首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Changes in brain tryptophan concentrations may affect the synthesis of brain serotonin (5-hydroxytryptamine, 5-HT). Concentrations of tryptophan are regulated more than those of any other amino acid. Such stimuli as acute stress, carbohydrate ingestion, and treatment with various drugs increase the brain content of tryptophan. Treatment of rats and mice with interleukin-1 (IL-1), interleukin-6 (IL-6), lipopolysaccharide (LPS), and β-adrenoceptor agonists, as well as a variety of stressors, such as footshock and restraint, all increase brain concentrations of tryptophan. The peak effect following both acute stress and β-adrenoceptor agonist administration occurs within 30–60 min, whereas the peak effect following LPS and the cytokines occurs much later at around 4–8 h. Experiments using the ganglionic blocker chlorisondamine, and β-adrenoceptor antagonists suggest that the sympathetic nervous system plays an important role in the modulation of brain tryptophan concentrations. The mechanisms involved in the increases observed in brain tryptophan are discussed, as well as their possible biological significance. Special issue dedicated to Dr. Simo S. Oja  相似文献   

2.
A J Dunn 《Life sciences》1988,42(19):1847-1853
Brain concentrations of tryptophan, serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) and plasma amino acids were measured after 15 or 30 minutes of intermittent footshock. Footshock treatment significantly decreased the content of 5-HT in prefrontal cortex and hypothalamus, but not brainstem at 15 min, but the decreases were reversed by 30 min. 5-HIAA, the major catabolite of 5-HT, increased in prefrontal cortex after 15 min, and in prefrontal cortex and hypothalamus after 30 min footshock. 5-HIAA:5-HT ratios were increased at both timepoints in all three brain regions. Concomitant changes in the ratios of 3,4-dihydroxyphenylacetic acid (DOPAC) to dopamine and 3-methoxy,-4-hydroxyphenylethyleneglycol (MHPG) to norepinephrine were also observed. Brain concentrations of tryptophan increased progressively during the footshock in all three brain regions. Plasma concentrations of both tryptophan and tyrosine were also significantly increased, while those of histidine and lysine were decreased. It is possible that the stress-related changes in 5-HT metabolism are due to increased plasma tryptophan, in turn causing increased brain tryptophan and 5-HT synthesis. However, the transient decreases in 5-HT suggest a footshock-induced increase of 5-HT release, depleting existing stores of 5-HT, that are replenished by the increased systemic availability of tryptophan.  相似文献   

3.
Increases in the brain concentrations of tryptophan and in serotonin (5-HT) metabolism are commonly observed in animals under stress. Previous experiments indicated that the increase in brain tryptophan and 5-hydroxyindoleacetic acid (5-HIAA) observed in response to administration of endotoxin (lipopolysaccharide, LPS) and interleukin-1 (IL-1) were largely prevented by pretreatment with N-nitro-L-arginine methylester (L-NAME), an inhibitor of NO synthase (NOS). Therefore we tested whether the increases in tryptophan and 5-HT metabolism observed following restraint and footsthock were similarly affected. Mice were injected with L-NAME (30 mg/kg) or saline and restrained for 40 min. Restraint caused increases in concentrations of tryptophan and the catabolites of dopamine (DA), norepinephrine (NE) and 5-HT in the medial prefrontal cortex, hypothalamus, and brain stem. The L-NAME pretreatment significantly attenuated, but did not prevent, the changes in tryptophan and catecholamine metabolism, with a very small effect on the increase in plasma corticosterone. When mice pretreated with L-NAME were subjected to 30 min footshock, the NOS inhibitor had no statistically significant effects on the increases in DA, NE and 5-HT metabolism, but tended to attenuate the increases in tryptophan. We interpret these results to indicate that NOS plays a relatively small role in the cerebral neurochemical responses to restraint and footshock, but the role in the restraint-induced changes was greater than that in the footshock-induced ones. The attenuation of the restraint-related effects on the catecholamines most probably reflects a contribution to the CNS responses from peripheral vascular changes which are likely to be limited by the inhibition of NOS.  相似文献   

4.
—The injection of ethanol in mice produced a transient rise in 5-hydroxyindoleacetic acid (5-HIAA) levels in brain. However, no concomitant changes in serotonin (5-HT) levels were noted. In an attempt to explain the biochemical mechanism by which ethanol produced this effect, uptake of tryptophan by brain, serotonin turnover in brain, and transport of 5-HIAA from brain were investigated. No changes in tryptophan levels or uptake into brain of ethanol-treated mice were noted. Ethanol 3 g/kg was found to decrease serotonin turnover. Ethanol was also demonstrated to inhibit the removal of 5-HIAA from the central nervous system, and was found to be an inhibitor of 5-HIAA uptake by isolated choroid plexus. The inhibition of biogenic acid transport was noted even at sub-hypnotic levels of ethanol.  相似文献   

5.
Previous studies have indicated that peripheral administration of interleukin-6 (IL-6) increases brain concentrations of tryptophan and 5-hydroxyindoleacetic acid (5-HIAA), the major catabolite of serotonin (5-HT). To determine whether these changes were related to increased synaptic release of 5-HT, we studied the responses to peripheral administration of IL-6 by in vivo microdialysis and in vivo amperometry. Intraperitoneal injection of recombinant IL-6 resulted in an elevation of microdialysate concentrations of 5-HT in the rat striatum. Also, amperometric measurements indicated that i.p. IL-6 enhanced the 5-HT-like signal obtained from the striatum following electrical stimulation of the dorsal raphe nucleus. These results indicate that the increases in brain concentrations of 5-HIAA observed in earlier studies indeed reflect increased synaptic release of 5-HT.  相似文献   

6.
The effcts of short and long term lithium treatment on tryptophan uptake and on tissue levels of the serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA) were studied in twelve brain regions of the cat. Tryptophan uptake and 5-HIAA were significantly correlated in control cats. Short term treatment caused parallel increases or decreases in tryptophan uptake and 5-HIAA. Long term treatment consistently increased tryptophan uptake without corresponding changes in 5-HIAA. Relatively low cumulative doses of lithium may reduce the degree to which tryptophan uptake is a limiting factor in the the regulation of serotonin synthesis.  相似文献   

7.
The concentrations of catecholamine and indoleamine metabolites were measured in intact and adrenalectomized mice to determine whether adrenal hormones mediate or modulate the stress-induced responses. Thirty minutes of footshock resulted in significant increases of the ratios of the dopamine (DA) catabolite, dihydroxyphenylacetic acid (DOPAC), to DA in prefrontal cortex, nucleus accumbens, striatum, hypothalamus, and brainstem, and of homovanillic (HVA)/DA ratios in nucleus accumbens, striatum, amygdala, and hypothalamus. Ratios of 3-methoxy-4-hydroxyphenylethyleneglycol to norepinephrine (NE) were also increased in prefrontal cortex, nucleus accumbens, septum, amygdala, hypothalamus, hippocampus, and brainstem. The concentration of NE was decreased in amygdala. 5-Hydroxyindoleacetic acid (5-HIAA)/5-hydroxytryptamine (5-HT, serotonin) ratios and free tryptophan were also increased in every brain region. Very similar data were obtained from mice restrained for 30 min. Adrenalectomy resulted in increased HVA/DA ratios in prefrontal cortex and striatum, and 5-HIAA/5-HT in septum. The stress-related changes were largely similar in adrenalectomized mice. Significant interactions between adrenalectomy and footshock treatment occurred in prefrontal cortical DOPAC/DA and hypothalamic NE which was depleted only in adrenalectomized mice, suggesting tendencies for these measures to be more responsive in adrenalectomized mice. Corticosterone administration (0.5-2.0 mg/kg s.c.) which resulted in plasma concentrations in the physiological range did not alter the concentrations of the cerebral metabolites measured in any region. We conclude that adrenal hormones do not mediate cerebral catecholamine or indoleamine metabolism in stress, although adrenalectomy may affect HVA and 5-HIAA metabolism, and there was a tendency for catecholamines to be more sensitive to stress in adrenalectomized animals.  相似文献   

8.
Gamma-hydroxybutyrate (GHB) is both a therapeutic agent and a recreative drug. It has sedative, anxiolytic and euphoric effects. These effects are believed to be due to GHB-induced potentiation of cerebral GABAergic and dopaminergic activities, but the serotonergic system might also be involved. In this study, we examine the effects of pharmacological doses of GHB on the serotonergic activity in rat brain. Administration of 4.0 mmol/kg i.p. GHB to rats induces an accumulation of tryptophan and 5-HIAA (5-hydroxyindole acetic acid) in the frontal cortex, striatum and hippocampus without causing significant change in the tissue serotonin content. In the extracellular space, GHB induced a slight decrease in serotonin release. The tryptophan and 5-HIAA accumulation induced by GHB is mimicked by the GHB receptor agonist para-chlorophenyl-transhydroxycrotonate (NCS-356) and blocked by NCS-382 (6,7,8,9-tetrahydro-5-[H]-benzocycloheptene-5-ol-4-ylidene acetic acid) a selective GHB receptor antagonist. GHB induces the accumulation of either a derivative of or [3H]-tryptophan itself in the extracellular space, possibly by increasing tryptophan transport across the blood-brain barrier. The blood content of certain neutral amino-acids, including tryptophan, is also increased by peripheral GHB administration. Some of the effect of GHB could be reproduced by baclofen and reduced by the GABAB antagonist CGP 35348. Taken together, these results indicate that the GHB-induced stimulation of tissue serotonin turnover may be due to an increase in tryptophan transport to the brain and in its uptake by serotonergic cells. As the serotonergic system may be involved in the regulation of sleep, mood and anxiety, the stimulation of this system by high doses of GHB may be involved in certain neuropharmacological events induced by GHB administration.  相似文献   

9.
Stressful treatments have long been associated with increased activity of brain catecholaminergic and serotonergic neurons. An intracerebroventricular (icv) injection of the corticotropin-releasing factor (CRF) also activates brain catecholaminergic neurons. Because brain CRF-containing neurons appear to be activated during stress, it is possible that CRF mediates the catecholaminergic activation. This hypothesis has been tested by assessing the responses in brain catecholamines and indoleamines to footshock in mice pretreated icv with a CRF receptor antagonist, and in mice lacking the gene for CRF (CRFko mice). Consistent with earlier results, icv administration of CRF increased catabolites of dopamine and norepinephrine, but failed to alter tryptophan concentrations or serotonin catabolism. A brief period of footshock increased plasma corticosterone and the concentrations of tryptophan and the catabolites of dopamine, norepinephrine and serotonin in several brain regions. Mice injected icv with 25 microg alpha-helical CRF(9-41) prior to footshock had neurochemical responses that were indistinguishable from controls injected with vehicle, while the increase in plasma corticosterone was slightly attenuated in some experiments. CRFko mice exhibited neurochemical responses to footshock that were indistinguishable from wild-type mice. However, whereas wild-type mice showed the expected increase in plasma corticosterone, there was no such increase in CRFko mice. Similarly, hypophysectomized mice also showed normal neurochemical responses to footshock, but no increase in plasma corticosterone. Hypophysectomy itself elevated brain tryptophan and catecholamine and serotonin metabolism. Treatment with ACTH icv or peripherally failed to induce any changes in cerebral catecholamines and indoleamines. These results suggest that CRF and its receptors, and ACTH and other pituitary hormones, are not involved in the catecholamine and serotonin responses to a brief period of footshock.  相似文献   

10.
Monoaminergic systems are important modulators of the neuroendocrine, autonomic, and behavioral responses to stress-related stimuli. The male roughskin newt (Taricha granulosa) was used as a model system to investigate the effects of corticotropin-releasing factor (CRF) or corticosterone administration on tissue concentrations of norepinephrine, epinephrine, dopamine, 3,4-dihydroxyphenylacetic acid, serotonin, and 5-hydroxyindoleacetic acid (5-HIAA) in microdissected brain areas. Intracerebroventricular infusion of 25 or 50 ng of CRF increased locomotor activity and site-specifically increased dopamine concentrations within the dorsomedial hypothalamus 30 min after treatment when compared to vehicle-treated controls. In further studies, male newts were treated as follows: (1) no injection, no handling, (2) saline injection, or (3) 10 microg corticosterone and then placed in a novel environment. Monoamine and monoamine metabolite concentrations were similar in the unhandled and saline-injected controls 20 min after treatment. In contrast, corticosterone-injected newts had elevated concentrations of dopamine, serotonin, and 5-HIAA in the dorsomedial hypothalamus (a region that contains dopamine- and serotonin-accumulating neuronal cell bodies in representatives of all vertebrate classes) but not in several other regions studied. These site-specific neurochemical effects parallel neurochemical changes observed in the dorsomedial hypothalamic nucleus of mammals following exposure to a variety of physical and psychological stress-related stimuli. Therefore, these changes may reflect highly conserved, site-specific neurochemical responses to stress and stress-related neurochemicals in vertebrates. Given the important role of the dorsomedial hypothalamus in neuroendocrine, autonomic, and behavioral responses to stress, and a proposed role for this region in fast-feedback effects of glucocorticoids on the hypothalamo-pituitary-adrenal axis, these stress-related monoaminergic changes are likely to have important physiological or behavioral consequences.  相似文献   

11.
D J Haleem 《Life sciences》1990,47(11):971-979
In previous studies, long term treatment with ethanol has been shown to enhance brain 5-hydroxytryptamine 5-(HT) metabolism by increasing the activity of the regulatory enzyme tryptophan hydroxylase and or availability of circulating tryptophan secondarily to an inhibition of hepatic tryptophan pyrrolase. In the present study ethanol treatment given for two weeks decreased hepatic apo-tryptophan pyrrolase but not total tryptophan pyrrolase activity in rats. Tryptophan levels in plasma and brain did not increase significantly. But there was a marked increase of 5-HT but not 5-hydroxyindoleacetic acid (5-HIAA) concentration in brain, suggesting a possible increase in the activity of tryptophan hydroxylase. The effect of a tryptophan load on brain 5-HT metabolism was therefore compared in controls and ethanol treated rats. One hour after tryptophan injection (50 mg/kg i.p.) plasma concentrations of total and free tryptophan were identical in controls and ethanol treated rats, but the increases of brain tryptophan 5-HT and 5-HIAA were considerably greater in the latter group. The results are consistent with long term ethanol treatment enhancing brain serotonin metabolism and show that brain uptake/utilization of exogenous tryptophan is increased in ethanol treated rats and may be useful to understand the role and possible mechanism of tryptophan/serotonin involvement in mood regulation.  相似文献   

12.
D J Haleem 《Life sciences》1990,47(11):971-979
In previous studies, long term treatment with ethanol has been shown to enhance brain 5-hydroxytryptamine 5-(HT) metabolism by increasing the activity of the regulatory enzyme tryptophan hydroxylase and or availability of circulating tryptophan secondarily to an inhibition of hepatic tryptophan pyrrolase. In the present study ethanol treatment given for two weeks decreased hepatic apo-tryptophan pyrrolase but not total tryptophan pyrrolase activity in rats. Tryptophan levels in plasma and brain did not increase significantly. But there was a marked increase of 5-HT but not 5-hydroxyindoleacetic acid (5-HIAA) concentration in brain, suggesting a possible increase in the activity of tryptophan hydroxylase. The effect of a tryptophan load on brain 5-HT metabolism was therefore compared in controls and ethanol treated rats. One hour after tryptophan injection (50 mg/kg i.p.) plasma concentrations of total and free tryptophan were identical in controls and ethanol treated rats, but the increases of brain tryptophan 5-HT and 5-HIAA were considerably greater in the latter group. The results are consistent with long term ethanol treatment enhancing brain serotonin metabolism and show that brain uptake/utilization of exogenous tryptophan is increased in ethanol treated rats and may be useful to understand the role and possible mechanism of tryptophan/serotonin involvement in mood regulation.  相似文献   

13.
Experimental acute liver ischemia in pigs induces an increment in plasma free tryptophan with decreased total tryptophan. Brain tryptophan is elevated in all brain areas. A slight, but significant increase of brain serotonin is demonstrated in the striatum only, while 5-HIAA (5-hydroxyindoleacetic acid) is significantly lower in the hypothalamus. Other brain areas do not show significant changes in serotonin and 5-HIAA levels. Neither the high plasma free tryptophan levels, nor the decreased sum of neutral competitive amino acids are consistent with such an elevation of brain tryptophan. Hemodialysis was carried out with two different kinds of membranes: cuprophan (with an efficient removal of molecules up to molecular weight 1300) and AN 69 polyacrylonitrile (efficient removal up to 15,000). Ammonia and aminoacid clearance are similar for both membranes. After AN 69, plasmatic free tryptophan and brain tryptophan are lower than after liver devascularization, but still higher than normal. Serotonin significantly increases in the cortex, midbrain and hypothalamus without concomitant rise of 5-HIAA levels. After cuprophan hemodialysis, plasma total tryptophan is lower than in normal and even comatose animals, whereas free tryptophan is normal. Intracerebral tryptophan is similar to AN 69 dialysed animals, but in the hypothalamus it is similar to nondialysed animals. Brain serotonin levels are not modified. 5-HIAA decreases in the hypothalamus. This finding suggests that middle molecules (which are not cleared out with cuprophan hemodialysis) are involved in the intracerebral transfer of tryptophan and the metabolism of serotonin, mainly in the hypothalamus.  相似文献   

14.
Loeffler  D.A.  LeWitt  P.A.  Juneau  P.L.  Camp  D.M.  DeMaggio  A.J.  Havaich  M.K.  Milbury  P.E.  Matson  W.R. 《Neurochemical research》1998,23(12):1521-1525
Parkinson's disease (PD) is characterized by decreased striatal dopamine, but serotonin (5-HT) is also reduced. Because 5-HT decreases following a single levodopa injection, levodopa has been suggested to contribute to PD's serotonergic deficits. However, in a recent study, rat striatal serotonin levels were reported to increase following 15-day levodopa administration. To address this issue, we administered levodopa (50 mg/kg) to rabbits for 5 days, then measured serotonin, its precursors tryptophan and 5-hydroxytryptophan (5-HTP), and its major metabolite 5-hydroxyindole-acetic acid (5-HIAA) in striatum and CSF. Striatal serotonin and tryptophan were unchanged, while 5-HTP and 5-HIAA increased 4- and 7-fold, respectively. CSF 5-HTP and 5-HIAA were also significantly increased. In levodopa-treated animals, 5-HTP concentrations were moderately correlated (r = 0.679) between striatum and CSF, while weak correlations were present between striatal and CSF concentrations of both serotonin and 5-HIAA. These results suggest that repeated levodopa treatment increases striatal serotonin turnover without changing serotonin content. However, levodopa-induced alterations in striatal serotonin metabolism may not be accurately reflected by measurement of serotonin and 5-HIAA in CSF.  相似文献   

15.
The concentration of tryptophan in serum, and the levels of tryptophan, serotonin (5-HT), and 5-hydroxyindole-acetic acid (5-HIAA) in brain are substantially reduced in rats that consume for 6 weeks a diet in which corn is the only source of protein. Single injections of L-tryptophan (25, 50, or 100 mg/kg) cause dose-related increases in brain tryptophan, 5-HT, and 5-HIAA in corn-fed animals. At each dose, brain tryptophan content rises to a proportionately greater extent in corn-fed rats than in well-nourished controls, even though serum tryptophan concentrations attain higher levels in controls. This difference may reflect the greatly reduced serum concentrations in corn-fed rats of other large neutral amino acids that compete with tryptophan for uptake into the brain (tyrosine, phenylalanine, leucine, isoleucine, and valine). However, the substantial decrease in serum albumin levels also diminishes the binding of tryptophan to serum albumin; thus it is not yet possible to state which of these changes is responsible for the much greater increments in brain tryptophan observed in corn-fed rats after tryptophan injection. The fact that tryptophan administration rapidly restores brain 5-hydroxyindole levels in corn-fed animals suggests that the reductions in 5-HT and 5-HIAA levels associated with this type of malnutrition may be largely caused by inadequate availability of substrate.  相似文献   

16.
C R Freed  H Echizen  D Bhaskaran 《Life sciences》1985,37(19):1783-1793
Hypotensive responses to tryptophan and 5-hydroxytryptophan infusions were studied in normotensive male Sprague-Dawley rats. Results showed that 5-hydroxytryptophan but not tryptophan lowered pressure in a dose dependent way in direct relation to the production of brain serotonin and 5-HIAA. Intrinsic release of serotonin from brain was also studied during periods of induced hypertension and hypotension. Brain monoamine responses to blood pressure changes induced by intravenous phenylephrine and nitroprusside were measured in dorsal raphe nucleus and nucleus tractus solitarius by in vivo electrochemistry. Results showed that 5-HIAA was increased during drug induced hypertension and during reflex hypertension which followed a period of hypotension. These changes were blocked by sinoaortic denervation indicating that these central serotonergic neurons are responding to increased pressure sensed by baroreceptors. Therefore, serotonin has a role in blood pressure regulation as a pharmacologic agent and as a neurotransmitter in homeostatic control of pressure.  相似文献   

17.
The pharmacological effects of GABA-related drugs were studied on the serotonin (5-HT) and 5-hydroxyindole-acetic acid (5-HIAA) contents of various regions of the rat brain. These effects were examined in the nuclei raphe dorsalis, magnus and centralis and in structures receiving a dense serotonin innervation such as the habenula complex and subcommissural organ. The GABA agonist, muscimol, increased the 5-HT contents and reduced 5-HIAA levels in structures containing serotoninergic terminals suggesting an inhibitory effect of GABA on the firing of serotoninergic neurons with concomitant reduction of 5-HT utilisation. In contrast, the GABA antagonist, bicuculline, probably stimulated 5-HT turnover since its intraperitoneally administration produced significant increase of 5-HT and/or 5-HIAA levels in the same brain regions. These data are in agreement with a transsynaptic inhibitory control of GABA on serotoninergic neurons. Drugs which inhibit the GABA catabolism such as amino-oxyacetic acid or gamma-vinyl-GABA and which should elevate GABA levels in the synaptic gap were capable of increasing or decreasing the 5-HT and the 5-HIAA levels depending on the experimental conditions. These results suggest that several processes are probably involved in the control of serotoninergic neurons by GABA in the rat brain. Among them, an intracellular effect of GABA on 5-HT metabolism might well occur in cells containing both GABA and 5-HT.  相似文献   

18.
The effects of 1 h/day restraint in plastic tubes for 24 days on the levels of serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), tryptophan (TP), and noradrenaline (NA) in six regions of rat brain 20 h after the last restraint period were investigated. The levels of 5-HT, 5-HIAA, and NA but not TP increased in several regions. The effects of 1 h of immobilization on both control and chronically restrained rats were also studied. Immobilization per se did not alter brain 5-HT, 5-HIAA, and TP levels, but decreased NA in the pons plus medulla oblongata and hypothalamus. However, immobilization after chronic restraint decreased 5-HT, increased 5-HIAA, and decreased NA in most brain regions in comparison with values for the chronically restrained rats. We suggest that chronic restraint leads to compensatory increases of brain 5-HT and NA synthesis and sensitizes both monoaminergic systems to an additional acute stress. These changes may affect coping with stress demands.  相似文献   

19.
Gastric lesions are known to be caused by stress. Corticotropin-releasing factor (CRF) is a key peptide initiating various stress response. This study was designed to investigate how brain CRF is involved in the occurrence of stress-induced gastric erosion in rats. Intracerebroventricular (icv) administration of CRF suppressed the occurrence of gastric erosion induced by water-immersion restraint stress, and its suppressive effect was blocked by coadministration of a CRF receptor antagonist in rats. The peripheral administration of CRF had no influence on the occurrence of erosion. The icv administration of a CRF receptor antagonist or anti-rat CRF gamma-globulin increased gastric erosion induced by the stress. Ganglionic blockade with chlorisondamine, muscarinic blockade with atropine, or bilateral adrenalectomy by itself significantly inhibited the occurrence of stress-induced gastric erosion, and no additional effect of CRF on these treatments-induced inhibition of erosion was found. These results, therefore, suggest that the occurrence of stress-induced gastric erosion is mediated by the autonomic nervous system- and adrenal-dependent pathway, and that brain CRF reduces the occurrence of stress-induced gastric lesions by acting on its specific receptor within the central nervous system, probably through the autonomic nervous system- and adrenal-dependent mechanism.  相似文献   

20.
The injection of caffeine (100 mg/kg, i.p.) into male rats acutely increased brain levels of trytophan, serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA). Blood levels of glucose, nonesterified fatty acids (NEFA) and insulin also increased, while those of the aromatic and branched-chain amino acids fell. Serum tryptophan levels either did not fall, or increased. Consequently, the serum ratio of trypthopahn to the sum of other large neutral amino acids (LNAA) increased. Less consistently noted were increases in serum free tryptophan levels. Brain tyrosine levels were not appreciably altered by caffeine, nor was the serum tyrosine ratio. In dose-response studies, 25 mg/kg of caffeine was the minimal effective dose needed to raise brain tryptophan, but only the 100 mg/kg dose elevated all three indoles in brain. In no experiments did caffeine, at any time or dose, alter brain levels of dopamine or norepinephrine. Caffeine thus probably raises brain tryptophan levels by causing insulin secretion, and thereby changing plasma amino acid levels to favor increased tryptophan uptake into brain. The rises in brain 5-HT and 5-HIAA may follow from the increase in brain tryptophan, although further data are required clearly to establish such a mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号