首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Accumulation of reactive oxygen species during aging leads to programmed cell death (PCD) in many cell types but has not been explored in mammalian fertilized eggs, in which mitochondria are "immature," in contrast to "mature" mitochondria in somatic cells. We characterized PCD in mouse zygotes induced by either intensive (1 mM for 1.5 h) or mild (200 microM for 15 min) hydrogen peroxide (H(2)O(2)) treatment. Shortly after intensive treatment, zygotes displayed PCD, typified by cell shrinkage, cytochrome c release from mitochondria, and caspase activation, then terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining in condensed pronuclei. On the other hand, after mild treatment, zygotes arrested developmentally and showed neither cytochrome c release nor caspase activation over 48 h; until 72 h, 46% zygotes exhibited TUNEL staining, and 88% of zygotes lost plasma membrane integrity. Interestingly, mild oxidative treatment induced a decline in mitochondrial membrane potential and disruption of the mitochondrial matrix. Taken together, these results suggest that oxidative stress caused by H(2)O(2) induces PCD in mouse zygotes and that mitochondria are involved in the early phase of oxidative stress-induced PCD. Furthermore, mitochondrial malfunction also may contribute to cell cycle arrest, followed by cell death, triggered by mild oxidative stress.  相似文献   

2.
The TF-1 human erythroleukemic cell line exhibits opposing physiological responses toward tumor necrosis factor-alpha (TNF) treatment, dependent upon the mitotic state of the cells. Mitotically active cells in log growth respond to TNF by rapidly undergoing apoptosis whereas TNF exposure stimulates cellular proliferation in mitotically quiescent cells. The concentration-dependent TNF-induced apoptosis was monitored by cellular metabolic activity and confirmed by both DNA epifluorescence and DNA fragmentation. Moreover, these responses could be detected by measuring extracellular acidification activity, enabling rapid prediction (within approximately 1.5 h of TNF treatment) of the fate of the cell in response to TNF. Growth factor resupplementation of quiescent cells, resulting in reactivation of cell cycling, altered TNF action from a proliferative stimulus to an apoptotic signal. Expression levels of the type II TNF receptor subtype (p75TNFR) were found to correlate with sensitivity to TNF-induced apoptosis. Pretreatment of log growth TF-1 cells with a neutralizing anti-p75TNFR monoclonal antibody inhibited TNF-induced apoptosis by greater than 80%. Studies utilizing TNF receptor subtype-specific TNF mutants and neutralizing antisera implicated p75TNFR in TNF-dependent apoptotic signaling. These data show a bifunctional physiological role for TNF in TF-1 cells that is dependent on mitotic activity and controlled by the p75TNFR.  相似文献   

3.
Park SJ  Shin JH  Kang H  Hwang JJ  Cho DH 《BMB reports》2011,44(8):517-522
Mitochondrial dynamics not only involves mitochondrial morphology but also mitochondrial biogenesis, mitochondrial distribution, and cell death. To identify specific regulators to mitochondria dynamics, we screened a chemical library and identified niclosamide as a potent inducer of mitochondria fission. Niclosamide promoted mitochondrial fragmentation but this was blocked by down-regulation of Drp1. Niclosamide treatment resulted in the disruption of mitochondria membrane potential and reduction of ATP levels. Moreover, niclosamide led to apoptotic cell death by caspase-3 activation. Interestingly, niclosamide also increased autophagic activity. Inhibition of autophagy suppressed niclosamide-induced cell death. Therefore, our findings suggest that niclosamide induces mitochondria fragmentation and may contribute to apoptotic and autophagic cell death.  相似文献   

4.
Recent studies strongly suggest an active involvement of the c-Jun N-terminal kinase (JNK) signaling pathway in tumor necrosis factor (TNF)-induced apoptosis. The direct evidence for the role of JNK and its isoforms has been missing and the mechanism of how JNK actually could facilitate this process has remained unclear. In this study, we show that Jnk2-/- primary mouse embryonic fibroblasts (pMEFs) exhibit resistance towards TNF-induced apoptosis as compared to corresponding wild-type and Jnk1-/- pMEFs. JNK2-deficient pMEFs could be resensitized to TNF via retroviral transduction of any of the four different JNK2 splicing variants. Jnk2-/- pMEFs displayed deficient and delayed effector caspase activation as well as impaired cytosolic cystein cathepsin activity: processes that both were needed for efficient TNF-induced apoptosis in pMEFs. Our work demonstrates that JNK has a central role in the promotion of TNF-induced apoptosis in pMEFs, and that the JNK2 isoform can regulate both mitochondrial and lysosomal death pathways in these cells.  相似文献   

5.
6.
Although recent progresses have unveiled the diverse in vivo functions of LKB1, detailed molecular mechanisms governing these processes still remain enigmatic. Here, we showed that Drosophila LKB1 negatively regulates organ growth by caspase-dependent apoptosis, without affecting cell size and cell cycle progression. Through genetic screening for LKB1 modifiers, we discovered the JNK pathway as a novel component of LKB1 signaling; the JNK pathway was activated by LKB1 and mediated the LKB1-dependent apoptosis. Consistently, LKB1-null mutant was defective in embryonic apoptosis and displayed a drastic hyperplasia in the central nervous system; these phenotypes were fully rescued by ectopic JNK activation as well as wild-type LKB1 expression. Furthermore, inhibition of LKB1 resulted in epithelial morphogenesis failure, which was associated with a decrease in JNK activity. Collectively, our studies unprecedentedly elucidate JNK as the downstream mediator of the LKB1-dependent apoptosis, and provide a new paradigm for understanding the diverse LKB1 functions in vivo.  相似文献   

7.
Staurosporine blocks signal transduction associated with cell survival, proliferation and chemosensory behaviour in the ciliated protozoan, Tetrahymena thermophila. Staurosporine inhibits cell proliferation and in vivo protein phosphorylation induced by phorbol ester. It also reduces the in vitro phosphorylation of the PKC-specific substrate, myelin basic protein fragment 4-14. Our results show that cell death in the presence of staurosporine is associated with morphological and ultrastructural changes similar to both apoptosis and autophagic degeneration, but these in turn can be postponed or prevented by 8-bromo-cyclic GMP, protoporphyrin IX, hemin or actinomycin D, although phorbol ester and insulin were ineffective. The results support the notion that staurosporine-induced cell death is an active process, associated with and/or requiring de novo RNA synthesis.  相似文献   

8.
The expanded polyglutamine (polyQ) tracts observed in autosomal dominant neurodegenerative disorders have the tendency to form intracellular aggregates, thus enhancing apoptotic cell death and the formation of autophagic vesicles. PolyQ accumulation inhibits the ER-associated degradation system (ERAD) resulting in reduced retrotranslocation from the ER and increased accumulation of misfolded proteins in the lumen of ER. Autophagy is an early cellular defense mechanism associated with ER stress, but prolonged ER stress may induce autophagic cell death, with destruction of cellular components and apoptotic cell death. Endoplasmic reticulum (ER) stress may be the key signal for both of these events.  相似文献   

9.
Pandey RK  Bhatt KH  Dahiya Y  Sodhi A 《PloS one》2011,6(2):e17093
Mycobacterium indicus pranii (MIP), also known as Mw, is a saprophytic, non-pathogenic strain of Mycobacterium and is commercially available as a heat-killed vaccine for leprosy and recently tuberculosis (TB) as part of MDT. In this study we provide evidence that cell-free supernatant collected from original MIP suspension induces rapid and enhanced apoptosis in mouse peritoneal macrophages in vitro. It is demonstrated that the MIP cell-free supernatant induced apoptosis is mitochondria-mediated and caspase independent and involves mitochondrial translocation of Bax and subsequent release of AIF and cytochrome c from the mitochondria. Experiments with pharmacological inhibitors suggest a possible role of PKC in mitochondria-mediated apoptosis of macrophages.  相似文献   

10.
The N-myc gene is considered to play a major regulatory role in embryogenesis of the mouse because of its high expression in the organogenesis period and its encoding of nuclear proteins with DNA binding motifs. To elucidate the putative regulatory function of N-myc in embryogenesis, we undertook to inactivate this gene in ES cells. The N-myc alleles were disrupted in ES cells, line E14, by means of homologous recombination of targeting vectors that carry neomycin or hygromycin resistant genes. Homologous recombinants were obtained at the frequency of one in 6 x 10(5) electroporated cells. The inactivated N-myc alleles were transmitted through mouse germ lines. Crosses of heterozygous mice resulted in production of wild-type, heterozygous, and N-myc-null pups and fetuses at a ratio of 1:2:0, indicating embryonic lethality of the homozygotes. ES cells totally deficient in N-myc expression were also obtained by consecutive gene disruption with the use of the targeting vectors, demonstrating the non-essentiality of N-myc expression in the stem-cell state. N-myc-null ES cells offer a valuable tool in chimera analysis to elucidate the requirement for N-myc function in embryogenesis.  相似文献   

11.
Herein, we provide the first evidence on the capsaicin (CPS) receptor vanilloid receptor type-1 (VR1) by rat thymocytes, and its involvement in CPS-induced apoptosis. VR1 mRNA was identified by quantitative RT-PCR in CD5(+) thymocytes. By immunofluorescence and flow cytometry, we found that a substantial portion of CD5+ thymocytes, namely CD4+ and double negative (DN) cell subsets, express VR1 that was present on plasma membrane on discrete spots. By Western blot, VR1 protein was identified as a single band of 95 kDa. We also described that CPS could trigger two distinct pathways of thymocyte death, namely apoptosis and necrosis depending on the dose of CPS exposure. CPS-induced apoptosis involved intracellular free calcium (Ca2+) influx, phosphatidylserine exposure, mitochondrial permeability transmembrane pore (PTP) opening and mitochondrial transmembrane potential (Delta Psi m) dissipation leading to cytochrome c release, activation of caspase-9 and -3 and oligonucleosomal DNA fragmentation. VR1 was functionally implicated in these events as they were completely abrogated by the VR1 antagonist, capsazepine (CPZ). Finally, we demonstrated that VR1 expression on distinct thymocytes was associated with the selective ability of CPS to trigger DNA fragmentation in VR1+ CD4+ and DN thymocytes. Overall, our results suggest that the expression of VR1 on thymocytes may function as a sensor of harmful stimuli present in the thymic environment.  相似文献   

12.
The ectoenzyme, gamma-glutamyl transpeptidase (GGT, EC ) cleaves glutathione (GSH) to facilitate the recapture of cysteine for synthesis of intracellular GSH. The impact of GGT expression on cell survival during oxidative stress was investigated using the human B cell lymphoblastoid cell line, Ramos. Ramos cells did not express surface GGT and exhibited no GGT enzyme activity. In contrast, Ramos cells stably transfected with the human GGT cDNA expressed high levels of surface GGT and enzymatic activity. GGT-transfected Ramos cells were protected from apoptosis when cultured in cyst(e)ine-deficient medium. The GGT-expressing cells also had lower levels of intracellular reactive oxygen species (ROS). Homocysteic acid and alanine, inhibitors of cystine and cysteine uptake, respectively, caused increased ROS content and diminished viability of GGT expressing cells. Exogenous GSH increased the viability of the GGT-transfected cells more effectively than that of control cells, whereas the products of GSH metabolism prevented death of both the control and GGT-transfected cells comparably. These data indicate that GGT cleavage of GSH and the subsequent recapture of cysteine and cystine allow cells to maintain low levels of cellular ROS and thereby avoid apoptosis induced by oxidative stress.  相似文献   

13.
DAP-kinase--protector or enemy in apoptotic cell death   总被引:1,自引:0,他引:1  
Death-associated protein (DAP)-kinase, a member of a novel subfamily of pro-apoptotic serine/threonine kinases, was recently identified as a new tumor suppressor gene with multiple functions in programmed cell death. This 160-kDa protein consists of different interaction domains that enable it to participate in seemingly contradictory pathways such as elimination of premalignant cells or cytoprotection in cellular homoeostasis. DAP-kinase is frequently inactivated by aberrant promoter methylation in many cancer types, and its expression was shown to be a useful molecular marker for cancer prognosis. Moreover, DAP-kinase is considered a regulator of neuronal apoptosis. Future investigations should allow for the evaluation of DAP-kinase as a potential target for both pro- and anti-apoptotic therapeutic interventions.  相似文献   

14.
Caspase-mediated parkin cleavage in apoptotic cell death   总被引:1,自引:0,他引:1  
The parkin protein is important for the survival of the neurons that degenerate in Parkinson's disease as demonstrated by disease-causing lesions in the parkin gene. The Chinese hamster ovary and the SH-SY5Y cell line stably expressing recombinant human parkin combined with epitope-specific parkin antibodies were used to investigate the proteolytic processing of human parkin during apoptosis by immunoblotting. Parkin is cleaved during apoptosis induced by okadaic acid, staurosporine, and camptothecin, thereby generating a 38-kDa C-terminal fragment and a 12-kDa N-terminal fragment. The cleavage was not significantly affected by the disease-causing mutations K161N, G328E, T415N, and G430D and the polymorphism R366W. Parkin and its 38-kDa proteolytic fragment is preferentially associated with vesicles, thereby indicating that cleavage is a membrane-associated event. The proteolysis is sensitive to inhibitors of caspases. The cleavage site was mapped by site-directed mutagenesis of potential aspartic residues and revealed that mutation of Asp-126 alone abrogated the parkin cleavage. The tetrapeptide aldehyde LHTD-CHO, representing the amino acid sequence N-terminal to the putative cleavage site was an efficient inhibitor of parkin cleavage. This suggests that parkin function is compromised in neuropathological states associated with an increased caspase activation, thereby further adding to the cellular stress.  相似文献   

15.
Billions of inflammatory leukocytes die and are phagocytically cleared each day. This regular renewal facilitates the normal termination of inflammatory responses, suppressing pro-inflammatory mediators and inducing their anti-inflammatory counterparts. Here we investigate the role of the receptor tyrosine kinase (RTK) Mer and its ligands Protein S and Gas6 in the initial recognition and capture of apoptotic cells (ACs) by macrophages. We demonstrate extremely rapid binding kinetics of both ligands to phosphatidylserine (PtdSer)-displaying ACs, and show that ACs can be co-opsonized with multiple PtdSer opsonins. We further show that macrophage phagocytosis of ACs opsonized with Mer ligands can occur independently of a requirement for αV integrins. Finally, we demonstrate a novel role for Mer in the tethering of ACs to the macrophage surface, and show that Mer-mediated tethering and subsequent AC engulfment can be distinguished by their requirement for Mer kinase activity. Our results identify Mer as a receptor uniquely capable of both tethering ACs to the macrophage surface and driving their subsequent internalization.Many diseases, including rheumatoid arthritis, pulmonary fibrosis, adult respiratory distress syndrome, and inflammatory bowel disease,1, 2, 3, 4 are commonly marked by impaired resolution of inflammation that is linked to defects in the phagocytic clearance of apoptotic cells.5, 6, 7 Apoptotic cell (AC) clearance normally eliminates a plethora of pro-inflammatory stimuli,8, 9 and the recognition of ACs by phagocytes10 limits progression to necrosis,11 suppresses pro-inflammatory mediator production, and induces IL-10 and TGF-β release.12, 13 As defective clearance of ACs is associated with the development of inflammatory disease and autoimmunity,14, 15 new therapeutic approaches designed to increase the capacity of phagocytes to remove ACs could effectively promote the resolution of inflammation.Phagocytosis of ACs can be regulated by soluble mediators, including cytokines,16, 17 prostaglandins and lipoxins,17, 18, 19 serum proteins,20 agonists of Liver X receptors (LXRs),17, 21 and glucocorticoids (GC).17, 22 In particular, LXR agonists and GCs promote phagocytosis of ACs predominantly via a Tyro3/Axl/Mer (TAM) receptor tyrosine kinase (RTK)-dependent pathway.17, 21, 23 There are two established ligands for the TAM RTKs, Protein S (gene name Pros1), which activates Tyro3 and Mer, and Gas6, which activates all three TAMs,24, 25 although other ligands have been suggested.26, 27 The amino terminal Gla domains of Protein S and Gas6 bind to phosphatidylserine (PtdSer) on the plasma membrane of ACs,28 a potent ‘eat-me'' signal by which ACs are recognized by phagocytes.29 TAM receptors bind to the carboxy terminal domains of Protein S and Gas6, which effectively act as molecular ‘bridges'' between PtdSer on the AC and TAM receptors on the phagocyte.17, 30, 31 TAM receptor- and ligand-deficient mice exhibit defective phagocytic pruning of photoreceptor outer segments by retinal pigment epithelial (RPE) cells of the eye,32, 33, 34 defective clearance of apoptotic germ cells by Sertoli cells of the testis,35 and defective clearance of ACs by macrophages/dendritic cells in lymphoid organs.36 These phenotypes are also detectable in Mer (gene name Mertk) single knockouts.37 In addition to phagocytic clearance, TAM signaling also has a pivotal role in controlling the innate immune response to pathogenic stimuli.13, 17, 38Although the importance of Mer in the internalization of ACs by macrophages is now well-established, this receptor has been thought not to have a significant role in the initial ‘tethering'' of ACs to the macrophage surface.36, 39 In their studies, Scott et al.36 used peritoneal macrophages for which tethering of ACs has now been shown to be mediated by T-cell immunoglobulin and mucin domain-containing molecule 4 (TIM4).39 Subsequent internalization of tethered ACs is then mediated by either integrin αvβ3- or Mer-mediated signaling.39, 40 Similarly, for RPE cells, the initial capture of photoreceptor outer segments by RPE cells required the integrin αvβ5,41 with Mer-dependent signaling necessary for subsequent internalization. To further probe the mechanistic role of Mer in AC recognition and engulfment, we have now examined macrophages that predominantly use a Mer-dependent AC phagocytosis mechanism.17, 23 We show that in these cells, which do not express TIM4, Mer has the capacity to serve a unique dual role in mediating both tethering of ACs to the macrophage surface as well as subsequent AC engulfment.  相似文献   

16.
17.
Similar to mammalian excitotoxic cell death, necrotic-like cell death (NCD) in Caenorhabditis elegans can be initiated by hyperactive ion channels. Here we investigate the requirements for genes that execute and regulate programmed cell death (PCD) in necrotic-like neuronal death caused by a toxic MEC-4 channel. Neither the kinetics of necrosis onset nor the total number of necrotic corpses generated is altered by any C. elegans mutation known to block PCD, which provides genetic evidence that the activating mechanisms for NCD and apoptotic cell death are distinct. In contrast, all previously reported ced genes required for phagocytotic removal of apoptotic corpses, as well as ced-12, a new engulfment gene we have identified, are required for efficient elimination of corpses generated by distinct necrosis-inducing stimuli. Our results show that a common set of genes acts to eliminate cell corpses irrespective of the mode of cell death, and provide the first identification of the C. elegans genes that are required for orderly removal of necrotic cells. As phagocytotic mechanisms seem to be conserved from nematodes to humans, our findings indicate that injured necrotic cells in higher organisms might also be eliminated before lysis through a controlled process of corpse removal, a hypothesis that has significant therapeutic implications.  相似文献   

18.
19.
Mitochondrial regulation of apoptotic cell death   总被引:8,自引:0,他引:8  
Mitochondria play a decisive role in the regulation of both apoptotic and necrotic cell death. Permeabilization of the outer mitochondrial membrane and subsequent release of intermembrane space proteins are important features of both models of cell death. The mechanisms by which these proteins are released depend presumably on cell type and the nature of stimuli. Of the mechanisms involved, mitochondrial permeability transition appears to be associated mainly with necrosis, whereas the release of caspase activating proteins during early apoptosis is regulated primarily by the Bcl-2 family of proteins. However, there is increasing evidence for interaction and co-operation between these two mechanisms. The multiple mechanisms of mitochondrial permeabilization may explain diversities in the response of mitochondria to numerous apoptotic stimuli in different types of cells.  相似文献   

20.
Zinc induced apoptotic death of mouse dendritic cells   总被引:1,自引:0,他引:1  
Zinc ions (Zn2+) are food components with favourable effects in infectious disease. Zn2+ is taken up into dendritic cells (DCs), key players in the regulation of innate and adaptive immunity. In other cell types, Zn2+ has been shown to stimulate the formation of ceramide, which is in turn known to trigger suicidal cell death. The present study explored whether Zn2+ modifies ceramide formation and survival of bone marrow derived DCs. To this end, DCs were isolated from acid sphingomyelinase knockout (asm /) and corresponding wild type (asm +/+) mice and treated with different concentrations of Zn2+. Ceramide formation was assessed with anti-ceramide antibodies in FACS and immunohistochemical analysis, sub-G1 cell population by FACS analysis, break down of phosphatidylserine asymmetry by annexin V binding, cell death by propidium iodide incorporation, metabolic cell activity by MTT assay, ROS production from dichlorofluorescein fluorescence and activation of MAPKs by Western blotting. The treatment of asm +/+ DCs with low Zn2+ concentrations (up to 100 μM) was followed by ceramide formation, increase in sub-G1 cell population and phosphatidylserine exposure, effects blunted in asm / DCs. The treatment of DCs with C2-ceramide increased the percentage of sub-G1 and apoptotic DCs from both genotypes. Zn2+ led to similar activation of MAPKs in asm +/+ and asm / DCs and did not affect ROS production. Higher concentrations of Zn2+ led to a marked increase of propidium iodide incorporation in DCs of both genotypes. The present study reveals that in DCs Zn2+ triggers ceramide formation, which in turn compromises cell survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号