共查询到20条相似文献,搜索用时 15 毫秒
1.
Direct and correlated responses to selection for larval ethanol tolerance in Drosophila melanogaster
J. D. Fry 《Journal of evolutionary biology》2001,14(2):296-309
Ethanol is an important larval resource and toxin for natural Drosophila melanogaster populations, and ethanol tolerance is genetically variable within and among populations. If ethanol‐tolerant genotypes have relatively low fitness in the absence of ethanol, as suggested by the results of an earlier study, genetic variation for ethanol tolerance could be maintained by variation in ethanol levels among breeding sites. I selected for ethanol tolerance in large laboratory populations by maintaining flies on ethanol‐supplemented media. After 90 generations, the populations were compared with control populations in egg‐to‐adult survival and development rate on ethanol‐supplemented and unsupplemented food. When compared on ethanol‐supplemented food, the ethanol‐selected populations had higher survival and faster development than the control populations, but on unsupplemented food, the populations did not differ in either trait. These results give no evidence for a ‘trade‐off’ between the ability to survive and develop rapidly in the presence of ethanol and the ability to do so in its absence. The effect of physiological induction of ethanol tolerance by exposing eggs to ethanol was also investigated; exposing eggs to ethanol strongly increased subsequent larval survival on ethanol‐supplemented food, but did not affect survival on regular food, and slowed development on both ethanol‐supplemented and regular food, partly by delaying egg hatch. 相似文献
2.
Vanessa Muñoz‐Valencia Ranulfo González‐Obando Fernando Díaz 《Entomologia Experimentalis et Applicata》2016,160(2):147-155
Adaptation to new environments is an important issue for invasive species as colonization depends on evolvability in their new distribution range. Here, we considered the case of the whitefly Bemisia tabaci MEAM 1 (Gennadius) (Hemiptera: Aleyrodidae), a pest that has recently invaded Colombia and where thermal adaptation has been proposed to explain its colonizing ability. An experimental evolution study was conducted to assess the evolutionary potential of B. tabaci in relation to its upper thermal limits, to explain its rapid adaptation during post‐invasion periods. Selection for hardening capacity was conducted in four whitefly populations. We measured thermal responses in relation to fitness components (survival, fecundity, and viability) for 5–7 generations under a strong selection regime. Heat hardening responded rapidly in both sexes. This was expressed as an increase in survival, but not in fecundity or viability. These results suggest that thermal responses for heat hardening are not correlated and evolve independently. Increased survival after few generations of selection points to high adaptive potential in this insect, which leads to rapid post‐invasion adaptation. Our study can help to predict population responses to environmental change and explain the colonizing ability of this pest. 相似文献
3.
Direct and correlated responses to artificial selection on acute thermal stress tolerance in a livebearing fish 总被引:1,自引:0,他引:1
Abstract.— Tradeoffs in performance or fitness across environments have important implications regarding the nature of evolutionary constraints. It remains controversial whether tradeoffs such as these reflect genetic correlations that are genuine evolutionary constraints. However, if such long-term genetic constraints do exist, they must be due to underlying pleiotropy such that alleles that confer high performance in one environment invariably confer low performance in another. The distribution of genetic correlations within and among populations can provide insight about the existence of such pleiotropic tradeoffs. The long-term association of certain teleost fish taxa with particular abiotic environments suggests that tradeoffs in performance across environments have constrained the geographic distribution of those taxa. Here we report the results of an experiment in which we artificially selected on acute heat- and cold-stress tolerance in two stocks of the poeciliid fish Heterandria formosa from source populations with different thermal histories. Unexpectedly, we observed no direct responses to selection. Under certain conditions, fish from the different source populations differed significantly in cold tolerance, but not in heat tolerance. The results suggest there are no strong pleiotropic tradeoffs between heat- and cold-stress tolerance in these populations. 相似文献
4.
ALEJANDRA C. SCANNAPIECO PABLO SAMBUCETTI FABIAN M. NORRY 《Biological journal of the Linnean Society. Linnean Society of London》2009,97(4):738-748
The possible associations between longevity, early fecundity, and stress-resistance traits were explored using artificial selection on longevity in a laboratory population of Drosophila buzzatii . Three replicated lines were selected for increased lifespan (L lines) and compared with the respective unselected controls (C lines) after the 14th generation of selection. Mean longevity exhibited a significant response to selection. The baseline mortality tended to decrease in the L lines and a negative correlated response to longevity selection was found for early fecundity. Egg-to-adult developmental time increased in L lines. Longevity selection increased stress resistance for both high and low temperatures, as measured by heat knockdown resistance and chill-coma recovery. Starvation resistance also tended to be higher in L than in C lines. The results obtained are consistent with the hypothesis of trade-offs between longevity and early fecundity, and also suggest a trade-off association between adult longevity and developmental time. Correlated selection responses were generally consistent with correlations among the traits previously inferred from altitudinal clines for longevity and stress-resistance phenotypes. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 738–748. 相似文献
5.
Carlos I. Bertoli Alejandra C. Scannapieco Pablo Sambucetti Fabian M. Norry 《Entomologia Experimentalis et Applicata》2010,134(2):154-159
Chill‐coma recovery (CCR) is an important trait for thermal adaptation in insects. Multiple phenotypes could be affected by selection on CCR if the trait is genetically correlated with other adaptive traits. To test for heritable (co‐)variation in CCR, we examined direct and correlated responses to bi‐directional selection on CCR. Drosophila buzzatii Patterson & Wheeler (Diptera: Drosophilidae) was artificially selected for decreased and increased recovery time following exposure to 0 °C. After 18 selected generations, the selection response in CCR was significant but qualitatively asymmetric, with replicated lines for slow CCR showing the highest response. Knockdown resistance to high temperature was not affected by CCR selection. Starvation resistance in the adult fly showed no clear pattern of correlated responses to CCR selection. Selection on CCR had no impact on developmental time and body size. Chill‐coma recovery shows no apparent genetic trade‐offs with any of the multiple traits included in this study. These results are largely consistent with recent studies on clines in D. buzzatii, which showed that CCR is not across‐population correlated with other clinally varying traits of thermal adaptation. Cold adaptation may evolve toward increased cold resistance independent of upper thermal limits. 相似文献
6.
Knockdown resistance to high temperature (KRHT) is a genetically variable trait for thermal adaptation in insects. Selection for KRHT may affect a number of fitness components as well as resistance to several forms of environmental stress. To test for heritable (co)-variation in KRHT, we examined direct and correlated responses to bi-directional selection on this trait in Drosophila buzzatii. Replicated lines were artificially selected for decreased and increased KRHT. After 12 generations of artificial selection, lines diverged significantly for high KRHT only. Starvation resistance increased in two lines that strongly responded to selection for high KRHT, and these two lines also showed relatively longer chill-coma recovery time. Developmental time and body size showed no correlated responses to KRHT-selection. These results suggest that KRHT is a heritable trait that can evolve towards increased thermotolerance with no genetic trade-offs associated to starvation resistance, developmental time and body size. 相似文献
7.
Limited potential for adaptation to climate change in a broadly distributed marine crustacean 总被引:1,自引:0,他引:1
Kelly MW Sanford E Grosberg RK 《Proceedings. Biological sciences / The Royal Society》2012,279(1727):349-356
The extent to which acclimation and genetic adaptation might buffer natural populations against climate change is largely unknown. Most models predicting biological responses to environmental change assume that species' climatic envelopes are homogeneous both in space and time. Although recent discussions have questioned this assumption, few empirical studies have characterized intraspecific patterns of genetic variation in traits directly related to environmental tolerance limits. We test the extent of such variation in the broadly distributed tidepool copepod Tigriopus californicus using laboratory rearing and selection experiments to quantify thermal tolerance and scope for adaptation in eight populations spanning more than 17° of latitude. Tigriopus californicus exhibit striking local adaptation to temperature, with less than 1 per cent of the total quantitative variance for thermal tolerance partitioned within populations. Moreover, heat-tolerant phenotypes observed in low-latitude populations cannot be achieved in high-latitude populations, either through acclimation or 10 generations of strong selection. Finally, in four populations there was no increase in thermal tolerance between generations 5 and 10 of selection, suggesting that standing variation had already been depleted. Thus, plasticity and adaptation appear to have limited capacity to buffer these isolated populations against further increases in temperature. Our results suggest that models assuming a uniform climatic envelope may greatly underestimate extinction risk in species with strong local adaptation. 相似文献
8.
Theodore Garland Jr Scott A. Kelly Jessica L. Malisch Erik M. Kolb Robert M. Hannon Brooke K. Keeney Shana L. Van Cleave Kevin M. Middleton 《Proceedings. Biological sciences / The Royal Society》2011,278(1705):574-581
The response to uniform selection may occur in alternate ways that result in similar performance. We tested for multiple adaptive solutions during artificial selection for high voluntary wheel running in laboratory mice. At generation 43, the four replicate high runner (HR) lines averaged 2.85-fold more revolutions per day as compared with four non-selected control (C) lines, and females ran 1.11-fold more than males, with no sex-by-linetype interaction. Analysis of variance indicated significant differences among C lines but not among HR for revolutions per day. By contrast, average speed varied significantly among HR lines, but not among C, and showed a sex-by-linetype interaction, with the HR/C ratio being 2.02 for males and 2.45 for females. Time spent running varied among both HR and C lines, and showed a sex-by-linetype interaction, with the HR/C ratio being 1.52 for males but only 1.17 for females. Thus, females (speed) and males (speed, but also time) evolved differently, as did the replicate selected lines. Speed and time showed a trade-off among HR but not among C lines. These results demonstrate that uniform selection on a complex trait can cause consistent responses in the trait under direct selection while promoting divergence in the lower-level components of that trait. 相似文献
9.
10.
MARCO V. G. TORRIANI DOMINIQUE MAZZI SILKE HEIN SILVIA DORN 《Biological journal of the Linnean Society. Linnean Society of London》2010,100(4):879-889
The ability of a sufficient number of individuals to disperse is crucial for long‐term survival of populations. However, dispersal is often energetically costly, and thus is expected to trade‐off against other life‐history traits. In insect pest species, the occurrence of individuals with high flight activity challenges management practices. We performed artificial selection on flight activity and measured correlated responses to selection in the oriental fruit moth, Grapholita (= Cydia) molesta, a widely distributed and expanding lepidopteran pest of fruit crops. Both sexes rapidly responded to the imposed regime of divergent selection, indicating an adaptive potential of flight activity in this species. Upward‐selected moths died sooner than downward‐selected ones, providing evidence for a cost of flight activity to adult survival, reputedly associated with enhanced metabolic rates. Oppositely‐selected females had similar total reproductive output, disproving a trade‐off between dispersal and reproduction, although females with higher flight activity laid their eggs sooner. The ratio of body weight to forewing surface (forewing loading) did not significantly differ between selected lines. The present study contributes to the understanding of dispersal evolution, and also provides new insights into life‐history theory as well as important baseline data for the improvement of pest management practices. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 879–889. 相似文献
11.
Specific interactions between parasite genotypes and host genotypes (Gp × Gh) are commonly found in invertebrate systems, but are largely lacking a mechanistic explanation. The genotype of invertebrate hosts can be complemented by the genomes of microorganisms living on or within the host (‘microbiota’). We investigated whether the bacterial gut microbiota of bumble bees (Bombus terrestris) can account for the specificity of interactions between individuals from different colonies (previously taken as host genotype proxy) and genotypes of the parasite Crithidia bombi. For this, we transplanted the microbiota between individuals of six colonies. Both the general infection load and the specific success of different C. bombi genotypes were mostly driven by the microbiota, rather than by worker genotype. Variation in gut microbiota can therefore be responsible for specific immune phenotypes and the evolution of gut parasites may be driven by interactions with ‘microbiota types’ as well as with host genotypes. 相似文献
12.
Replicate lines of Drosophila melanogaster and D. simulans originating from the same location in Australia were selected at two selection intensities (50%, 85% mortality) for increased resistance to desiccation, and scored for correlated responses to see if similar physiological changes were associated with the selection responses. Realized heritabilities were much higher in D. melanogaster. Selected lines of both species were more resistant than control lines to starvation and a toxic ethanol concentration. Both species also showed similar correlated responses for traits underlying the selection response: selected lines lost water at a slower rate and had reduced activity levels in a dry environment, but they did not differ in wet or dry body weight or in water content. For D. melanogaster, realized heritabilities for lines selected at 85% mortality were higher than for lines selected at 50% mortality, but there was no effect of selection intensity for D. simulans. Comparative studies of this nature may be useful in predicting the extent to which species can adapt to stress in the wild. 相似文献
13.
Leonel Stazione Fabian M. Norry Federico H. Gomez Pablo Sambucetti 《Ecology and evolution》2020,10(4):1998-2006
Reproduction and related traits such as mating success are strongly affected by thermal stress. We tested direct and correlated responses to artificial selection in replicated lines of Drosophila buzzatii that were selected for mating success at high temperature. Knockdown resistance at high temperature (KRHT) and chill‐coma recovery (CCR) were tested as correlated selection responses. Virgin flies were allowed to mate for four hours at 33°C in three replicated lines (S lines) to obtain the selected flies and then returned at 25°C to lay eggs. Other three replicated lines were maintained at 25°C without any selection as control (C lines). After 15 selection generations, KRHT and CCR were measured. Both traits were assessed in flies that did not receive any hardening pretreatments as well as in flies that were either heat or cold hardened. Thermotolerance traits showed significant correlated responses with higher KRHT in S than in C lines, both with a heat‐hardening pretreatment and without a heat‐hardening pretreatment. CCR time was longer in S than in C lines both with a cold‐hardening pretreatment and without a cold‐hardening pretreatment. Hardening treatments improved both KRHT and CCR in all cases excepting KRHT in C lines. Overall, KRHT and CCR showed an antagonistic pattern of correlated responses to our selection regime, suggesting either pleiotropy or tightly linked trait‐specific genes partially affecting KRHT and CCR. 相似文献
14.
15.
To what extent is adaptive evolution over short timescales repeatable? To address this question, we studied the performance of crosses between replicate Drosophila melanogaster lines previously subject to selection for improved learning response in the context of oviposition substrate choice. Of the 10 pairwise F1 crosses among the five selection lines, four performed in the original learning assay similarly to the parental lines, whereas the remaining six showed learning scores significantly below the average of the parental lines. In particular, four F1 crosses (three involving the same line) showed no detectable learning, on a par with unselected control lines. This indicates that the response to selection in some lines involved allelic substitutions at different loci. Additional assays of crosses between two selection lines indicated that the loss of performance in hybrids generalized to another type of learning assay, and held for both short‐ and long‐term memory. Joint analysis of first‐ and second‐generation crosses between these two lines supported the hypothesis that the response to selection in these different lines was based on the spread of recessive alleles at different loci. These results show that the evolutionary trajectories of populations of the same origin subject to uniform selection may sometimes diverge over very short evolutionary timescales. 相似文献
16.
J. A. Hutchings 《Journal of fish biology》2014,85(6):1907-1926
Natural environmental change has produced countless opportunities for species to disperse into and persist in habitats where they previously did not exist. Introduction and stocking programmes have facilitated similar sorts of colonization opportunities across considerably greater geographical scales and often in much shorter periods of time. Even though the mechanism of colonization differs, the result can be the same: evolutionary change in the colonizing population in response to novel selection pressures. As a consequence, some human‐mediated fish transfers have unintentionally yielded novel research opportunities to study how phenotypes and genes interact with their environment and affect ecological and evolutionary change. The primary purpose here is to explore how work, directly or indirectly involved with human‐mediated transfers, has unintentionally yielded novel research and research opportunities in fish ecology and evolution. Insights have produced new knowledge or altered previously held perceptions on topics such as local adaptation, rate of evolutionary change, phenotypic plasticity, alternative reproductive strategies, population structure and colonization probability. Well‐documented stocking programmes, especially in terms of history, numbers and original population sources, can provide highly fertile ground for generating further insights on the ecology and evolution of fishes and of the factors likely to influence the success of conservation‐based, restoration programmes. 相似文献
17.
A bacteriophage genome was forced to evolve a new system of regulation by replacing its RNA polymerase (RNAP) gene, a central component of the phage developmental pathway, with that of a relative. The experiment used the obligate lytic phage T7 and the RNAP gene of phage T3. T7 RNAP uses 17 phage promoters, which are responsible for all middle and late gene expression, DNA replication, and progeny maturation, but the enzyme has known physical contacts with only 2 other phage proteins. T3 RNAP was supplied in trans by the bacterial host to a T7 genome lacking its own RNAP gene and the phage population was continually propagated on naive bacteria throughout the adaptation. Evolution of the T3 RNAP gene was thereby prevented, and selection was for the evolution of regulatory signals throughout the phage genome. T3 RNAP transcribes from T7 promoters only at low levels, but a single mutation in the promoter confers high expression, providing a ready mechanism for reevolution of gene expression in this system. When selected for rapid growth, fitness of the engineered phage evolved from a low of 5 doublings/h to 33 doublings/h, close to the expected maximum of 37 doublings/h. However, the experiment was terminated before it could be determined accurately that fitness had reached an obvious plateau, and it is not known whether further adaptation could have resulted in complete recovery of fitness. More than 30 mutations were observed in the evolved genome, but changes were found in only 9 of the 16 promoters, and several coding changes occurred in genes with no known contacts with the RNAP. Surprisingly, the T7 genome adapted to T3 RNAP also maintained high fitness when using T7 RNAP, suggesting that the extreme incompatibility of T7 elements with T3 RNAP is not an invariant property of divergence in these expression systems. 相似文献
18.
Aaditya Narasimhan Jigisha Rohit Kapila Abhishek Meena Santhosh Nagaraj Guru Prasad 《Journal of evolutionary biology》2023,36(4):730-737
Sexual selection is a major force influencing the evolution of sexually reproducing species. Environmental factors such as larval density can manipulate adult condition and influence the direction and strength of sexual selection. While most studies on the influence of larval crowding on sexual selection are either correlational or single-generation manipulations, it is unclear how evolution under chronic larval crowding affects sexual selection. To answer this, we measured the strength of sexual selection on male and female Drosophila melanogaster that had evolved under chronic larval crowding for over 250 generations in the laboratory, along with their controls which had never experienced crowding, in a common garden high-density environment. We measured selection coefficients on male mating success and sex-specific reproductive success, as separate estimates allowed dissection of sex-specific effects. We show that experimental evolution under chronic larval crowding decreases the strength of sexual and fecundity selection in males but not in females, relative to populations experiencing crowding for the first time. The effect of larval crowding in reducing reproductive success is almost twice in females than in males. Our study highlights the importance of studying how evolution in a novel, stressful environment can shape adult fitness in organisms. 相似文献
19.
20.
Experimental evolution is becoming a popular approach to study the genomic selection response of evolving populations. Computer simulation studies suggest that the accuracy of the signature increases with the duration of the experiment. Since some assumptions of the computer simulations may be violated, it is important to scrutinize the influence of the experimental duration with real data. Here, we use a highly replicated Evolve and Resequence study in Drosophila simulans to compare the selection targets inferred at different time points. At each time point, approximately the same number of SNPs deviates from neutral expectations, but only 10% of the selected haplotype blocks identified from the full data set can be detected after 20 generations. Those haplotype blocks that emerge already after 20 generations differ from the others by being strongly selected at the beginning of the experiment and display a more parallel selection response. Consistent with previous computer simulations, our results demonstrate that only Evolve and Resequence experiments with a sufficient number of generations can characterize complex adaptive architectures. 相似文献