首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyethylene glycol (PEG)-aqueous biphasic systems (ABS) and PEG-grafted aqueous biphasic extraction chromatographic (ABEC) resins have been shown to remove inorganic species from environmental and nuclear wastes. The partitioning behavior of several iodide species (iodide, iodine, triiodide, iodate, and 4-iodo-2,6-dimethylphenol (I-DMP)) have been studied for PEG (MW 2000)-salt systems and ABEC resins. Iodide partitioning to PEG-rich phases or onto ABEC resins can be enhanced by derivatization with 2,6-dimethylphenol to form 4-iodo-2,6-dimethylphenol or by addition of I(2) to form triiodide. Conversely, iodide partitioning to the PEG-rich phase or onto ABEC resins is reduced by oxidation of iodide to IO(3)(-). Partitioning studies of iodide, iodate, and iodine in a PEG-ABS are compared to results using ABEC resins.  相似文献   

2.
In this paper, we consider computing systems that have autonomous helper components which fulfill support functions and that possess reconfigurable hardware so that they can specialize to different types of service tasks. Several self-organized task partitioning methods are proposed that can be used by the helper components to decide how to reconfigure and which service tasks to execute. The proposed task partitioning methods are inspired by the so-called ant queue system that can be found in real ants for partitioning tasks between the individuals. The aim of this study is to investigate basic properties of the task partitioning methods, like stability and efficiency, in order to obtain basic insights into the design of task partitioning methods in self-organized service systems. More precisely, the investigations are threefold: (1) discrete event simulations are used to investigate systems, (2) for a simple version of the task partitioning system analytical stability results are obtained by means of delay differential equation systems and (3) by numerically solving initial value problems.  相似文献   

3.
Affinity partitioning combines the partitioning behavior of biological macromolecules in aqueous two-phase systems with the principle of biorecognition. Among the numerous substances that have been evaluated as ligands, the reactive dyes constitute a group of low cost textile dyes which have proved to act as biomimetic ligands for many enzymes. The ability of reactive yellow 2 (RY2) to interact with trypsin (TRP) and chymotrypsin (ChTRP) and its behavior in aqueous two-phase systems formed by polyethylene glycol (PEG) and sodium citrate (NaCit) - were investigated. Different variables such as PEG molecular weight, tie line length and dye concentration were analyzed. RY2 showed to bind specifically to both TRP and ChTRP with affinity constants near to 10(3)M(-1). Its partition equilibrium is practically displaced to the top phase in systems formed by PEG of different molecular weight. Addition of this dye to PEG 8000/NaCit systems until a final concentration of 0.196% (w/w) induced an increase in TRP and ChTRP partition coefficients of at least 2 times over that in the absence of the ligand. These findings demonstrate that RY2 fulfils all the requirements to be considered as an affinity ligand in aqueous two-phase partitioning of TRP and ChTRP.  相似文献   

4.
The separation of host and recombinant Escherichia coli bacterial cells has been studied using the surface-sensitive technique of partitioning in aqueous two-phase polymer systems. Experiments were designed to probe charge-and hydrophobicity-related property differences of antibiotic-resistant recombinant cells and their antibiotic-sensitive hosts. Differential partitioning was observed in both charge-sensitive and non-charge-sensitive phase systems for three host-recombinant cell systems, but the non-charge-related effects appear to have a greater impact on partitioning behavior. This result suggests that plasmid-encoded products related to antibiotic resistance modify the surface hydrophobicity of the E. coli bacterial cell and that these differences can be exploited for cell separation.  相似文献   

5.
The partitioning of proteins between the coexisting phases of two-phase aqueous polymer systems reflects an intricate and delicate balance of interactions between proteins, polymers, salts and water. Experimental investigations have suggested that a large number of factors influence protein partitioning, including the types of polymers, their molecular weight and concentration; the protein sizes, conformation and composition; salt type and concentration, and solution pH; and the presence of ligands attached to the polymer which may interact with surface sites of the protein. Complementary modelling attempts have been successful in illuminating several molecular-level mechanisms influencing protein partitioning using lattice-model techniques, viral expansions and a scaling-thermodynamic approach. In spite of these experimental and modelling approaches, many of the physical phenomena associated with these complex systems are not well understood. Notably, the precise nature of the protein-polymer interactions and the potent effect of inorganic salts on the partitioning of proteins in these systems remains poorly understood.  相似文献   

6.
Solvent extraction, utilizing an oil-water mixture (e.g, chloroform-water) and a suitable complexant, is a proven technology for the selective removal and recovery of metal ions from aqueous solutions. Aqueous biphasic systems (ABS), formed by mixing certain inorganic salts and water-soluble polymers, or by mixing two dissimilar water-soluble polymers, have been studied for more than 40 years for the gentle, non-denaturing separation of fragile biomolecules, yet ABS have been virtually ignored as a possible extraction technology for metal ions. In this report we review our metal ion partitioning work and discuss the three major types of partitioning: (1) those rare instances that the metal ion species present in a given solution partitions to the PEG-rich phase without an extractant; (2) the use of halide salts which produce a metal anion complex that partitions to the PEG-rich phase; and (3) the use of a water-soluble extractant which distributes to the PEG-rich phase. In addition, we correlate the partitioning behavior we observed with available thermodynamic data for metal ions and their complexes.  相似文献   

7.
During recombinant E. coli fermentation with high-expression levels inclusion bodies are often formed. Aqueous two-phase systems have been successfully used in the presence of urea for the initial recovery step of inclusion bodies from E. coli. Basic studies of the complex interactions are lacking. For a systematic study of protein partitioning in the presence of urea we selected T4-lysozyme mutants with different thermal stability as a model. The stabilization of these variants by phase components was investigated measuring the fluorescence emission of tryptophan residues in the protein. Protein structure was stabilized at pH 7 in the order of S0(4)(2-) > PEG = Dextran > H(2)O. The conformation of proteins was shown to have a strong influence on the partitioning in aqueous two-phase systems. Tryptophan and its homologuous di- and tripeptdides were partitioned in similar phase systems to normalize for contribution from hydrophobic interactions.  相似文献   

8.
In this article, a qualitative study of the recovery of small bioparticles by interfacial partitioning in liquid-liquid biphasic systems is presented. A range of crystallised biomolecules with varying polarities have been chosen such as glycine, phenylglycine and ampicillin. Liquid-liquid biphasic systems in a range of polarity differences were selected such as an aqueous two-phase system (ATPS), water-butanol and water-hexanol. The results indicate that interfacial partitioning of crystals occurs even when their density exceeds that of the individual liquid phases. Yet, not all crystals partition to the same extent to the interface to form a stable and thick interphase layer. This indicates some degree of selectivity. From the analysis of these results in relation to the physicochemical properties of the crystals and the liquid phases, a hypothetical mechanism for the interfacial partitioning is deduced. Overall these results support the potential of interfacial partitioning as a large scale separation technology.  相似文献   

9.
Affinity partitioning of lactate dehydrogenase (LDH) was studied in polyethylene glycol (PEG) /salt and PEG / hydroxypropyl starch (PES) aqueous two-phase systems, using free triazine dyes as their affinity ligands. The free dyes showed one-sided partition to the top PEG-rich phase and thus enhanced the affinity partitioning effect in the systems. A two-step affinity extraction process has been discussed for large scale purification of LDH from rabbit muscle.Hu Lin is one of the cooperator of the experiment.  相似文献   

10.
The milk proteins alpha-lactalbumin and beta-lactoglobulin have been isolated from bovine whey by fractional precipitation with polyethylene glycol (PEG) and hydrophobic partitioning in aqueous PEG-hydroxypropylstarch two-phase systems using PEG-bound palmitate as hydrophobic ligand. The possible use of this combination for large scale purification of these whey proteins is discussed.  相似文献   

11.
The interfacial partitioning behavior of ampicillin and phenylglycine crystals in different two-phase systems has been investigated. The two-phase systems employed are water/dodecane, water/1-butanol, and water/pentane/methanol. By means of partition experiments and microscopic imaging, it has been shown that the mechanism of separation strongly depends on the choice of the two-phase system. While water/dodecane features a mechanism of sheer competitive adsorption at the interface, separation in water/1-butanol is mainly due to partitioning into both liquid phases, leading to a higher degree of separation. Experiments with water/pentane/methanol have illustrated the large potential of three-component systems, as slight variations in the composition can have large effects on the separation.  相似文献   

12.
Aqueous two-phase systems   总被引:6,自引:0,他引:6  
Biphasic systems formed by mixing of two polymers or a polymer and a salt in water can be used for separation of cells, membranes, viruses, proteins, nucleic acids, and other biomolecules. The partitioning between the two phases is dependent on the surface properties and conformation of the materials, and also on the composition of the two-phase system. The mechanism of partitioning is, however, complex and not easily predicted. Aqueous two-phase systems (ATPS) have proven to be a useful tool for analysis of biomolecular and cellular surfaces and their interactions, fractionation of cell populations, product recovery in biotechnology, and so forth. Potential for environmental remediation has also been suggested. Because ATPS are easily scalable and are also able to hold high biomass load in comparison with other separation techniques, the application that has attracted most interest so far has been the large-scale recovery of proteins from crude feedstocks. As chemicals constitute the major cost factor for large-scale systems, use of easily recyclable phase components and the phase systems generated by a single-phase chemical in water are being studied.  相似文献   

13.
Detergent/polymer aqueous two-phase systems are studied as a fast, mild and efficient general separation method for isolation of labile integral membrane proteins. Mechanisms for phase behaviour and protein partitioning of both membrane-bound and hydrophilic proteins have been examined in a large number of detergent/polymer aqueous two-phase systems. Non-ionic detergents such as the Triton series (polyoxyethylene alkyl phenols), alkyl polyoxyethylene ethers (C(m)EO(n)), Tween series (polyoxyethylene sorbitol esters) and alkylglucosides form aqueous two-phase systems in mixtures with hydrophilic polymers, such as PEG or dextran, at low and moderate temperatures. Phase diagrams for these mixtures are shown and phase behaviour is discussed from a thermodynamic model. Membrane proteins, such as bacteriorhodopsin and cholesterol oxidase, were partitioned strongly to the micelle phase, while hydrophilic proteins, BSA and lysozyme, were partitioned to the polymer phase. The partitioning of membrane protein is mainly determined by non-specific hydrophobic interactions between detergent and membrane protein. An increased partitioning of membrane proteins to the micelle phase was found with an increased detergent concentration difference between the phases, lower polymer molecular weight and increased micelle size. Partitioning of hydrophilic proteins is mainly related to excluded volume effects, i.e. increased phase component size made the hydrophilic proteins partition more to the opposite phase. Addition of ionic detergent to the system changed the partitioning of membrane proteins slightly, but had a strong effect on hydrophilic proteins, and can be used for enhanced separation between hydrophilic proteins and membrane protein.  相似文献   

14.
Fluorescence microscopy imaging is an important technique for studying lipid membranes and is increasingly being used for examining lipid bilayer membranes, especially those showing macroscopic coexisting domains. Lipid phase coexistence is a phenomenon of potential biological significance. The identification of lipid membrane heterogeneity by fluorescence microscopy relies on membrane markers with well-defined partitioning behavior. While the partitioning of fluorophores between gel and liquid-disordered phases has been extensively characterized, the same is not true for coexisting liquid phases. We have used fluorescence microscopy imaging to examine a large variety of lipid membrane markers for their liquid phase partitioning in membranes with various lipid compositions. Most fluorescent lipid analogs are found to partition strongly into the liquid-disordered (Ld) phase. In contrast, some fluorescent polycyclic aromatic hydrocarbons with a flat ring system were found to partition equally, but others partition preferentially into liquid-ordered (Lo) phases. We have found these fluorescent markers effective for identification of coexisting macroscopic membrane phases in ternary lipid systems composed of phospholipids and cholesterol.  相似文献   

15.
Sheep erythrocytes (E) which, with or without certain treatments, are currently used as "immunological reagents" to detect cells with specific receptors (by rosette-formation) have been partitioned in two-polymer aqueous-phase systems selected so as to reflect charge-associated or lipid-related membrane surface properties. We have found that the partitioning behavior of E is not affected in these phases by reacting the cells with anti-E antibody (either IgG or IgM), forming EA. The additional binding of complement to the cell-antibody complex, forming EAC, results, however, in a marked decrease in the partition coefficient, K. Apparently both the charge-associated and hydrophobic properties reflected by partitioning remain accessible to the phase polymers when the cells are coated with antibody, but are not with the addition of complement. It is interesting that EA can still rosette with T-lymphocytes (14), a property of E, while the additional coating with complement results in EAC which does not appreciably do so (26). Neuraminidase or trypsin treatments of E, which yield Es having quite different rosetting properties with T-lymphocytes (14), cause increased Ks and unchanged Ks, respectively, in phases reflecting lipid-related surface properties. Either treatment causes reduced Ks of E in charged-phase systems. Neuraminidase treatment also results in a reduced electrophoretic mobility of E, while trypsin treatment is not detectable by cell electrophoresis (25). We are currently studying the possible usefulness of employing cell electrophoresis and cell partitioning in charged-phase systems jointly to obtain information on events occurring at the shear plane versus those occurring deeper in the membrane.  相似文献   

16.
A series of charge-modified thaumatins with different values of surface charge were partitioned in aqueous two-phase systems (ATPS) to study the effect of surface charge as a single property on partitioning. Electrophoretic mobility of the proteins in titration curves was used as a measure of surface charge. Four modified proteins derived from thaumatin with the following values of isoelectric point: 8.70, 8.15, 5.60, and 4.50 were used for partitioning. The resolution of the systems in terms of protein surface charge was calculated. Partitioning of modified thaumatins in PEG 4000/dextran systems with phosphate buffer, Tris buffer, NaCl, KCl, and sulfate salts was carried out. Among the sulfate salts tested, the addition of 50 mM Li(2)SO(4) to the system buffered with phosphate gave the highest value of resolution for differences in surface protein charge (RSPC). It shows a decrease in the value of K (partition coefficient) with an increase in the protein's charge. The addition of 100 mM KCl to the system promoted the opposite effect on the RSPC value. Charge-modified proteins were partitioned in PEG/salt systems to investigate the ability of these systems for resolving differences in surface charge. The PEG/citrate system seemed to have almost no ability for resolving proteins on the basis of surface charge differences; PEG/phosphate systems had some capability for resolving differently charged proteins. The more negative proteins tended to have higher values of K than the more positively charged fractions. The use of charge-modified proteins allowed the investigation of the effect of protein surface charge on partitioning in aqueous two-phase systems independently from other protein parameters as they were prepared from a common parent protein thaumatin. This technique provides an interesting novel tool to investigate the effect of protein surface charge on partitioning in ATPS taking protein charge as an independent parameter. (c) 1996 John Wiley & Sons, Inc.  相似文献   

17.
Although the extractive biotransformation in two-phase partitioning systems have been studied extensively, such as the water–organic solvent two-phase system, the aqueous two-phase system, the reverse micelle system, and the room temperature ionic liquid, etc., this has not yet resulted in a widespread industrial application. Based on the discussion of the main obstacles, an exploitation of a cloud point system, which has already been applied in a separation field known as a cloud point extraction, as a novel two-phase partitioning system for biotransformation, is reviewed by analysis of some topical examples. At the end of the review, the process control and downstream processing in the application of the novel two-phase partitioning system for biotransformation are also briefly discussed.  相似文献   

18.
Aqueous polymer two-phase systems formed by new thermoseparating polymers   总被引:4,自引:0,他引:4  
A set of new polymers that can be used as phase forming components in aqueous two-phase systems is presented. All polymers studied have thermoseparating properties i.e. form one separate polymer enriched phase and one aqueous solution when heated above the critical temperature. This property makes the polymers attractive alternatives to the polymers used in traditional aqueous two-phase systems such as poly(ethylene glycol) (PEG) and dextran. The thermal phase separation simplifies recycling of the polymers, thus making the aqueous two-phase systems more cost efficient and suitable for use in large scale. Thermoseparating polymers studied have been copolymers of ethylene oxide and propylene oxide (EO-PO), poly (N-isopropylacrylamide) (poly-NIPAM), poly vinyl caprolactam (poly-VCL) and copolymers of N-isopropylacrylamide and vinyl caprolactam with vinyl imidazole (poly(NIPAM-VI) and poly(VCL-VI), respectively). In addition, the copolymer poly(NIPAM-VI) has the property to be uncharged at pH above 7.0 and positively charged at lower pH. This allows the partitioning of protein to be directed by changing the pH in the system instead of the traditional addition of salt to direct the partitioning. Hydrophobically modified EO-PO copolymer (HM-(EO-PO)) with alkyl groups (C14) at both ends forms two-phase system with for example poly(NIPAM-VI). The phase diagram for poly(NIPAM-VI)/HM-(EO-PO) was determined and the model proteins lysozyme and BSA were partitioned in this system. For BSA in poly(NIPAM-VI)/HM-(EO-PO) system a change in pH from 8.0 to 5.4 results in a change of partition coefficient from K=0.8 to K=5.1, i.e. BSA could be transferred from the HM-(EO-PO) phase to the poly(NIPAM-VI) phase. BSA partitioning in poly(NIPAM-VI)/HM-(EO-PO) system allows quantitative BSA recovery, and recoveries of poly(NIPAM-VI) and HM-(EO-PO) were 53% and 92%, respectively, after the thermoseparation step.  相似文献   

19.
Summary Fluorescent, dansyl derivatives of triphenylalkylphosphonium ions have been synthesized and exhibit fluorescence intensities in small sonicated phospholipid vesicles that are dependent upon transmembrane potentials. The voltage-dependent fluorescence changes are a result of changes in quantum yield that accompany a voltage-dependent phase partitioning of the probe. This phase partitioning is easily quantitated by calibrating the intensities of totally membrane-associated and aqueous probe. The voltage-dependence is well accounted for by a simple thermodynamic model and allows an estimation of potentials from fluorescence intensities in small vesicle systems.  相似文献   

20.
Variation in operational temperatures has revealed differences in the partitioning behavior of probe solutes between the phases in aqueous biphasic systems (ABS) and the related aqueous biphasic extraction chromatographic resin (ABEC). This difference has been studied using the hydrophobic anion, 99TcO4-, as a probe and (NH4)2SO4 as the kosmotropic salt. Distribution of the hydrophobic anion 99TcO4- to the PEG-rich phase in a MePEG-5000/(NH4)2SO4 ABS increases with increasing temperature, but decreases are observed in batch uptakes of this anion to ABEC resins from (NH4)2SO4 solutions. Phase diagrams were constructed at five different temperatures from 10 to 50 degreesC using cloud point titration for the ABS and a correlation between the phase divergence, measured in terms of tie line length (TLL), and the temperature of the partitioning system was verified. Thermodynamic parameters (deltaHdegrees,deltaSdegrees, deltaGdegrees, ) as a function of temperature were calculated for the various systems studied and the results imply thermodynamic differences between partitioning in ABS versus ABEC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号