首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Three new glycopeptides with O-glycosidic and one glycopeptide with N-glycosylaminic carbohydrate-peptide linkages have been isolated after degradation of blood group substances (BGS). Their structure have been determined as O-(α-GalNAc)-Ser(I), O-(GalNAc)-(Pro)-Ser(II), O-(GalNAc 1 → 3 GalNAc)-(Thr-Ala)-Ser(III), N-(β-GlcNAc)-Asn(IV). The isolation of glycopeptide I confirmed α-configuration of O-glycosidic carbohydrate-peptide bonds. The structure of glycopeptide III with two galactosamine residues is in accordance with the data on the presence of hexosamine core of BGS carbohydrate chains.  相似文献   

3.
Notochords, isolated from 2 12 day chick embryos, were cultured in the presence of 3H proline and the labeled proteins co-purified with chick skin carrier collagen. The purified material, most of which eluted from CM-cellulose as a single peak in the region of the carrier collagen α1 chain, contained 41% of the incorporated proline as hydroxyproline and from gel filtration measurements had a molecular weight of approximately 100,000 daltons. When the material was chromatographed on DEAE-cellulose with carrier α1 chains from both skin [α1 (I)] and cartilage [α1 (II)], it eluted predominantly with the cartilage chains.  相似文献   

4.
Collagen biosynthesis is a complex process that begins with the association of three procollagen chains. A series of conserved intra- and interchain disulfide bonds in the carboxyl-terminal region of the procollagen chains, or C-propeptide, has been hypothesized to play an important role in the nucleation and alignment of the chains. We tested this hypothesis by analyzing the ability of normal and cysteine-mutated pro-α2(I) chains to assemble into type I collagen heterotrimers when expressed in a cell line (D2) that produces only endogenous pro-α1(I). Pro-α2(I) chains containing single or double cysteine mutations that disrupted individual intra- or interchain disulfide bonds were able to form pepsin resistant type I collagen with pro-α1(I), indicating that individual disulfide bonds were not critical for assembly of the pro-α2(I) chain with pro-α1(I). Pro-α2(I) chains containing a triple cysteine mutation that disrupted both intrachain disulfide bonds were not able to form pepsin resistant type I collagen with pro-α1(I). Therefore, disruption of both pro-α2(I) intrachain disulfide bonds prevented the production and secretion of type I collagen heterotrimers. Although none of the individual disulfide bonds is essential for assembly of the procollagen chains, the presence of at least one intrachain disulfide bond may be necessary as a structural requirement for chain association or to stabilize the protein to prevent intracellular degradation. J.Cell. Biochem. 71:233–242, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

5.
Procollagen and collagen were isolated from the culture medium and cell layer of line TSD4 (obtained from mouse teratocarcinoma OTT6050). SDS-polyacrylamide gel electrophoresis of the highly purified procollagen fraction demonstrated that the fraction is composed of θ chains (150,000 daltons), pro α chains (130,000 daltons), and α chains (100,000 daltons). Limited pepsin digestion of this fraction yielded a single species of collagen molecules having a chain composition (α1)3, as did collagen isolated from the cell layer. Each α1 chain appears to be slightly larger than α1 chains from calf or human type I and type III collagen. Amino acid analysis and cyanogen bromide peptide profiles of pepsin-treated TSD4 collagen demonstrated significant differences from those of other collagens (II, III, IV) of the type α1(X)3, although similar to that of the α1 chain of type I collagen, [α1(I)]2α2. Taken together, acrylamide gel electrophoresis, amino acid composition, electron microscopy, and cyanogen bromide peptide analysis indicate that this material represents a new molecular species of collagen not previously characterized, probably related to [α1(I)]3.  相似文献   

6.
7.
Genes for tetrapod fibrillar procollagen chains can be divided into two clades, A and B, based on sequence homologies and differences in protein domain and gene structures. Although the major fibrillar collagen types I–III comprise only clade A chains, the minor fibrillar collagen types V and XI comprise both clade A chains and the clade B chains pro-α1(V), pro-α3(V), pro-α1(XI) and pro-α2(XI), in which defects can underlie various genetic connective tissue disorders. Here we characterize the clade B procollagen chains of zebrafish. We demonstrate that in contrast to the four tetrapod clade B chains, zebrafish have six clade B chains, designated here as pro-α1(V), pro-α3(V)a and b, pro-α1(XI)a and b, and pro-α2(XI), based on synteny, sequence homologies, and features of protein domain and gene structures. Spatiotemporal expression patterns are described, as are conserved and non-conserved features that provide insights into the function and evolution of the clade B chain types. Such features include differential alternative splicing of NH2-terminal globular sequences and the first case of a non-triple helical imperfection in the COL1 domain of a clade B, or clade A, fibrillar procollagen chain. Evidence is also provided for previously unknown and evolutionarily conserved alternative splicing within the pro-α1(V) C-propeptide, which may affect selectivity of collagen type V/XI chain associations in species ranging from zebrafish to human. Data presented herein provide insights into the nature of clade B procollagen chains and should facilitate their study in the zebrafish model system.  相似文献   

8.
Bovine articular cartilage normally synthesizes a collagen containing three identical α-chains. After pre-incubation with rat liver lysosomal enzymes, it begins to synthesize significant amounts of the more ubiquitous collagen of the (α1)2α2 type. Since lysosomes are increased in osteoarthritis, it is possible that the abnormal biosynthetic patterns exhibited by cells in areas of degeneration are caused by such enzymes.Articular cartilage is an avascular tissue with very low cell density, composed primarily of extracellular substances such as collagen, proteoglycans, and glycoproteins. The structural integrity of this tissue depends on the relative proportion, nature, and structural organization of these components. Until recently, the destruction of cartilage seen in osteoarthritis was considered to result from a “wear and tear” process. This concept is not substantiated by recent ultrastructural and biochemical findings. Cellular activity in the involved areas leads to enlarged clones of chondrocytes containing increased numbers of intracellular organelles reflecting synthetic and secretory activity (1). There is an inverse correlation between the severity of the degenerative changes and the glycosaminoglycan content of the tissue (2–7). On the other hand, radioactive sulfate incorporation increases in osteoarthritis, an indication of the attempts made by the cells involved to repair the lesion (2). The nature of the proteoglycans synthesized under these conditions (less keratan sulfate and more chondroitin-4-sulfate) reflect the behaviour of immature chondroblasts (3–8). Lysosomal proteases have been associated with the degradation of the matrix (9–12). Cathepsin-D and a neutral protease which degrade proteoglycans at pH 5.0 and 7.0 respectively are considerably increased in early osteoarthritic lesions (13–15). Although the collagen content of cartilage does not change in osteoarthritis, qualitative differences may exist. Recently, we have shown that whereas normal human cartilage synthesizes only cartilage type collagen or (α1-Type II)3, osteoarthritic cartilage synthesizes in addition significant amounts of (α1)2α2 collagen (skin type) (16). Articular cartilage collagen is quite different from other ubiquitous forms of mammalian collagens. In addition to containing three identical α-chains, it has four to five times more hydroxylysine and glycosidically associated carbohydrate than collagen from other tissues (17). It is quite possible that the abnormal collagen deposited by the cells at the site of degeneration may give rise to a mechanically weaker structure and lead to a loss of cartilage. While attempting to elucidate the mechanism underlying this abnormal metabolic pattern, it became apparent that lysosomal enzymes can alter the function of normal cartilage cells causing them to synthesize non-specific collagen molecules.  相似文献   

9.
Termination of RNA by nucleotides of 9-beta-D-xylofuranosyladenine   总被引:1,自引:0,他引:1  
The protease susceptibilities of recently identified cartilage collagens HMW, 1α, 2α, and 3α were investigated. Mammlian skin collagenase cleaved the 3α chain under conditions where HMW, 1α and 2α were not degraded. A tumor cell derived type V collagenolytic metalloproteinase degraded HMW, 1α and 2α, but not 3α. Plasmin or leucocyte elastase failed to significantly degrade any of the cartilage collagens when digestion was performed at 25°C (15 hours, enzyme to substrate ratio 1:100). At 36°C but not 33°C α thrombin degraded HMW, 1α and 2α, with little or no degradation of 3α. This pattern of protease susceptibility for HMW, 1α and 2α is therefore similar to type V collagen. The cleavage of 3α by skin collagenase but not by elastase is similar to type II collagen. These results suggest that HMW, 1α and 2α are part of the type V collagen family.  相似文献   

10.
The interaction of a highly purified glycopeptide isolated from ovalbumin with Concanavalin A has been investigated by measuring solvent proton relaxation rates over a wide range of magnetic fields. We find that binding of the glycopeptide to Mn-Ca-Concanavalin A uniformly reduces the solvent proton relaxation rates in the same manner as that of simple saccharides such as methyl α-D-mannopyranoside, but that the magnitude of the reduction is not as great. Furthermore, we observe that the glycopeptide is capable of precipitating the lectin, and that the precipitation reaction can be readily reversed by addition of methyl α-D-mannopyranoside. The latter results indicate that the branched chain glycopeptide appears to be bivalent with respect to binding by the lectin.  相似文献   

11.
Sturgeon notochord and cartilage collagens have been characterized with respect to chromatographic properties, amino acid composition, carbohydrate content, and cyanogen bromide cleavage products of the component α chains. The data show that the collagen of both tissues is comprised of a single type of α chain and that the notochord and cartilage chains are identical. Further, the sturgeon chains bear a striking resemblance to previously characterized α1(II) chains from avian and mammalian hyaline cartilages. These observations strongly suggest that the data may be extrapolated to higher organisms and indicate that during development, a cartilage-type collagen is synthesized by notochord cells prior to the appearance of tissues classically identified as cartilage on the basis of morphology.  相似文献   

12.
Spectrins comprise α- and β-subunits made up predominantly of a series of homologous repeating units of about 106 amino acids; the α- and β-chains form antiparallel dimers by lateral association, and tetramers through head-to-head contacts between the dimers. Here we consider the first of these interactions. (1) We confirm earlier observations, showing that the first two paired repeats (βIR1 with αIR21, and βIR2 with αRI20) at one end of the erythroid spectrin (αIβI) dimer are necessary and sufficient to unite the chains; (2) we resolve a conflict in published reports by showing that the strength of the interaction is considerably increased on adding the adjoining pair of repeats (βIR3-αIR19); (3) in brain (αIIβII) spectrin the first two pairs of repeats are similarly essential and sufficient for heterodimer formation; (4) this interaction is ~60-fold stronger than that in the erythroid counterpart, but no enhancement can be detected on addition of three further pairs of repeats; (5) formation of a tight αIβI dimer probably depends on structural coupling of the first two repeats in each chain; (6) an analysis of the sequences of the strongly interacting repeats, βIR1, βIIR1, αIR21 and αIIR20 and repeats in α-actinin, which also interact very strongly in forming an antiparallel dimer, affords a possible explanation for the different properties of the two spectrin isoforms in respect of the stability of the inter-chain interactions, and also suggests the evolutionary path by which the erythroid and non-erythroid sequences diverged.  相似文献   

13.
Recently, three novel collagen VI chains, α4, α5 and α6, were identified. These are thought to substitute for the collagen VI α3 chain, probably forming α1α2α4, α1α2α5 or α1α2α6 heterotrimers. The expression pattern of the novel chains is so far largely unknown. In the present study, we compared the tissue distribution of the novel collagen VI chains in mouse with that of the α3 chain by immunohistochemistry, immunoelectron microscopy and immunoblots. In contrast to the widely expressed α3 chain, the novel chains show a highly differential, restricted and often complementary expression. The α4 chain is strongly expressed in the intestinal smooth muscle, surrounding the follicles in ovary, and in testis. The α5 chain is present in perimysium and at the neuromuscular junctions in skeletal muscle, in skin, in the kidney glomerulus, in the interfollicular stroma in ovary and in the tunica albuginea of testis. The α6 chain is most abundant in the endomysium and perimysium of skeletal muscle and in myocard. Immunoelectron microscopy of skeletal muscle localized the α6 chain to the reticular lamina of muscle fibers. The highly differential and restricted expression points to the possibility of tissue-specific roles of the novel chains in collagen VI assembly and function.  相似文献   

14.
Matrix-free cells obtained from chick embryo cartilage were incubated in the presence of α,α′-dipyridyl and radioactive mannose in order to examine the incorporation of mannose into the propeptide extensions of Type II procollagen. Cell proteins were digested with bacterial collagenase and the digests were examined by polyacrylamide gel electrophoresis. Radioactive mannose was found in fragments from both the N- and C-propeptides, and therefore the results provided the first indication that both these propeptides of Type II procollagen contain mannose. The results also supported previous indications that addition of carbohydrate to the propeptides of procollagen does not require folding of the collagen domain into a triple helix.  相似文献   

15.
Vascular smooth muscle cell (VSMC) invasion is a key element in atherogenesis and restenosis, requiring integrins for adhesion/de-adhesion as well as matrix metalloproteinases (MMPs) for focalized proteolysis. Among the MMP family, pro-MMP-2 is unique in its activation, depending on the formation of a multiprotein complex with MT1-MMP/TIMP-2 at the cell surface, in which integrin αvβ3 participates. Integrin αv and MT1-MMP are synthesized from precursors via furin-dependent cleavage of their pro-peptide. Furin is the prototypical proprotein convertase highly expressed in VSMCs and human atherosclerotic lesions. Its precise role in the tight network involving MMPs/integrins and their coordination and cooperation required for VSMC invasion is unknown. We demonstrate that furin-inhibition with decanoyl-RVKR-chloromethylketone inhibits VSMC invasion in a comparable degree to MMP inhibitors, which reduce the MT1-MMP–MMP-2 proteolytic cascade. Furin-inhibition did not prevent MT1-MMP/MMP-2 maturation. In contrast, it strongly reduced pro-αv cleavage, but did not lessen its cell membrane expression. However, inhibition of pro-αv processing via furin-inhibition strongly reduced pro-MMP-2 binding to the cell surface, thereby lessening its full maturation and diminishing the cell surface in situ proteolysis required for invasion. Thus, our data demonstrate a novel mechanism of furin-dependent αv cleavage that enhances pro-MMP-2 binding and activation at the cell membrane in cooperation with MT1-MMP in primary VSMCs. Processing of αv by furin contributes to the recruitment of enzymatic energy to the cell surface, thereby providing focalized proteolysis associated with VSMC invasion.  相似文献   

16.
Mycobacterium tuberculosis is an obligate human respiratory pathogen that encodes approximately 10 arsenic repressor (ArsR) family regulatory proteins that allow the organism to respond to a wide range of changes in its immediate microenvironment. How individual ArsR repressors have evolved to respond to selective stimuli is of intrinsic interest. The Ni(II)/Co(II)-specific repressor NmtR and related actinomycete nickel sensors harbor a conserved N-terminal α-NH(2)-Gly2-His3-Gly4 sequence. Here, we present the solution structure of homodimeric apo-NmtR and show that the core of the molecule adopts a typical winged-helix ArsR repressor (α1-α2-α3-αR-β1-β2-α5) "open conformation" that is similar to that of the related zinc sensor Staphylococcus aureus CzrA, but harboring long, flexible N-terminal (residues 2-16) and C-terminal (residues 109-120) extensions. Binding of Ni(II) to the regulatory sites induces strong paramagnetic broadening of the α5 helical region and the extreme N-terminal tail to residue 10. Ratiometric pulse chase amidination mass spectrometry reveals that the rate of amidination of the α-amino group of Gly2 is strongly attenuated in the Ni(II) complex relative to the apo state and noncognate Zn(II) complex. Ni(II) binding also induces dynamic disorder on the microsecond to millisecond time scale of key DNA interacting regions that likely contributes to the negative regulation of DNA binding by Ni(II). Molecular dynamics simulations and quantum chemical calculations reveal that NmtR readily accommodates a distal Ni(II) hexacoordination model involving the α-amine and His3 of the N-terminal region and α5 residues Asp91', His93', His104, and His107, which collectively define a new metal sensing site configuration in ArsR family regulators.  相似文献   

17.
Two human type V collagen sub-molecular species, designated [α1(V)]2α2(V) and α1(V)α2(V)α3(V), were purified chromatographically from a commercially available preparation, in which cystine-rich collagenous contaminants were contained, with a column packed with Fractogel EMD SO3. From bovine crude preparations, the [α1(V)]2α2(V) form free from the collagenous contaminants was purified. Type V collagen subunit chains were isolated from each type V collagen molecule by anion-exchange HPLC with a Bakerbond PEI Scout column. The highly purified human type V collagen molecules and their subunit chains were used to examine the inhibitory effect on human umbilical vein endothelial cell proliferation. It was confirmed that the α1(V) chain has inhibitory activity and it was found that the inhibitory effect of the [α1(V)]2α2(V) form is stronger than that of the α1(V)α2(V)α3(V) form and that the α3(V) chain has no inhibitory activity.  相似文献   

18.
19.
20.
We evaluated on serial sections the distribution of a large number of integrin α and β chains in normal adult human kidney: 1) the β1 chain and its corresponding a subunits (α1, α2, α3, α4, α5, α6), 2) αv and β3 chains, 3) the β2 chain and its corresponding α chains (αX, αM, αL), and 4) the β4 chain. We also evaluated ICAM-1, VCAM and ELAM and the major extracellular matrix components (ECM). A three step immunoperoxidase technique was used on frozen sections. Each cell of the kidney shows a specific distribution of these molecules. The relation with ECM and some of their ligands was evaluated. This immunohistochemical study shows that there is no strict colocalisation of a given ECM component with its specific receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号