首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extracts prepared from heads of Drosophila melanogaster show high-affinity binding (KD = 1.9 nM) of [3H]saxitoxin, a compound known to bind to and block voltage-sensitive sodium channels in other organisms. The interaction between saxitoxin and the Drosophila saxitoxin receptor is non-cooperative and reversible with a half-life of 18.3 s for binding at 4°C. The saturable binding is specifically inhibited by tetrodotoxin with a KI = 0.30 nM. The number of saturable binding sites in the extract is 97 fmol/mg protein. Since approx. 50% of the binding activity is recovered in the extract, the number of binding sites in the head is estimated to be 6.4 fmol/mg head. Nerve conduction in Drosophila larvae is completely blocked after 20 min in a bathing solution containing 200 nM tetrodotoxin. A comparison between the binding and the electrophysiological studies in Drosophila and other organisms suggests that the Drosophila saxitoxin receptor is part of the voltage-sensitive sodium channel involved in the propagation of action potentials. A mutant (ttxs), which is abnormally sensitive to dietary tetrodotoxin, is shown to be indistinguishable from wild type with respect to [3H]saxitoxin-binding properties and physiological sensitivity to tetrodotoxin. These studies provide techniques which can be used to identify mutants with defects in the saxitoxin-binding component of the sodium channel.  相似文献   

2.
The proteins and glycoproteins of human blood platelets and platelet membranes in both the reduced and the unreduced states have been analysed by isoelectric focusing and sodium dodecyl sulphate-discontinuous polyacrylamide gel electrophoresis in a two-dimensional technique. Gels which had been stained with periodic acid-Schiff's reagent could be counter-stained with Coomassie Brilliant Blue, simplifying the recognition of components which stain with both reagents. The major glycoproteins and some of the proteins have been identified and the characteristics of the membrane and of the whole platelet components established in this system.  相似文献   

3.
4.
Mouse brain proteins were separated by two-dimensional electrophoresis (2-DE). The proteins of a section of the 2-DE pattern were blotted onto hydrophobic membranes and 43 of them were excised and hydrolyzed by liquid-phase hydrolysis. The amino acid composition of these proteins was determined by orthophthaldialdehyde precolumn derivatization and compared with the compositions of known proteins stored in the NBRF sequence database. An identification program named ASA was developed for this purpose. The ASA program includes correction and weighting factors, data reduction by molecular weight windows, and exclusion or inclusion of certain organisms as desired. As a control, eight test proteins and five well-known proteins from mouse brain, all separated by 2-DE, were correctly identified by the program. Out of the 43 brain proteins selected, 19 were identified with high confidence.  相似文献   

5.
Ecdysteroid titres in whole flies and different tissues of adult male and female Drosophila were determined at various times after eclosion using a radioimmunoassay. The ecdysteroid titre decreased as the flies matured after eclosion. The differences in titre between males and females can be accounted for by their difference in body weight. The ecdysteroids were found to be distributed throughout several tissues. At eclosion not all of the ecdysteroid complement present could be accounted for by that found localised in tissues. After maturation of the flies the ecdysteroids in various tissues can account for the majority of that detected in whole-fly extracts. Ecdysteroids were produced during in vitro culture of various tissues, but the quantities detected were low by comparison with ring glands of wandering 3rd-instar larvae. Neither the ovaries nor the abdominal body walls (fat body) seem to be a major source of hormone, and they are only able to convert minute quantities of ecdysone to the biologically active form, 20-hydroxyecdysone, in vitro. The amounts of 20-hydroxyecdysone present were measured using high performance liquid chromatography and radioimmunoassay. We tentatively suggest that the differential experession of the yolk-protein-genes in the fat bodies of males and females does not result from differences in hormone titres between them.  相似文献   

6.
In the first (lamina) and second (medulla) optic neuropils of Drosophila melanogaster, sodium pump subunit expression changes during the day and night, controlled by a circadian clock. We examined α-subunit expression from the intensity of immunolabeling. For the β-subunit, encoded by Nervana 2 (Nrv2), we used Nrv2-GAL4 to drive expression of GFP, and measured the resultant fluorescence in whole heads and specific optic lobe cells. All optic neuropils express the α-subunit, highest at the beginning of night in both lamina and medulla in day/night condition and the oscillation was maintained in constant darkness. This rhythm was lacking in the clock arrhythmic per0 mutant. GFP driven by Nrv2 was mostly detected in glial cells, mainly in the medulla. There, GFP expression occurs in medulla neuropil glia (MNGl), which express the clock gene per, and which closely contact the terminals of clock neurons immunoreactive to pigment dispersing factor. GFP fluorescence exhibited circadian oscillation in whole heads from Nrv2-GAL4 + UAS-S65T-GFP flies, although significant GFP oscillations were lacking in MNGl, as they were for both subunit mRNAs in whole-head homogenates. In the dissected brain tissues, however, the mRNA of the α-subunit showed a robust daily rhythm in concentration changes while changes in the β-subunit mRNA were weaker and not statistically significant. Thus in the brain, the genes for the sodium pump subunits, at least the one encoding the α-subunit, seem to be clock-controlled and the abundance of their corresponding proteins mirrors daily changes in mRNA, showing cyclical accumulation in cells.  相似文献   

7.
The influence of thiol blocking on the resolution of basic proteins by two-dimensional electrophoresis was investigated. Cysteine blocking greatly increased resolution and decreased streaking, especially in the basic region of the gels. Two strategies for cysteine blocking were found to be efficient: classical alkylation with maleimide derivatives and mixed disulfide exchange with an excess of a low molecular weight disulfide. The effect on resolution was significant enough to allow correct resolution of basic proteins with in-gel rehydration on wide gradients (e.g. 3-10 and 4-12), but anodic cup-loading was still required for basic gradients (e.g. 6-12 or 8-12). These results demonstrate that thiol-related problems are not solely responsible for streaking of basic proteins on two-dimensional gels.  相似文献   

8.
A problem in proteomic analysis of lung cancer tissue is the presence of complex components of different histological backgrounds (squamous cell carcinoma, small cell lung carcinoma, and adenocarcinoma). The efficient solubilization of protein components before two-dimensional electrophoresis (2-DE) is a very critical. Poor solubilization has been associated with a failure to detect proteins and diffuse, streaked and/or trailing protein spots. Here, we have optimized the solubilization of human lung cancer tissue to increase protein resolution. Isoelectric focusing (IEF) rehydration buffer containing a thiourea–urea mixture provided superior resolution, whereas a buffer without thiourea yielded consistently poor results. In addition, IEF rehydration buffers containing CHAPS and DTT gave superior resolution, whereas buffers containing Nonidet P-40 (NP-40) and/or Triton X-100 did not. A tributylphosphine-containing buffer gave consistently poor results. Using optimized conditions, we used 2-D gel analysis of human lung cancer tissue to identify 11 differentially-expressed protein spots by MALDI-mass spectrometry. This study provides a methodological tool to study the complex mammalian proteomes.  相似文献   

9.

Background

In chordates, retinoid metabolism is an important target of short-chain dehydrogenases/reductases (SDRs). It is not known whether SDRs play a role in retinoid metabolism of protostomes, such as Drosophila melanogaster.

Methods

Drosophila genome was searched for genes encoding proteins with ∼ 50% identity to human retinol dehydrogenase 12 (RDH12). The corresponding proteins were expressed in Sf9 cells and biochemically characterized. Their phylogenetic relationships were analyzed using PHYLIP software.

Results

A total of six Drosophila SDR genes were identified. Five of these genes are clustered on chromosome 2 and one is located on chromosome X. The deduced proteins are 300 to 406 amino acids long and are associated with microsomal membranes. They recognize all-trans-retinaldehyde and all-trans-3-hydroxyretinaldehyde as substrates and prefer NADPH as a cofactor. Phylogenetically, Drosophila SDRs belong to the same branch of the SDR superfamily as human RDH12, indicating a common ancestry early in bilaterian evolution, before a protostome–deuterostome split.

Conclusions

Similarities in the substrate and cofactor specificities of Drosophila versus human SDRs suggest conservation of their function in retinoid metabolism throughout protostome and deuterostome phyla.

General significance

The discovery of Drosophila retinaldehyde reductases sheds new light on the conversion of β-carotene and zeaxantine to visual pigment and provides a better understanding of the evolutionary roots of retinoid-active SDRs.  相似文献   

10.
11.
A photosensitive, radioactive analogue of cyclic adenosine monophosphate, 8-azido-adenosine 3′,5′-[32P]monophosphate (8-N3-cyclic AMP), was used to label the cyclic AMP binding proteins of Dictyostelium discoideum. During development cytosolic proteins appear which are specifically labeled by the photoaffinity agent. The proteins are developmentally regulated since they are only found in starved, developing cells. Unlabeled cyclic AMP competes specifically with the labeled analogue for protein binding sites in contrast to unlabeled 5′-AMP which does not compete. A mutant which develops spores but is deficient in stalk cell production produces a different set of cyclic AMP binding proteins from the parent strain.  相似文献   

12.
13.
利用双向电泳技术分离大豆矮秆突变体相关蛋白   总被引:1,自引:1,他引:1  
矮秆是大豆育种的重要目标性状之一。本实验以大豆野生型东农42和矮秆突变体东泽11为材料,利用近年来发展起来的双向电泳技术,在蛋白质水平对两个材料的差异蛋白质进行筛选,目的是鉴定与矮秆突变体相关的蛋白,为基因克隆提供依据。通过对酚(Phenol)法与TCA/丙酮沉淀法二种提取方法、100μg和200μg两种加样量、考马斯亮蓝染色和银染两种染色方法的比较,发现用丙酮沉淀法提取叶片可溶性总蛋白、加样量为200μg进行电泳,用考马斯亮蓝染色的效果较好,从而建立了大豆叶片总蛋白双向电泳技术优化体系。用该体系对野生型与突变体叶片全蛋白的差异分析,鉴定出9个蛋白差异点,其中6个上调表达,3个下调表达。  相似文献   

14.
GSTD1 is one of several insect glutathione S-transferases capable of metabolizing the insecticide DDT. Here we use crystallography and NMR to elucidate the binding of DDT and glutathione to GSTD1. The crystal structure of Drosophila melanogaster GSTD1 has been determined to 1.1 Å resolution, which reveals that the enzyme adopts the canonical GST fold but with a partially occluded active site caused by the packing of a C-terminal helix against one wall of the binding site for substrates. This helix would need to unwind or be displaced to enable catalysis. When the C-terminal helix is removed from the model of the crystal structure, DDT can be computationally docked into the active site in an orientation favoring catalysis. Two-dimensional 1H,15N heteronuclear single-quantum coherence NMR experiments of GSTD1 indicate that conformational changes occur upon glutathione and DDT binding and the residues that broaden upon DDT binding support the predicted binding site. We also show that the ancestral GSTD1 is likely to have possessed DDT dehydrochlorinase activity because both GSTD1 from D. melanogaster and its sibling species, Drosophila simulans, have this activity.  相似文献   

15.
An apparatus suitable for the recovery of proteins from polyacrylamide gels on a milligram scale by displacement electrophoresis (isotachophoresis) is described along with a buffer system that is suitable for this purpose with most proteins. The technique is illustrated by the recovery of a protein from a 15% polyacrylamide gel. The recovery was almost quantitative and the eluted protein showed little contamination upon quantitative amino acid analysis and automatic Edman degradation.  相似文献   

16.
Hormones are critical for the development, maturation, and maintenance of physiological systems; therefore, understanding their involvement during maturation of the brain is important for the elucidation of mechanisms by which adults become behaviorally competent. Changes in exogenous and endogenous factors encountered during sexual maturation can have long lasting effects in mature adults. In this study, we investigated the role of the gonadotropic hormone, juvenile hormone (JH), in the modulation of adult behaviors in Drosophila. Here we utilized methoprene (a synthetic JH analog) and precocene (a JH synthesis inhibitor) to manipulate levels of JH in sexually immature male and female Drosophila with or without decreased synthesis of neuronal dopamine (DA). Locomotion and courtship behavior were assayed once the animals had grown to sexual maturity. The results demonstrate a sexually dimorphic role for JH in the modulation of these centrally controlled behaviors in mature animals that is dependent on the age of the animals assayed, and present DA as a candidate neuronal factor that differentially interacts with JH depending on the sex of the animal. The data also suggest that JH modulates these behaviors through an indirect mechanism. Since gonadotropic hormones and DA interact in mammals to affect brain development and later function, our results suggest that this mechanism for the development of adult behavioral competence may be evolutionarily conserved.  相似文献   

17.
It may be easier to renature SDS-denatured hydrophobic proteins than to renature SDS-denatured water-soluble proteins. This paper presents some support for this hypothesis in the form of literature reports and an experiment of our own with an intrinsic membrane protein (a phosphatase from Acholeplasma laidlawii), that could be completely renatured, to judge from the restored activity, which was equal to (or higher than) that of the untreated enzyme. If this hypothesis is correct it might be possible to devise general methods to reverse the SDS denaturation of hydrophobic membrane proteins. This would be a breakthrough in the purification of at least some membrane proteins, because the high-resolving polyacrylamide gel electrophoresis in SDS could then be used to prepare membrane proteins in a native state. The method used for the renaturation of the SDS-denatured, entirely inactive, phosphatase comprised removal of SDS with the aid of conventional dialysis against a buffer containing the neutral, very efficient and non ultraviolet light-absorbing detergent G3707. For renaturation of the enzyme following an SDS-electrophoresis in polyacrylamide the gel was immersed in the same buffer for several hours; by staining for phosphatase the enzyme could easily be localized in the gel in the form of a yellow band, coinciding with a protein zone.  相似文献   

18.
Summary Proteins extracted from seed embryos of 29 different cultivated rice (Oryza sativa L.) and one wild rice (O. rufipogon Griff.) were compared by two-dimensional gel electrophoresis analysis. Among more than 300 protein spots on the gel we found some interesting variations in ten spots which were individually designated as proteins A-J. Protein E was observed in all indica cultivars but was not found in those of the subspecies japonica. In contrast, protein F was only detected in japonica cultivars. Protein A existed in all japonica cultivars but, with the exception of IR-36, could not be found in other indica cultivars. Therefore, proteins A, E and F can be used as markers for the identification of indica and japonica. Some so-called Javanica cultivars showed the characteristics of japonica subspecies with regard to proteins A and F, while one other cultivar of Javanica expressed a type intermediate between indica and japonica interms of proteins A and E. One feature discriminating between Javanica and japonica cultivars was found in the D, G, and J proteins which were expressed strongly in Javanica cultivars but were scarcely expressed in those of japonica. Expression of subspecies-specific proteins E and F in f1 hybrids was also investigated.  相似文献   

19.
20.
Angiotensin I-converting enzyme (ACE), one of the central components of the renin-angiotensin system, is a key therapeutic target for the treatment of hypertension and cardiovascular disorders. Human somatic ACE (sACE) has two homologous domains (N and C). The N- and C-domain catalytic sites have different activities toward various substrates. Moreover, some of the undesirable side effects of the currently available and widely used ACE inhibitors may arise from their targeting both domains leading to defects in other pathways. In addition, structural studies have shown that although both these domains have much in common at the inhibitor binding site, there are significant differences and these are greater at the peptide binding sites than regions distal to the active site. As a model system, we have used an ACE homologue from Drosophila melanogaster (AnCE, a single domain protein with ACE activity) to study ACE inhibitor binding. In an extensive study, we present high-resolution structures for native AnCE and in complex with six known antihypertensive drugs, a novel C-domain sACE specific inhibitor, lisW-S, and two sACE domain-specific phosphinic peptidyl inhibitors, RXPA380 and RXP407 (i.e., nine structures). These structures show detailed binding features of the inhibitors and highlight subtle changes in the orientation of side chains at different binding pockets in the active site in comparison with the active site of N- and C-domains of sACE. This study provides information about the structure-activity relationships that could be utilized for designing new inhibitors with improved domain selectivity for sACE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号