首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
OMgp不同结构域在抑制神经突起生长中的作用   总被引:3,自引:0,他引:3  
OMgp(oligodendrocyte-myelin glycoprotein)是一种在中枢神经系统表达的GPI连接的糖蛋白。最新发现,它具有诱使生长锥溃变和抑制神经突起再生的作用,这一作用是通过与nogo-66等神经再生抑制因子竞争结合同一受体NgR而实现的。但其相互作用的确切部位尚不能肯定。利用GST融合蛋白表达系统,分段表达了含有不同OMgp结构域的片段,对其与NgR作用的结构域进行了研究。结果表明,在OMgp与NgR的黏附结合过程中,OMgp的亮氨酸富含重复序列结构域是必需的,只有含该结构域的OMgp蛋白片段才能黏附表达有NgR的CHO细胞,并抑制神经突起的生长;在体外,含有丝/苏氨酸富含重复序列结构域的OMgp蛋白片段虽然具有微弱的沉降NgR的功能,但并不能抑制神经突起的生长。该结果将有助于中枢神经系统损伤后神经再生的理论与治疗研究。  相似文献   

2.
Inhibitory molecules derived from CNS myelin and glial scar tissue are major causes for insufficient functional regeneration in the mammalian CNS. A multitude of these molecules signal through the Rho/Rho kinase (ROCK) pathway. We evaluated three inhibitors of ROCK, Y- 27632, Fasudil (HA-1077), and Dimethylfasudil (H-1152), in models of neurite outgrowth in vitro. We show, that all three ROCK inhibitors partially restore neurite outgrowth of Ntera-2 neurons on the inhibitory chondroitin sulphate proteoglycan substrate. In the rat optic nerve crush model Y-27632 dose-dependently increased regeneration of retinal ganglion cell axons in vivo. Application of Dimethylfasudil showed a trend towards increased axonal regeneration in an intermediate concentration. We demonstrate that inhibition of ROCK can be an effective therapeutic approach to increase regeneration of CNS neurons. The selection of a suitable inhibitor with a broad therapeutic window, however, is crucial in order to minimize unwanted side effects and to avoid deleterious effects on nerve fiber growth.  相似文献   

3.
The very limited ability to regenerate axons after injury in the mature mammalian central nervous system (CNS) has been partly attributed to the growth restrictive nature of CNS myelin. Oligodendrocyte myelin glycoprotein (OMgp) was identified as a major myelin‐derived inhibitor of axon growth. However, its role in axon regeneration in vivo is poorly understood. Here we describe the generation and molecular characterization of an OMgp allelic series. With a single gene targeting event and Cre/FLP mediated recombination, we generated an OMgp null allele with a LacZ reporter, one without a reporter gene, and an OMgp conditional allele. This allelic series will aid in the study of OMgp in adult CNS axon regeneration using mouse models of spinal cord injury. The conditional allele will overcome developmental compensation when employed with an inducible Cre, and allows for the study of temporal and tissue/cell type‐specific roles of OMgp in CNS injury‐induced axonal plasticity. genesis 47:751–756, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
Treatment for peripheral nerve injuries includes the use of autografts and nerve guide conduits (NGCs). However, outcomes are limited, and full recovery is rarely achieved. The use of nerve scaffolds as a platform to surface immobilize neurotrophic factors and deliver locally is a promising approach to support neurite and nerve outgrowth after injury. We report on a bioactive surface using functional amine groups, to which heparin binds electrostatically. X-ray photoelectron spectroscopy analysis was used to characterize the presence of nitrogen and sulfur. Nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) were bound by electrostatic interaction to heparin, and the release profile evaluated by enzyme-linked immunosorbent assay, which showed that ca. 1% of NGF was released from each of the bioactive surface within 7 days. Furthermore, each surface showed a maximum release of 97% of BDNF. Neurotrophin release on neurite outgrowth was evaluated by primary dorsal root ganglion with a maximum neurite growth response in vitro of 1,075 µm detected for surfaces immobilized with NGF at 1 ng/ml. In summary, the study reports on the design and construction of a biomimetic platform to deliver NGF and BDNF using physiologically low concentrations of neurotrophin. The platform is directly applicable and scalable for improving the regenerative ability of existing NGCs and scaffolds.  相似文献   

5.
6.
OMgp(oligodendrocyte-myelin glycoprotein)可以通过与MAG、nogo-66等神经再生抑制因子竞争结合同一受体NgR而诱使生长锥溃变和抑制神经突起的生长。以前的研究表明,在OMgp与NgR结合抑制神经突起生长的过程中,OMgp的亮氨酸富含重复序列(LRR)是必需的。为进一步了解OMgp LRR在神经突起生长中的作用及其结构与功能之间的关系,采用PCR-定点突变法对OMgp LRR结构域分段删除,表达了删除不同基因片段后的OMgp LRR蛋白,通过对表达有NgR的CHO细胞(NgR-CHO)的黏附实验和对原代培养神经细胞的抑制实验对其功能进行了研究。结果显示,分别删除了OMgp 25~56、57~133、134~180位氨基酸的OMgp LRR蛋白仍具有结合NgR-CHO和抑制原代培养的神经元突起生长的作用;而删除了第181~228位氨基酸的OMgp LRR蛋白则失去了对原代培养神经元的生长抑制作用,但仍然具有结合NgR的能力。表明OMgp181~228在OMgp的功能中具有重要的意义。删除了第181~228位氨基酸的OMgp LRR蛋白可望作为OMgp的竞争性抑制剂,用于中枢神经系统损伤后神经再生的治疗。  相似文献   

7.
Immobilized extracellular matrix proteins and neurotrophins have been extensively studied to enhance neuronal adhesion and proliferation on surfaces for applications in nerve tissue engineering and neuroprosthetic devices. This article describes how the coimmobilization of laminin, an extracellular matrix protein and nerve growth factor (NGF), a neurotrophin can enhance neurite outgrowth observed separately with each type of molecule. In the absence of immobilized NGF, PC12 neurite outgrowth is influenced strongly by the presence of NGF in solution and unaffected by significant increases in laminin surface density (18.7–93.5 ng/mm2). However, when both laminin and NGF are immobilized together, the surface density of laminin is an important factor in determining whether or not the neurite outgrowth‐promoting effect of NGF can be obtained. PC12 neurite outgrowth on surfaces with coimmobilized laminin and NGF with surface densities of 27.6 ng/mm2 and 1.4 ng/mm2, respectively, are similar to that observed on surfaces with immobilized laminin and dissolved NGF. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

8.
How vesicular transport participates in neurite outgrowth is still poorly understood. Neurite outgrowth is not sensitive to tetanus neurotoxin thus does not involve synaptobrevin-mediated vesicular transport to the plasma membrane of neurons. Tetanus neurotoxin-insensitive vesicle-associated membrane protein (TI-VAMP) is a vesicle-SNARE (soluble N-ethylmaleimide-sensitive fusion protein [NSF] attachment protein [SNAP] receptor), involved in transport to the apical plasma membrane in epithelial cells, a tetanus neurotoxin-resistant pathway. Here we show that TI-VAMP is essential for vesicular transport-mediating neurite outgrowth in staurosporine-differentiated PC12 cells. The NH(2)-terminal domain, which precedes the SNARE motif of TI-VAMP, inhibits the association of TI-VAMP with synaptosome-associated protein of 25 kD (SNAP25). Expression of this domain inhibits neurite outgrowth as potently as Botulinum neurotoxin E, which cleaves SNAP25. In contrast, expression of the NH(2)-terminal deletion mutant of TI-VAMP increases SNARE complex formation and strongly stimulates neurite outgrowth. These results provide the first functional evidence for the role of TI-VAMP in neurite outgrowth and point to its NH(2)-terminal domain as a key regulator in this process.  相似文献   

9.
Neurite outgrowth (dendrites and axons) should be a stable, but easily regulated process to enable a neuron to make its appropriate network connections during development. We explore the dynamics of outgrowth in a mathematical continuum model of neurite elongation. The model describes the construction of the internal microtubule cytoskeleton, which results from the production and transport of tubulin dimers and their assembly into microtubules at the growing neurite tip. Tubulin is assumed to be largely synthesised in the cell body from where it is transported by active mechanisms and by diffusion along the neurite. It is argued that this construction process is a fundamental limiting factor in neurite elongation. In the model, elongation is highly stable when tubulin transport is dominated by either active transport or diffusion, but oscillations in length may occur when both active transport and diffusion contribute. Autoregulation of tubulin production can eliminate these oscillations. In all cases a stable steady-state length is reached, provided there is intrinsic decay of tubulin. Small changes in growth parameters, such as the tubulin production rate, can lead to large changes in length. Thus cytoskeleton construction can be both stable and easily regulated, as seems necessary for neurite outgrowth during nervous system development. Action Editor: Upinder Bhalla  相似文献   

10.
Islet-neogenesis-associated protein, INGAP, is a 175-amino-acid pancreatic acinar protein that stimulates pancreatic duct cell proliferation in vitro and islet neogenesis in vivo. To date, the mitogenic activity of INGAP has been identified only in nonneural tissues. The aim of this study was to examine the effects of a pentadecapeptide of INGAP (INGAP peptide), the biologically active portion of the native protein, in cultured dorsal root ganglia (DRG) explants from C57BL/6 mice. The present study provides evidence that INGAP peptide acts as a mitogen in the peripheral nervous system (PNS), and that it enhances neurite outgrowth from DRGs in vitro in a time- and dose-dependent manner. The neuritogenic action of INGAP peptide correlates with an increase in [(3)H]thymidine incorporation (P < 0.0001) and mitochondrial activity (P < 0.001). Results from these studies suggest that INGAP peptide promotes Schwann cell proliferation in the DRG which releases trophic factors that promote neurite outgrowth.  相似文献   

11.
Interactions between the cytoskeleton and cell adhesion molecules are presumed responsible for neurite extension. We have examined the role of microfilaments in neurite outgrowth on the cell adhesion molecules L1, P84, N-CAM, and on laminin. Cerebellar neurons growing on each substrate exhibited differing growth cone morphologies and rates of neurite extension. Growth of neurites in the presence of cytochalasin B (CB) was not inhibited on substrates of L1 or P84 but was markedly inhibited on N-CAM. Neurons on laminin were initially unable to extend neurites in the presence of CB but recovered this ability within 9 h. These studies suggest that neurite outgrowth mediated by different cell adhesion molecules proceeds via involvement of distinct cytoskeletal interactions. © 1993 John Wiley & Sons, Inc.  相似文献   

12.
CAP23 is a major cortical cytoskeleton-associated and calmodulin binding protein that is widely and abundantly expressed during development, maintained in selected brain structures in the adult, and reinduced during nerve regeneration. Overexpression of CAP23 in adult neurons of transgenic mice promotes nerve sprouting, but the role of this protein in process outgrowth was not clear. Here, we show that CAP23 is functionally related to GAP43, and plays a critical role to regulate nerve sprouting and the actin cytoskeleton. Knockout mice lacking CAP23 exhibited a pronounced and complex phenotype, including a defect to produce stimulus-induced nerve sprouting at the adult neuromuscular junction. This sprouting deficit was rescued by transgenic overexpression of either CAP23 or GAP43 in adult motoneurons. Knockin mice expressing GAP43 instead of CAP23 were essentially normal, indicating that, although these proteins do not share homologous sequences, GAP43 can functionally substitute for CAP23 in vivo. Cultured sensory neurons lacking CAP23 exhibited striking alterations in neurite outgrowth that were phenocopied by low doses of cytochalasin D. A detailed analysis of such cultures revealed common and unique functions of CAP23 and GAP43 on the actin cytoskeleton and neurite outgrowth. The results provide compelling experimental evidence for the notion that CAP23 and GAP43 are functionally related intrinsic determinants of anatomical plasticity, and suggest that these proteins function by locally promoting subplasmalemmal actin cytoskeleton accumulation.  相似文献   

13.
14.
LRRC4, leucine-rich repeat C4 protein, has been identified in human (GenBank accession No. AF196976), mouse (GenBank accession No. DQ177325), rat (GenBank accession No. DQ119102) and bovine (GenBank accession No. DQ 164537) with identical domains. In terms of their similarity, the genes encoding LRRC4 in these four mammalian species are orthogs and therefore correspond to the same gene entity. Based on previous research, and using in situ hybridization, we found that LRRC4 had the strongest expression in hippocampal CA1 and CA2, the granule cells of the dentate gyrus region, the mediodoral thalamic nucleus, and cerebella Purkinje cell layers. Using a P19 cell model, we also found that LRRC4 participates in the differentiation of neuron and glia cells. In addition, extracellular proteins containing both an LRR cassette and immunoglobulin domains have been shown to participate in axon guidance. Our data from neurite outgrowth assays indicated that LRRC4 promoted neurite extension of hippocampal neurons, and induced differentiation of glioblastoma U251 cells into astrocyte-like cells, confirmed by morphology observation and glial fibrillary acidic protein expression.  相似文献   

15.
Neurite extension from developing and/or regenerating neurons is terminated on contact with their specific synaptic partner cells. However, a direct relationship between the effects of target cell contact on neurite outgrowth suppression and synapse formation has not yet been demonstrated. To determine whether physical/synaptic contacts affect neurite extension from cultured cells, we utilized soma–soma synapses between the identified Lymnaea neurons. A presynaptic cell (right pedal dorsal 1, RPeD1) was paired either with its postsynaptic partner cells (visceral dorsal 4, VD4, and Visceral dorsal 2, VD2) or with a non‐target cell (visceral dorsal 1, VD1), and the interactions between their neurite outgrowth patterns and synapse formation were examined. Specifically, when cultured in brain conditioned medium (CM, contains growth‐promoting factors), RPeD1, VD4, and VD2 exhibited robust neurite outgrowth within 12–24 h of their isolation. Synapses, similar to those seen in vivo, developed between the neurites of these cells. RPeD1 did not, however, synapse with its non–target cell VD1, despite extensive neuritic overlap between the cells. When placed in a soma–soma configuration (somata juxtaposed against each other), appropriate synapses developed between the somata of RPeD1 and VD4 (inhibitory) and between RPeD1 and VD2 (excitatory). Interestingly, pairing RPeD1 with either of its synaptic partner (VD4 or VD2) resulted in a complete suppression of neurite outgrowth from both pre‐ and postsynaptic neurons, even though the cells were cultured in CM. A single cell in the same dish, however, extended elaborate neurites. Similarly, a postsynaptic cell (VD4) contact suppressed the rate of neurite extension from a previously sprouted RPeD1. This suppression of the presynaptic growth cone motility was also target cell contact specific. The neurite suppression from soma–soma paired cells was transient, and neuronal sprouting began after a delay of 48–72 h. In contrast, when paired with VD1, both RPeD1 and this non‐target cell exhibited robust neurite outgrowth. We demonstrate that this neurite suppression from soma–soma paired cells was target cell contact/synapse specific and Ca2+ dependent. Specifically, soma–soma pairing in CM containing either lower external Ca2+ concentration (50% of its control level) or Cd2+ resulted in robust neurite outgrowth from both cells; however, the incidence of synapse formation between the paired cells was significantly reduced. Taken together, our data show that contact (physical and/or synaptic) between synaptic partners strongly influence neurite outgrowth patterns of both pre‐ and postsynaptic neurons in a time‐dependent and cell‐specific manner. Moreover, our data also suggest that neurite outgrowth and synapse formation are differentially regulated by external Ca2+ concentration. © 2000 John Wiley & Sons, Inc. J Neurobiol 42: 357–369, 2000  相似文献   

16.
Inactivation of Rho GTPases inhibited the neurite outgrowth of PC12 cells. The role of Cdc42 in neurite outgrowth was then studied by selective inhibition of Cdc42 signals. Overexpression of ACK42, Cdc42 binding domain of ACK-1, inhibited NGF-induced neurite outgrowth in PC12 cells. ACK42 also inhibited the neurite outgrowth of PC12 cells induced by constitutively activated mutant of Cdc42, but not Rac. These results suggest that Cdc42 plays an important role in mediating NGF-induced neurite outgrowth of PC12 cells. Inhibition of neurite outgrowth was also demonstrated using a cell permeable chimeric protein, penetratin-ACK42. A dominant negative mutant of Rac, RacN17 inhibited Cdc42-induced neurite outgrowth of PC12 cells suggesting that Rac acts downstream of Cdc42. Further studies, using primary-cultures of rat cerebellar granule neurons, showed that Cdc42 is also involved in the neurite outgrowth of cerebellar granule neurons. Both penetratin-ACK42 and Clostridium difficile toxin B, which inactivates all members of Rho GTPases strongly inhibited the neurite outgrowth of cerebellar granule neurons. These results show that Cdc42 plays a similar and essential role in the development of neurite outgrowth of PC12 cells and cerebellar granule neurons. These results provide evidence that Cdc42 produces signals that are essential for the neurite outgrowth of PC12 cells and cerebellar granule neurons. These authors contributed equally  相似文献   

17.
Yuan Y  Gao X  Guo N  Zhang H  Xie Z  Jin M  Li B  Yu L  Jing N 《Cell research》2007,17(11):919-932
Sac domain-containing proteins belong to a newly identified family of phosphoinositide phosphatases (the PIPPase family). Despite well-characterized enzymatic activity, the biological functions of this mammalian Sac domain PIPPase family remain largely unknown. We identified a novel Sac domain-containing protein, rat Sac3 (rSac3), which is widely expressed in various tissues and localized to the endoplasmic reticulum, Golgi complex and recycling endosomes, rSac3 displays PIPPase activity with PI(3)P, PI(4)P and PI(3,5)P2 as substrates in vitro, and a mutation in the catalytic core of the Sac domain abolishes its enzymatic activity. The expression of rSac3 is upregulated during nerve growth factor (NGF)-stimulated PC 12 cell neuronal differentiation, and overexpression of this protein promotes neurite outgrowth in PC 12 cells. Conversely, inhibition ofrSac3 expression by antisense oligonucleotides reduces neurite outgrowth of NGF- stimulated PC 12 cells, and the active site mutation of rSac3 eliminates its neurite-outgrowth-promoting activity. These results indicate that rSac3 promotes neurite outgrowth in differentiating neurons through its PIPPase activity, suggesting that Sac domain PIPPase proteins may participate in forward membrane trafficking from the endoplasmic reticulum and Golgi complex to the plasma membrane, and may function as regulators of this crucial process of neuronal cell growth and differentiation.[第一段]  相似文献   

18.
Hydrogels capable of gene delivery provide a combinatorial approach for nerve regeneration, with the hydrogel supporting neurite outgrowth and gene delivery inducing the expression of inductive factors. This report investigates the design of hydrogels that balance the requirements for supporting neurite growth with those requirements for promoting gene delivery. Enzymatically-degradable PEG hydrogels encapsulating dorsal root ganglia explants, fibroblasts, and lipoplexes encoding nerve growth factor were gelled within channels that can physically guide neurite outgrowth. Transfection of fibroblasts increased with increasing concentration of Arg-Gly-Asp (RGD) cell adhesion sites and decreasing PEG content. The neurite length increased with increasing RGD concentration within 10% PEG hydrogels, yet was maximal within 7.5% PEG hydrogels at intermediate RGD levels. Delivering lipoplexes within the gel produced longer neurites than culture in NGF-supplemented media or co-culture with cells exposed to DNA prior to encapsulation. Hydrogels designed to support neurite outgrowth and deliver gene therapy vectors locally may ultimately be employed to address multiple barriers that limit regeneration.  相似文献   

19.
20.
Background information. During development, growth cones of outgrowing neurons express proteins involved in vesicular secretion, such as SNARE (soluble N‐ethylmaleimide‐sensitive fusion protein‐attachment protein receptor) proteins, Munc13 and Munc18. Vesicles are known to fuse in growth cones prior to synapse formation, which may contribute to outgrowth. Results. We tested this possibility in dissociated cell cultures and organotypic slice cultures of two release‐deficient mice (Munc18‐1 null and Munc13‐1/2 double null). Both types of release‐deficient neurons have a decreased outgrowth speed and therefore have a smaller total neurite length during early development [DIV1–4 (day in vitro 1–4)]. In addition, more filopodia per growth cone were observed in Munc18‐1 null, but not WT (wild‐type) or Munc13‐1/2 double null neurons. The smaller total neurite length during early development was no longer observed after synaptogenesis (DIV14–23). Conclusion. These data suggest that the inability of vesicle fusion in the growth cone affects outgrowth during the initial phases when outgrowth speed is high, but not during/after synaptogenesis. Overall, the outgrowth speed is probably not rate‐limiting during neuronal network formation, at least in vitro. In addition, Munc18, but not Munc13, regulates growth cone filopodia, potentially via its previously observed effect on filamentous actin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号