首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metabolic labeling of a mutant PC12 cell line, A123.7, expressing recombinant rat vesicular acetylcholine transporter (VAChT) with radiolabeled inorganic phosphate was used to demonstrate phosphorylation of the transporter on a serine residue. Mutational analysis was used to demonstrate that serine 480, which is located on the COOH-terminal cytoplasmic tail, is the sole phosphorylation site. Phosphorylation of serine 480 was attributable to the action of protein kinase C. Using a permanently dephosphorylated form of rat VAChT, S480A rVAChT, it was shown that this mutant displays the same kinetics for the transport of acetylcholine and the binding of the inhibitor vesamicol as does the wild type transporter. However, sucrose gradient density centrifugation showed that, unlike wild type VAChT, the S480A mutant did not localize to synaptic vesicles. These results suggest that phosphorylation of serine 480 of VAChT is involved in the trafficking of this transporter.  相似文献   

2.
The acetylcholine-binding site in vesicular acetylcholine transporter faces predominantly toward the outside of the vesicle when resting but predominantly toward the inside when transporting. Transport-related reorientation is detected by an ATP-induced decrease in the ability of saturating substrate to displace allosterically bound [(3)H]vesamicol. The assay was used here to determine whether structurally diverse compounds are transported by rat VAChT expressed in PC12(A123.7) cells. Competition by ethidium, tetraphenylphosphonium and other monovalent organic cations with [(3)H]vesamicol is decreased when ATP is added, and the effect depends on proton-motive force. The results indicate that many organic molecules carrying +1 charge are transported, even though the compounds do not resemble acetylcholine in structural details.  相似文献   

3.
Previous studies have shown that the vesicular monoamine transporter 2 (VMAT2) is localized to both large dense core vesicles and synaptic vesicles in vivo. However, when exogenously expressed in PC12 cells, VMAT2 localizes only to large dense core vesicles. This distribution is similar to that of the endogenous vesicular monoamine transporter 1 (VMAT1) in PC12 cells. When VMAT2 was expressed in a protein kinase A (PKA)-deficient PC12 cell line it localized to synaptic-like microvesicles. Expression of recombinant VMAT1 in the same cell line showed a heterogeneous distribution to both large dense core vesicles and synaptic-like microvesicles. Coexpression of the PKA catalytic subunit partially restored trafficking of both VMAT2 and VMAT1 to large dense core vesicles; treatment of wild-type PC12 cells with the PKA inhibitor H89 increased VMAT2 on synaptic-like microvesicles. The VMAT1 and VMAT2 in large dense core vesicles exhibit a larger molecular size than those located on synaptic-like microvesicles. This difference is due to differential N-linked glycosylation. In vitro phosphorylation experiments show that PKA does not phosphorylate VMAT2. A chimera containing the VMAT2 cytoplasmic C-terminus fused to vesicular acetylcholine transporter (VAChT) shows mislocalization to synaptic-like microvesicles and VAChT-like glycosylation in the PKA-deficient cell line. However, coexpression with PKA changes the chimera's trafficking to large dense core vesicles and increases the molecular size. These results suggest that protein kinase A affects the formation and/or composition of VMAT trafficking complexes.  相似文献   

4.
5.
《Journal of Physiology》1998,92(5-6):379-384
Treatment of the cholinergic cell line NG108-15 with retinoic acid or cAMP results in an increase of choline acetyltransferase activity (ChAT) whereas none of these agents influences the amount of the vesicular acetylcholine transporter (VAChT) as judged from vesamicol binding and immunoblot studies. We suggest that immaturity of posttranslational events controlling the expression of VAChT protein is responsible for the apparent absence of coregulation of ChAT and VAChT protein expression.  相似文献   

6.
This Letter describes the synthesis of two regioisomers of a new class of vesamicol analogs as possible ligands for imaging the vesicular acetylcholine transporter in future PET studies. The two pyrrolovesamicols (±)-6a and (±)-6b were synthesized by nucleophilic ring opening reaction of a tetrahydroindole epoxide precursor with 4-phenylpiperidine. The reaction mechanism of the synthesis was studied by HPLC and the molecular structures were determined by X-ray structure analysis. Unexpected low binding affinities to VAChT (K(i)=312±73 nM for (±)-6a and K(i)=7320±1840 nM for (±)-6b) were determined by competitive binding analysis using a cell line stably transfected with ratVAChT and (-)-[(3)H]vesamicol.  相似文献   

7.
Abstract: The Ewing's sarcoma cell line ICB 112 was examined in detail for a cholinergic phenotype. Choline acetyltransferase activity (12.3 ± 2.9 nmol/h/mg of protein) was associated with the presence of multiple mRNA species labeled with a human choline acetyltransferase riboprobe. Choline was taken up by the cells by a high-affinity, hemicholinium-3-sensitive transporter that was partially inhibited when lithium replaced sodium in the incubation medium; the choline taken up was quickly incorporated into both acetylcholine and phosphorylcholine. High-affinity binding sites for vesamicol, an inhibitor of vesicular acetylcholine transport, were also present. The mRNAs for synaptotagmin (p65) and the 15-kDa proteolipid were readily detected and were identical in size to those observed in cholinergic regions of the human brain. Cumulative acetylcholine efflux was increased by raising the extracellular potassium level or the addition of a calcium ionophore, but the time course of stimulated efflux was slow and persistent. These results show that this morphologically undifferentiated cell line is capable of acetylcholine synthesis and expresses markers for synaptic vesicles as well as proteins implicated in calcium-dependent release but lacks an organized release mechanism.  相似文献   

8.
Properties of cysteinyl residues in the vesicular acetylcholine transporter (VAChT) of synaptic vesicles isolated from Torpedo californica were probed. Cysteine-specific reagents of different size and polarity were used and the effects on [3H]vesamicol binding determined. The vesamicol dissociation constant increased 1,000-fold after reaction with p-chloromercuriphenylsulfonate or phenylmercury acetate, but only severalfold after reaction with relatively small methylmercury chloride or methylmethanethiosulfonate (MMTS). Methylmercury chloride, but not MMTS, protected binding from phenylmercury acetate. Thus, two classes of cysteines react to affect vesamicol binding. Class 1 reacts with only organomercurials, and class 2 reacts with both organomercurials and MMTS. Quantitative analysis of the competition between p-chloromercuriphenylsulfonate and VAChT ligands was possible after defining second-order reaction conditions. The results indicate that each cysteinyl class probably contains a single residue. Acetylcholine protects cysteine 1, but apparently does not protect cysteine 2. Vesamicol, which binds to a different site than acetylcholine does, apparently protects both cysteines, suggesting that it induces a conformational change. The relatively large reagent glutathione removes a substituent from cysteine 1, but not cysteine 2, suggesting that cysteine 2 is deeper in the transporter than cysteine 1 is. The complete sequence of T. californica VAChT is given, and possible identities of cysteines 1 and 2 are discussed.  相似文献   

9.
Abstract: The present work tested whether pharmacological activation of protein kinase C (PKC) influences the release of [3H]-acetylcholine ([3H]ACh) synthesized in the presence of vesamicol, an inhibitor of the vesicular acetylcholine transporter (VAChT). Newly synthesized [3H]ACh was released from hippocampal slices by field stimulation (15 Hz) in the absence of vesamicol, but as expected [3H]ACh synthesized during exposure to vesamicol was not released significantly by stimulation. Treatment of slices with the PKC activator phorbol myristate acetate (PMA) decreased the inhibitory effect of vesamicol on [3H]ACh release. The effect of PMA was dose-dependent, was sensitive to calphostin C, a PKC-selective inhibitor, and could not be mimicked by α-PMA, an inactive phorbol ester. PMA did not alter the release of [3H]ACh in the absence of vesamicol, suggesting that the site of PKC action could be related to the VAChT. In agreement with this observation, immunoprecipitation of VAChT from 32P-labeled synaptosomes showed that phosphorylation occurs and that incorporation of 32P in the VAChT protein increases in the presence of PMA. We suggest that PKC alters the output of [3H]ACh formed in the presence of vesamicol and also provide circumstantial evidence for a role of phosphorylation of VAChT in this process.  相似文献   

10.
The vesicular acetylcholine transporter (VAChT) and the vesicular monoamine transporter (VMAT) belong to the same transporter family that packages acetylcholine into synaptic vesicles (SVs) and biogenic amines into large dense core vesicles (LDCVs) and/or SVs, respectively. These transporters share similarities in sequence and structure with their N- and C-terminal domains located in the cytoplasm. When expressed in PC12 cells, VMAT2 localizes to LDCV, whereas VAChT is found mainly on synaptic-like microvesicles. Previous studies have shown that the cytoplasmic C-terminal domain of VAChT contains signals targeting this transporter to SVs. However, the targeting signals for VMAT have not been completely elucidated. To identify signals targeting VMAT2 to LDCV, the subcellular localization of VMAT2-VAChT chimeras was analyzed in PC12 cells. Chimeras having either the N-terminal region through transmembrane domain 2 of VMAT2 or the C-terminal domain of VMAT2 do not traffic to LDCV efficiently. In contrast, chimeras having both of these regions, or the luminal glycosylated loop in conjunction with transmembrane domains 1 and 2 and the C-terminal domain of VMAT2, traffic to LDCV. Treatment of PC12 cells with 1-deoxymannojirimycin, a specific alpha-mannosidase I inhibitor, causes VMAT2 to localize to synaptic-like microvesicles. The results indicate that both mature N-linked glycosylation and the C-terminus are important for proper trafficking of VMAT2 and that the locations of trafficking signals in VMAT2 and VAChT are surprisingly different.  相似文献   

11.
We have examined PC12 cells for the localization of binding sites for vesamicol [l-2-(4-phenylpiperidino) cyclohexanol], a compound that has previously been shown to bind to cholinergic vesicles and to inhibit the uptake of acetylcholine. Initial studies presented in this article demonstrate the existence of a specific, saturable vesamicol binding site in PC12 cells. Subsequent experiments show that these binding sites reside in a membrane population that is distinct from catecholamine-containing compartments with respect to density and antigenic composition. In particular, vesamicol binding compartments have a lower density than catecholaminergic vesicles and, unlike these latter vesicles, do not appear to contain the vesicle-specific proteins synaptophysin and SV2 as part of the same membrane. These results suggest that vesicular transport proteins for acetylcholine and catecholamines are differentially sorted to distinct membrane compartments in PC12 cells.  相似文献   

12.
1. Previous studies have shown that phorbol esters induce protein kinase C (PKC) mediated phosphorylation of the vesicular acetylcholine transporter (VAChT) and change its interaction with vesamicol. However, it is not clear whether physiological activation of receptors coupled to PKC activation can alter VAChT behavior.2. Here we tested whether activation of kaianate (KA) receptors alters VAChT. Several studies suggest that the cholinergic amacrine cells display KA/AMPA receptors that mediate excitatory input to these neurons. In addition, KA in the chicken retina can generate intracellular messengers with the potential to regulate cellular functions.3. In cultured chicken retina (E8C11) KA reduced vesamicol binding to VAChT by 53%. This effect was potentiated by okadaic acid, a protein phosphatase inhibitor, and was totally prevented by BIM, a PKC inhibitor.4. Phorbol myristate acetate (PMA), but not -PMA, reduced in more than 85% the number of L-[3H]-vesamicol-specific binding sites in chicken retina, confirming that activation of PKC can influence vesamicol binding to chicken VAChT.5. The data show that activation of glutamatergic receptors reduces [3H]-vesamicol binding sites (VAChT) likely by activating PKC and increasing the phosphorylation of the ACh carrier.  相似文献   

13.
Classical neurotransmitters such as gamma-aminobutyric acid and glutamate are released from synaptic nerve terminals by exocytosis of synaptic vesicles. PC12 cells also have SSVs capable of storing acetylcholine (ACh). A novel method to examine the effect of transient transfection of any gene of interest on the exocytosis of SSVs was developed. The transfection of choline acetyltransferase (ChAT) into PC12 cells which have lost ACh synthesizing activity resulted in the accumulation of a substantial amount of ACh. Synthesized ACh was released in Ca(2+)-dependent manner. Release was thought to occur by an exocytosis of SSVs because: (1) release was abolished by treating the cells with vesamicol, a specific inhibitor of the vesicular ACh transporter (VAChT) localizing specifically in SSVs; and (2) the release was further increased by cotransfecting rat VAChT with the ChAT. By means of this method, we showed that overexpression of complexin I or II with ChAT markedly suppressed high-K(+)-dependent ACh release of SSVs.  相似文献   

14.
Nerve growth factor (NGF) is a trophic and survival factor for cholinergic neurons, and it induces the expression of several genes that are essential for synthesis and storage of acetylcholine (ACh), specifically choline acetyltransferase, vesicular ACh transporter (VAChT), and choline transporter. We have found previously that the phosphatidylinositol 3'-kinase pathway, but not the MEK/MAPK pathway, is the mediator of NGF-induced cholinergic differentiation. Here we demonstrate, in the rat pheochromocytoma cell line PC12 and in primary mouse neuronal cultures, that NGF-evoked up-regulation of these three cholinergic-specific genes is mediated by the anti-apoptotic signaling molecule Akt/protein kinase B. Inhibition of Akt activation by the pharmacological inhibitor 1L-6-hydroxymethyl-chiro-inositol 2(R)-2-O-methyl-3-O-octadecylcarbonate (HIMO), or by a peptide fragment derived from the proto-oncogene TLC1, eliminated NGF-stimulated increases in cholinergic gene expression, as demonstrated by RT-PCR and reporter gene assays. Moreover, treatment with HIMO reversed NGF-evoked increases in choline acetyltransferase activity and ACh production. In co-transfection assays with the reporter construct, a dominant-negative Akt plasmid and Akt1-specific small interfering RNA also attenuated NGF-induced cholinergic promoter activity. Our data indicate that, in addition to its well-described role in promoting neuronal survival, Akt can also mediate signals necessary for neurochemical differentiation.  相似文献   

15.
Bravo DT  Kolmakova NG  Parsons SM 《Biochemistry》2004,43(27):8787-8793
Active transport of acetylcholine (ACh) by vesicular ACh transporter (VAChT) is driven by a proton-motive force established by V-ATPase. A published microscopic kinetics model predicts the ACh-binding site is primarily oriented toward the outside for nontransporting VAChT and toward the inside for transporting VAChT. The allosteric ligand [(3)H]vesamicol cannot bind when the ACh-binding site is outwardly oriented and occupied by ACh, but it can bind when the ACh site is inwardly oriented. The kinetics model was tested in the paper reported here using rat VAChT expressed in PC12(A1237) cells. Equilibrium titrations of [(3)H]vesamicol binding and ACh competition show that ATP blocks competition between vesamicol and ACh in over one-half of the VAChT. NaCl did not mimic ACh chloride, and bafilomycin A(1) and FCCP completely blocked the ATP effect, which shows that it is mediated by a proton-motive force. The data are consistent with reorientation of over one-half of the ACh-binding sites from the outside to the inside of vesicles upon activation of transport. The observations support the proposed microscopic kinetics model, and they should be useful in characterizing effects of mutations on the VAChT transport cycle.  相似文献   

16.
17.
《The Journal of cell biology》1994,127(5):1419-1433
Neurons and endocrine cells have two types of secretory vesicle that undergo regulated exocytosis. Large dense core vesicles (LDCVs) store neural peptides whereas small clear synaptic vesicles store classical neurotransmitters such as acetylcholine, gamma-aminobutyric acid (GABA), glycine, and glutamate. However, monoamines differ from other classical transmitters and have been reported to appear in both LDCVs and smaller vesicles. To localize the transporter that packages monoamines into secretory vesicles, we have raised antibodies to a COOH- terminal sequence from the vesicular amine transporter expressed in the adrenal gland (VMAT1). Like synaptic vesicle proteins, the transporter occurs in endosomes of transfected CHO cells, accounting for the observed vesicular transport activity. In rat pheochromocytoma PC12 cells, the transporter occurs principally in LDCVs by both immunofluorescence and density gradient centrifugation. Synaptic-like microvesicles in PC12 cells contain relatively little VMAT1. The results appear to account for the storage of monoamines by LDCVs in the adrenal medulla and indicate that VMAT1 provides a novel membrane protein marker unique to LDCVs.  相似文献   

18.
In our previous study vesamicol, an inhibitor of the acetylcholine transporter of the cholinergic vesicles, inhibited veratridine-evoked external Ca2+-dependent acetylcholine release from striatal slices but did not influence acetylcholine release observed in Ca2+-free medium (4). Here we examined if the effect of veratridine on membrane potential, Ca2+ uptake, and intracellular Ca2+ concentration of synaptosomes was altered by vesamicol in parallel with the inhibition of acetylcholine release. The depolarizing effect of 10 M veratridine (from 67±2.3 mV resting membrane potential to 50.7±2.5 mV) was not significantly influenced by vesamicol (1–20 M). Vesamicol (1–20 M) had no effect on either the overall curve of the veratridine-evoked45Ca2+ uptake or the amount of Ca2+ taken up by synaptosomes. Veratridine caused a rise in intrasynaptosomal Ca2+ concentration as measured by Fura2 fluorescence, and the same increase both in characteristics and in magnitude was observed in the presence of vesamicol (20 M). The K+-evoked (40 mM) increase of Ca2+ uptake and of intracellular calcium concentration were also unaltered by vesamicol. In high concentration (50 M) vesamicol inhibited both the fall in membrane potential and the elevated Ca2+ uptake by veratridine, indicating a possible nonspecific effect on potential-dependent Na+ channels at this concentration. Vesamicol, in lower concentration (20 M) when neither of the above parameters was changed, completely prevented veratridine-evoked increase of [14C]acetylcholine release. This was observed only when vesamicol was present in the media throughout the experiment after loading the preparation with [14C]choline. The results suggest that vesamicol does not interfere with veratridine-induced changes in isolated nerve terminals other than with the release of acetylcholine, thus further supporting the involvement of a vesamicol-sensitive vesicular transmitter pool in Ca2+-dependent veratridine-elicited acetylcholine release.  相似文献   

19.
Several lines of evidence indicate that nerve growth factor is important for the development and maintenance of the basal forebrain cholinergic phenotype. In the present study, using rat primary embryonic basal forebrain cultures, we demonstrate the differential regulation of functional cholinergic markers by nerve growth factor treatment (24–96 h). Following a 96‐h treatment, nerve growth factor (1–100 ng/mL) increased choline acetyltransferase activity (168–339% of control), acetylcholine content (141–185%), as well as constitutive (148–283%) and K+‐stimulated (162–399%) acetylcholine release, but increased release was not accompanied by increased high‐affinity choline uptake. Enhancement of ACh release was attenuated by vesamicol (1 µm ), suggesting a vesicular source, and was abolished under choline‐free conditions, emphasizing the importance of extracellular choline as the primary source for acetylcholine synthesized for release. A greater proportion of acetylcholine released from nerve growth factor‐treated cultures than from nerve growth factor‐naïve cultures was blocked by voltage‐gated Ca2+ channel antagonists, suggesting that nerve growth factor modified this parameter of neurotransmitter release. Cotreatment of NGF (20 ng/mL) with K252a (200 nm ) abolished increases in ChAT activity and prevented enhancement of K+‐stimulated ACh release beyond the level associated with K252a, suggesting the involvement of TrkA receptor signaling. Also, neurotrophin‐3, neurotrophin‐4 and brain‐derived neurotrophic factor (all at 5–200 ng/mL) increased acetylcholine release, although they were not as potent as nerve growth factor and higher concentrations were required. High brain‐derived neurotrophic factor concentrations (100 and 200 ng/mL) did, however, increase release to a level similar to nerve growth factor. In summary, long‐term exposure (days) of basal forebrain cholinergic neurons to nerve growth factor, and in a less‐potent fashion the other neurotrophins, enhanced the release of acetylcholine, which was dependent upon a vesicular pool and the availability of extracellular choline.  相似文献   

20.
Expression of the cholinergic gene locus in the rat placenta   总被引:5,自引:2,他引:3  
High amounts of acetylcholine (ACh) and its synthesising enzyme choline acetyltransferase (ChAT) have been detected in the placenta. Since the placenta is not innervated by extrinsic or intrinsic cholinergic neurons, placental ACh and ChAT originate from non-neuronal sources. In neurons, cytoplasmic ACh is imported into synaptic vesicles by the vesicular acetylcholine transporter (VAChT), and released through vesicular exocytosis. In view of the coordinate expression of VAChT and ChAT from the cholinergic gene locus in neurons, we asked whether VAChT is coexpressed with ChAT in rat placenta, and investigated this issue by means of RT-PCR, in situ hybridisation, western blot and immunohistochemistry. Messenger RNA and protein of the common type of ChAT (cChAT), its splice variant peripheral ChAT (pChAT), and VAChT were detected in rat placenta with RT-PCR and western blot. ChAT in situ hybridisation signal and immunoreactivity for cChAT and pChAT were observed in nearly all placental cell types, while VAChT mRNA and immunolabelling were detected in the trophoblast, mesenchymal cells and the visceral yolk sac epithelial cells. While ChAT is nearly ubiquitously expressed in rat placenta, VAChT immunoreactivity is localised cell type specifically, implying that both vesicular and non-vesicular ACh release machineries prevail in placental cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号