate addition is supported by dead-end inhibition studies using pyrophosphate and maleate as inhibitory analogues of the substrates. Product inhibition permitted a minimum value for the dissociation constant of L-aspartate from the ternary complex to be estimated. This minimum is of the same order as the dissociation constant (Ki) of succinate. 2. A range of dicarboxy analogues of L-aspartate were tested as possible inhibitors of the enzyme. These studies suggested that L-aspartate is bound with its carboxy groups in the eclipsed configuration, and that the stereochemical constraints around the binding site are very similar to those reported for the catalytic subunit of the enzyme from Escherichia coli [Davies, Vanaman & Stark (1970) J. Biol. Chem. 245, 1175-1179].  相似文献   

8.
L-Hydrazinosuccinate has been reported to be a slow- and tight-binding inhibitor of aspartate aminotransferase (L-aspartate: 2-oxoglutarate aminotransferase, EC 2.6.1.1) and to interact with the enzyme via a reaction of two consecutive steps. The present work examined the effects of D-hydrazinosuccinate on the same enzyme for comparison. D-Hydrazinosuccinate showed a potent inhibition in a slow-binding manner: transamination became slower with time when the reaction was initiated by the addition of enzyme to a mixture of the assay components and D-hydrazinosuccinate, while the reaction was initially very slow and became faster with time when the enzyme was preincubated with the inhibitor before the initiation of reaction. Analysis of the time-course of interaction of the enzyme with D-hydrazinosuccinate suggested a reversible single-step reaction mechanism and gave an inhibition constant of approx. 3 nM, in contrast to the two-step mechanism, and a much lower inhibition constant of 0.2 nM for L-hydrazinosuccinate. Comparison of the rate constants for the reaction steps in the interaction of the enzyme with D- and L-enantiomers confirmed that the difference in the reaction mechanism was mainly responsible for the stronger inhibition by the L-enantiomer. Spectral studies showed that D- and L-hydrazinosuccinate both produced complexes with the enzyme probably in the form of aldimine, and thereafter only the complex with L-hydrazinosuccinate further changed to another species more slowly, consistent with the two-step mechanism. The configuration of the hydrazino group is therefore crucial for the conversion of aldimine complexes to more tightly bound complexes.  相似文献   

9.
The aspartate:alanine antiporter (AspT) of the lactic acid bacterium Tetragenococcus halophilus is a member of the aspartate:alanine exchanger (AAEx) transporter family. T. halophilus AspT catalyzes the electrogenic exchange of L-aspartate(1-) with L-alanine(0). Although physiological functions of AspT were well studied, L-aspartate(1-):L-alanine(0) antiport mechanisms are still unsolved. Here we report that the binding sites of L-aspartate and L-alanine are independently present in AspT by means of the kinetic studies. We purified His(6)-tagged T. halophilus AspT and characterized its kinetic properties when reconstituted in liposomes (K(m) = 0.35 ± 0.03 mm for L-aspartate, K(m) = 0.098 ± 0 mm for D-aspartate, K(m) = 26 ± 2 mm for L-alanine, K(m) = 3.3 ± 0.2 mm for D-alanine). Competitive inhibition by various amino acids of L-aspartate or L-alanine in self-exchange reactions revealed that L-cysteine selectively inhibited L-aspartate self-exchange but only weakly inhibited L-alanine self-exchange. Additionally, L-serine selectively inhibited L-alanine self-exchange but barely inhibited L-aspartate self-exchange. The aspartate analogs L-cysteine sulfinic acid, L-cysteic acid, and D-cysteic acid competitively and strongly inhibited L-aspartate self-exchange compared with L-alanine self-exchange. Taken together, these kinetic data suggest that the putative binding sites of L-aspartate and L-alanine are independently located in the substrate translocation pathway of AspT.  相似文献   

10.
A series of 2-(3-thienyl)-5,6-dihydroxypyrimidine-4-carboxylic acid inhibitors of the hepatitis C virus (HCV) NS5B polymerase enzyme are reported. Sulfonyl urea substituted analogs in this series proved to be the most potent active site non-nucleoside inhibitors of NS5B reported to date. These compounds had low nanomolar enzyme inhibition across HCV genotypes 1–3 and showed single digit micromolar inhibition in the HCV replicon assay. This improved cell-based activity allowed the binding mode of these compounds to be probed by selection of resistant mutations against compound 21. The results generated are in broad agreement with the previously proposed binding model for this compound class.  相似文献   

11.
Trypanosoma cruzi epimastigotes show gamma-glutamyltranspeptidase activity which has characteristics significantly different than the mammalian enzyme. The protozoan enzyme is localized in the cytosolic fraction, it has a Km of 1.6 mM and a Vmax of 17.4 nmol/min/mg protein with L-gamma-glutamyl-p-nitroanilide as gamma-glutamyl donor, and an optimun pH range from 7.5 to 8.0. The best amino acid acceptors were L-histidine, L-asparagine, L-aspartate, L-glutamate and L-proline, but L-glutamine was a very poor acceptor. The enzyme was very sensitive to inhibition by 6-diazo-5-oxo-L-norleucine (k2 = 4.0 X 10(5)/M per min) and O-diazo-acetyl-L-serine (k2 = 1.1 X 10(4)/M per min). Phenobarbital (k2 = 8.38/M per min) and L-serine borate (Ki = 34 mM) were poor inhibitors. The activity of the enzyme was not correlated with the logarithmic phase of growth of the parasites and steadily decreases with the age of the cultures.  相似文献   

12.
An enzyme which catalyzes the transamination of L-aspartate with 2-oxoglutarate has been purified 400-fold to electrophoretic homogeneity from the unicellular green alga Chlamydomonas reinhardtii 6145c. An apparent relative molecular mass of 138,000 was estimated by gel filtration. The enzyme is a dimer consisting of two identical subunits of Mr 65,000 each as deduced from PAGE/SDS studies. A stoichiometry of two molecules pyridoxal 5-phosphate/enzyme molecule was calculated. The enzyme has an isoelectric point of 8.48 and its absorption spectrum exhibits a maximum at 412 nm which is shifted to 330 nm upon addition of L-aspartate. L-Aspartate or pyridoxal 5-phosphate, but not 2-oxoglutarate, protected the enzyme from heat inactivation. The purified enzyme was able to transaminate, although to a low extent, L-phenylalanine and L-tyrosine with 2-oxoglutarate, and L-serine, L-alanine and L-glutamine with oxaloacetate. L-Aspartate aminotransferase exhibited hyperbolic kinetics for 2-oxoglutarate and oxaloacetate, and nonhyperbolic behaviour for L-aspartate and L-glutamate. Apparent Km values were 0.55 mM for 2-oxoglutarate, 0.044 mM for oxaloacetate, 2.53 mM for L-aspartate and 3.88 mM for L-glutamate. Transamination of L-aspartate in C. reinhardtii is a bisubstrate reaction with a bi-bi ping-pong mechanism, and is not inhibited by substrates.  相似文献   

13.
Results of a complete survey of the more than 2-million-member Pharmacopeia compound collection in a 1536-well microvolume screening assay format are reported. A complete technology platform, enabling the performance of ultra-high throughput screening in a miniaturized 1536-well assay format, has been assembled and utilized. The platform consists of tools for performing microvolume assays, including assay plates, liquid handlers, optical imagers, and data management software. A fluorogenic screening assay for inhibition of a protease enzyme target was designed and developed using this platform. The assay was used to perform a survey screen of the Pharmacopeia compound collection for active inhibitors of the target enzyme. The results from the survey demonstrate the successful implementation of the ultra-high throughout platform for routine screening purposes. Performance of the assay in the miniaturized format is equivalent to that of a standard 96-well assay, showing the same dependence on kinetic parameters and ability to measure enzyme inhibition. The survey screen identified an active class of compounds within the Pharmacopeia compound collection. These results were confirmed using a standard 96-well assay.  相似文献   

14.
Pretreatment of lignocellulosic materials may result in the release of inhibitors and deactivators of cellulose enzyme hydrolysis. We report the identification of phenols with major inhibition and/or deactivation effect on enzymes used for conversion of cellulose to ethanol. The inhibition effects were measured by combining the inhibitors (phenols) with enzyme and substrate immediately at the beginning of the assay. The deactivation effects were determined by pre-incubating phenols with cellulases or β-glucosidases for specified periods of time, prior to the respective enzyme assays. Tannic, gallic, hydroxy-cinnamic, and 4-hydroxybenzoic acids, together with vanillin caused 20-80% deactivation of cellulases and/or β-glucosidases after 24h of pre-incubation while enzymes pre-incubated in buffer alone retained all of their activity. The strength of the inhibition or deactivation effect depended on the type of enzyme, the microorganism from which the enzyme was derived, and the type of phenolic compounds present. β-Glucosidase from Aspergillus niger was the most resistant to inhibition and deactivation, requiring about 5 and 10-fold higher concentrations, respectively, for the same levels of inhibition or deactivation as observed for enzymes from Trichoderma reesei. Of the phenol molecules tested, tannic acid was the single, most damaging aromatic compound that caused both deactivation and reversible loss (inhibition) of all of enzyme activities tested.  相似文献   

15.
L-Aspartate-alpha-decarboxylase, an enzyme that catalyzes the production of beta-alanine, has been purified to apparent homogeneity from Escherichia coli. The properties of the enzyme are: (a) pH optimum of 6.8 to 7.5, (b) temperature optimum of 55 degrees C, (c) Km for L-aspartate of 0.16 mM, and (d) molecular weight of 58,000. The activity of the enzyme is inhibited by reagents (hydroxylamine, phenylhydrazine, and sodium borohydride) that react with carbonyl groups, but no pyridoxal phosphate is present. The compound containing the carbonyl group has been identified as covalently bound pyruvate. Approximately 1 mol of pyruvate was found/mol of enzyme. That the enzyme has a biosynthetic function rather than a catabolic role is indicated by the observations that a mutant (designated as E. coli 99-2) which requires either beta-alanine or pantothenic acid for growth contains only trace amounts of enzyme activity, whereas it is present in substantial amounts in the parent strain (E. coli W) and in a spontaneous revertant of the mutant.  相似文献   

16.
Phosphoenolpyruvate (PEP) carboxylase [EC 4.1.1.31] of E. coli was inactivated by 2,4,6-trinitrobenzene sulfonate (TNBS), a reagent known to attack amino groups in polypeptides. When the modified enzyme was hydrolyzed with acid, epsilon-trinitrophenyl lysine (TNP-lysine) was identified as a product. Close similarity of the absorption spectrum of the modified enzyme to that of TNP-alpha-acetyl lysine and other observations indicated that most of the amino acid residues modified were lysyl residues. Spectrophotometric determination suggested that five lysyl residues out of 37 residues per subunit were modified concomitant with the complete inactivation of the enzyme. DL-Phospholactate (P-lactate), a potent competitive inhibitor of the enzyme, protected the enzyme from TNBS inactivation. The concentration of P-lactate required for half-maximal protection was 3 mM in the presence of Mg2+ and acetyl-CoA (CoASAc), which is one of the allosteric activators of the enzyme. About 1.3 lysyl residues per subunit were protected from modification by 10 mM P-lactate, indicating that one or two lysyl residues are essential for the catalytic activity and are located at or near the active site. The Km values of the partially inactivated enzyme for PEP and Mg2+ were essentially unchanged, though Vmax was decreased. The partially inactivated enzyme showed no sensitivity to the allosteric activators, i.e., fructose 1,6-bisphosphate (Fru-1,6-P2) and GTP, or to the allosteric inhibitor, i.e., L-aspartate (or L-malate), but retained sensitivities to other activators, i.e., CoASAc and long-chain fatty acids. P-lactate, in the presence of Mg2+ and CoASAc, protected the enzyme from inactivation, but did not protect it from desensitization to Fru-1,6-P2, GTP, and L-aspartate. However, when the modification was carried out in the presence of L-malate, the enzyme was protected from desensitization to L-aspartate (or L-malate), but was not protected from desensitization to Fru-1,6-P2 and GTP. These results indicate that the lysyl residues involved in the catalytic and regulatory functions are different from each other, and that lysyl residues involved in the regulation by L-aspartate (or L-malate) are also different from those involved in the regulation by Fru-1,6-P2 and GTP.  相似文献   

17.
To explore the molecular mechanisms of oleanolic acid, two novel photoaffinity probes were synthesized based on the structure-activity relationship reported previously. Their potency were evaluated in an enzyme inhibition assay against rabbit muscle glycogen phosphorylase a (RMGPa), a known target protein of oleanolic acid. The inhibitory activity of probe 2 was only about two-fold less potent than the mother compound oleanolic acid. The photoaffinity labeling experiments were also performed and two proteins were specifically tagged by probe 2. The results suggest that the synthesized probes could be used as powerful tools to isolate and identify the target proteins of oleanolic acid.  相似文献   

18.
Nicotinamide adenine dinucleotide (NAD) plays a crucial role as a cofactor in numerous essential redox biological reactions. NAD derives from quinolinic acid which is synthesized in Escherichia coli from L-aspartate and dihydroxyacetone phosphate (DHAP) as the result of the concerted action of two enzymes, L-aspartate oxidase (NadB) and quinolinate synthetase (NadA). We report here the characterization of NadA protein from E. coli. When anaerobically purified, the isolated soluble protein contains 3-3.5 iron and 3-3.5 sulfide/polypeptide chain. M?ssbauer spectra of the 57Fe-protein revealed that the majority of the iron is in the form of a (4Fe-4S)2+ cluster. An enzymatic assay for quinolinate synthetase activity was set up and allowed to demonstrate that the cluster is absolutely required for NadA activity. Exposure to air leads to degradation of the cluster and inactivate enzyme.  相似文献   

19.
By use of a new computer-assisted u.v.-spectrophotometric assay method, the kinetic parameters of the reaction catalysed by Bacillus licheniformis 749/C beta-lactamase were re-examined and the mode of inhibition of the enzyme by compound PS-5, a novel beta-lactam antibiotic, was studied with benzylpenicillin as substrate. (1) The fundamental assay conditions for the determination of Km and V were examined in detail with benzylpenicillin as substrate. In 0.1 M-sodium/potassium phosphate buffer, pH 6.8, at 30 degrees C, initial substrate concentrations of benzylpenicillin above 0.7 mM were very likely to lead to substrate inhibition. The Km value of the enzyme for benzylpenicillin at initial concentrations from 1.96 to 0.07 mM was calculated to be 97-108 microM. (2) The Km values of the enzyme for 6-aminopenicillanic acid, ampicillin and cephaloridine were found to be 25, 154-161 and 144-161 microM respectively. (3) Compound PS-5 was virtually unattacked by Bacillus licheniformis 749/C beta-lactamase. (4) The activity of the enzyme was diminished by compound PS-5, to extents depending on the duration of incubation and the concentration of the inhibitor. The rate of inactivation of the enzyme by compound PS-5 followed first-order kinetics. (5) In an Appendix, a new computer-assisted u.v.-spectrophotometric enzyme assay method, in which a single reaction progress curve of time-absorbance was analysed by the integrated Michaelis-Menten equation, was devised for the accurate and precise determination of the kinetic constants of beta-lactamase. For conversion of absorbance readings into molar substrate concentrations, the initial or final absorbance reading that was independent of the reaction time was used as the basis of calculation. In calculation of Km and V three systematic methods of data combination were employed for finer analysis of the reaction progress curve. A list of the computer program named YF6TAIM is obtainable from the author on request or as Supplementary Publication SUP 50100 (12 pages) from the British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., on the terms indicated in Biochem. J. (1978) 169, 5.  相似文献   

20.
Bisphenol-A (BPA), a synthetic xenoestrogen, is currently being used to produce a wide variety of consumer products. Humans as well as animals are exposed to this ubiquitous compound through ingestion, inhalation, and dermal exposure. The effect of this compound on superoxide dismutase (SOD), an antioxidant enzyme, isolated from human blood was studied using an enzyme inhibition assay. The mode of interaction of BPA on SOD was investigated using modeling and docking studies. Purified human SOD from erythrocytes was used to study the enzyme inhibition assay of BPA. Molecular level interactions of BPA on SOD were also analyzed by modeling and docking studies. Our study demonstrates that BPA has an inhibitory effect on SOD. The docking results showed that it could bind to the active site residues of SOD and could interfere with the catalytic activity of the enzyme. Our study reveals for the first time that BPA can directly inhibit the enzymatic activity of human SOD and thus impairs the free radical scavenging mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号