首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Focal adhesion kinase (FAK) is a major mediator of integrin signaling pathways. The mechanisms of regulation of FAK activity and its associated cellular functions are not very well understood. Here, we present data suggesting that a novel protein FIP200 functions as an inhibitor for FAK. We show the association of endogenous FIP200 with FAK, which is decreased upon integrin-mediated cell adhesion concomitant with FAK activation. In vitro- and in vivo-binding studies indicate that FIP200 interacts with FAK through multiple domains directly. FIP200 bound to the kinase domain of FAK inhibited its kinase activity in vitro and its autophosphorylation in vivo. Overexpression of FIP200 or its segments inhibited cell spreading, cell migration, and cell cycle progression, which correlated with their inhibition of FAK activity in vivo. The inhibition of these cellular functions by FIP200 could be rescued by coexpression of FAK. Last, we show that disruption of the functional interaction between endogenous FIP200 with FAK leads to increased FAK phosphorylation and partial restoration of cell cycle progression in cells plated on poly-L-lysine, providing further support for FIP200 as a negative regulator of FAK. Together, these results identify FIP200 as a novel protein inhibitor for FAK.  相似文献   

2.
Focal adhesion kinase family interacting protein of 200 kD (FIP200) has been shown to regulate diverse cellular functions such as cell size, proliferation, and migration in vitro. However, the function of FIP200 in vivo has not been investigated. We show that targeted deletion of FIP200 in the mouse led to embryonic death at mid/late gestation associated with heart failure and liver degeneration. We found that FIP200 knockout (KO) embryos show reduced S6 kinase activation and cell size as a result of increased tuberous sclerosis complex function. Furthermore, FIP200 KO embryos exhibited significant apoptosis in heart and liver. Consistent with this, FIP200 KO mouse embryo fibroblasts and liver cells showed increased apoptosis and reduced c-Jun N-terminal kinase phosphorylation in response to tumor necrosis factor (TNF) alpha stimulation, which might be mediated by FIP200 interaction with apoptosis signal-regulating kinase 1 (ASK1) and TNF receptor-associated factor 2 (TRAF2), regulation of TRAF2-ASK1 interaction, and ASK1 phosphorylation. Together, our results reveal that FIP200 functions as a regulatory node to couple two important signaling pathways to regulate cell growth and survival during mouse embryogenesis.  相似文献   

3.
Directed cell migration and cell polarity are crucial in many facets of biological processes. Cellular motility requires a complex array of signaling pathways, in which orchestrated cross-talk, a feedback loop, and multi-component signaling recur. Almost every signaling molecule requires several regulatory processes to be functionally activated, and a lack of a signaling molecule often leads to chemotaxis defects, suggesting an integral role for each component in the pathway. We outline our current understanding of the signaling event that regulates chemotaxis with an emphasis on recent findings associated with the Ras, PI3K, and target of rapamycin (TOR) pathways and the interplay of these pathways. Ras, PI3K, and TOR are known as key regulators of cellular growth. Deregulation of those pathways is associated with many human diseases, such as cancer, developmental disorders, and immunological deficiency. Recent studies in yeast, mammalian cells, and Dictyostelium discoideum reveal another critical role of Ras, PI3K, and TOR in regulating the actin cytoskeleton, cell polarity, and cellular movement. These findings shed light on the mechanism by which eukaryotic cells maintain cell polarity and directed cell movement, and also demonstrate that multiple steps in the signal transduction pathway coordinately regulate cell motility.  相似文献   

4.
Skeletal muscle is a plastic organ that is maintained by multiple pathways regulating cell and protein turnover. During muscle atrophy, proteolytic systems are activated, and contractile proteins and organelles are removed, resulting in the shrinkage of muscle fibers. Excessive loss of muscle mass is associated with poor prognosis in several diseases, including myopathies and muscular dystrophies, as well as in systemic disorders such as cancer, diabetes, sepsis and heart failure. Muscle loss also occurs during aging. In this paper, we review the key mechanisms that regulate the turnover of contractile proteins and organelles in muscle tissue, and discuss how impairments in these mechanisms can contribute to muscle atrophy. We also discuss how protein synthesis and degradation are coordinately regulated by signaling pathways that are influenced by mechanical stress, physical activity, and the availability of nutrients and growth factors. Understanding how these pathways regulate muscle mass will provide new therapeutic targets for the prevention and treatment of muscle atrophy in metabolic and neuromuscular diseases.  相似文献   

5.
6.
Wei H  Guan JL 《Autophagy》2012,8(1):129-131
Autophagy is a highly conserved catabolic cellular process by which cells degrade intracellular constituents in lysosomes, and its dysfunctions have been associated with a variety of human diseases including cancer. Previous studies have linked autophagy to both tumor-suppressive and promoting functions in different contexts, although the pro-tumorigenic function of autophagy has not been examined directly in breast or other cancers in animal models with intact immune functions in vivo. FIP200 (focal adhesion kinase family interacting protein of 200 kD) is a component of the ULK1-Atg13-FIP200-Atg101 complex that is essential for the induction of mammalian autophagy. In our recent study, we show that conditional knockout (KO) of FIP200 in the well-characterized MMTV-PyMT mouse model of human breast cancer significantly suppresses mammary tumorigenesis and progression. Similar to a number of recent studies in Ras-transformed cells, our studies revealed the importance of autophagy in promoting tumorigenesis through regulation of tumor cell glycolysis and proliferation. In addition to the intrinsic defects in proliferation of FIP200-null tumor cells, we also showed that FIP200 deletion in mammary tumor cells triggers increased host anti-tumor immune surveillance, which also contributes to the decreased mammary tumorigenesis and progression. Our study provides the first direct demonstration of a pro-tumorigenic role of autophagy in oncogene-driven tumor models with intact immune functions in vivo. They also suggest FIP200 and other autophagy proteins as potential therapeutic targets for cancer treatment, and raise a number of questions for future studies on the potentially dual functions of autophagy in promoting and suppressing tumorigenesis under different conditions in vivo.  相似文献   

7.
Richard C. Wang 《FEBS letters》2010,584(7):1417-1426
Cell growth is regulated by two antagonistic processes: TOR signaling and autophagy. These processes integrate signals including growth factors, amino acids, and energy status to ensure that cell growth is appropriate to environmental conditions. Autophagy responds indirectly to the cellular milieu as a downstream inhibitory target of TOR signaling and is also directly controlled by nutrient availability, cellular energy status, and cell stress. The control of cell growth by TOR signaling and autophagy are relevant to disease, as altered regulation of either pathway results in tumorigenesis. Here we give an overview of how TOR signaling and autophagy integrate nutritional status to regulate cell growth, how these pathways are coordinately regulated, and how dysfunction of this regulation might result in tumorigenesis.  相似文献   

8.
Dual-specificity tyrosine phosphorylation-regulated kinase 1B (DYRK1B), also known as minibrain-related kinase (MIRK) is one of the best functionally studied members of the DYRK kinase family. DYRKs comprise a family of protein kinases that are emerging modulators of signal transduction pathways, cell proliferation and differentiation, survival, and cell motility. DYRKs were found to participate in several signaling pathways critical for development and cell homeostasis. In this review, we focus on the DYRK1B protein kinase from a functional point of view concerning the signaling pathways through which DYRK1B exerts its cell type-dependent function in a positive or negative manner, in development and human diseases. In particular, we focus on the physiological role of DYRK1B in behavior of stem cells in myogenesis, adipogenesis, spermatogenesis and neurogenesis, as well as in its pathological implication in cancer and metabolic syndrome. Thus, understanding of the molecular mechanisms that regulate signaling pathways is of high importance. Recent studies have identified a close regulatory connection between DYRK1B and the hedgehog (HH) signaling pathway. Here, we aim to bring together what is known about the functional integration and cross-talk between DYRK1B and several signaling pathways, such as HH, RAS and PI3K/mTOR/AKT, as well as how this might affect cellular and molecular processes in development, physiology, and pathology. Thus, this review summarizes the major known functions of DYRK1B kinase, as well as the mechanisms by which DYRK1B exerts its functions in development and human diseases focusing on the homeostasis of stem and cancer stem cells.  相似文献   

9.
A recent convergence of data indicating a relationship between cilia and proliferative diseases, such as polycystic kidney disease, has revived the long-standing enigma of the reciprocal regulatory relationship between cilia and the cell cycle. Multiple signaling pathways are localized to cilia in mammalian cells, and some proteins have been shown to act both in the cilium and in cell cycle regulation. Work from the unicellular alga Chlamydomonas is providing novel insights as to how cilia and the cell cycle are coordinately regulated.  相似文献   

10.
Mitochondria are one of the most complex of subcellular organelles and play key roles in many cellular functions including energy production, fatty acid metabolism, pyrimidine biosynthesis, calcium homeostasis, and cell signaling. In recent years, we and other groups have attempted to identify the complete set of proteins that are localized to human mitochondria as a way to better understand its cellular functions and how it communicates with other cell compartment in complex signaling pathways such as oxidative stress and apoptosis. Indeed, there is an increasing interest in understanding the molecular details of oxidative stress and the mitochondrial role in this process, as well as assessing how mitochondrial proteins become damaged or posttranslationally modified as a consequence of a major change in a cell's redox status. In this review, we report on the current status of the human mitochondrial proteome with an emphasis towards understanding how mitochondrial proteins, especially the proteins that make up the respiratory chain or oxidative phosphorylation (OXPHOS) enzymes, are modified in various models of age-related diseases such as cancer and Parkinson's disease (PD).  相似文献   

11.
FIP200 (focal adhesion kinase [FAK] family interacting protein of 200 kD) is a newly identified protein that binds to the kinase domain of FAK and inhibits its kinase activity and associated cellular functions. Here, we identify an interaction between FIP200 and the TSC1-TSC2 complex through FIP200 binding to TSC1. We found that association of FIP200 with the TSC1-TSC2 complex correlated with its ability to increase cell size and up-regulate S6 kinase phosphorylation but was not involved in the regulation of cell cycle progression. Conversely, knockdown of endogenous FIP200 by RNA interference reduced S6 kinase phosphorylation and cell size, which required TSC1 but was independent of FAK. Furthermore, overexpression of FIP200 reduced TSC1-TSC2 complex formation, although knockdown of endogenous FIP200 by RNA interference did not affect TSC1-TSC2 complex formation. Lastly, we showed that FIP200 is important in nutrient stimulation-induced, but not energy- or serum-induced, S6 kinase activation. Together, these results suggest a cellular function of FIP200 in the regulation of cell size by interaction with the TSC1-TSC2 complex.  相似文献   

12.
Suppression of Pyk2 kinase and cellular activities by FIP200   总被引:5,自引:0,他引:5  
Proline-rich tyrosine kinase 2 (Pyk2) is a cytoplasmic tyrosine kinase implicated to play a role in several intracellular signaling pathways. We report the identification of a novel Pyk2-interacting protein designated FIP200 (FAK family kinase-interacting protein of 200 kD) by using a yeast two-hybrid screen. In vitro binding assays and coimmunoprecipitation confirmed association of FIP200 with Pyk2, and similar assays also showed FIP200 binding to FAK. However, immunofluorescent staining indicated that FIP200 was predominantly localized in the cytoplasm. FIP200 bound to the kinase domain of Pyk2 and inhibited its kinase activity in in vitro kinase assays. FIP200 also inhibited the kinase activity of the Pyk2 isolated from SYF cells (deficient in Src, Yes, and Fyn expression) and the Pyk2 mutant lacking binding site for Src, suggesting that it regulated Pyk2 kinase directly rather than affecting the associated Src family kinases. Consistent with its inhibitory effect in vitro, FIP200 inhibited activation of Pyk2 and Pyk2-induced apoptosis in intact cells, which correlated with its binding to Pyk2. Finally, activation of Pyk2 by several biological stimuli correlated with the dissociation of endogenous FIP200-Pyk2 complex, which provided further support for inhibition of Pyk2 by FIP200 in intact cells. Together, these results suggest that FIP200 functions as an inhibitor of Pyk2 via binding to its kinase domain.  相似文献   

13.
Woo M  Hakem R  Mak TW 《Cell research》2000,10(4):267-278
Apoptosis or programmed cell death(PCD) is an evolutionarily conserved cellular process that is essential for normal development and homeostasis of multicellular organisms.Defects in the apoptosis signaling result in many diseases including autoimmune diseases and cancer.The apoptosis signaling pathway was first described genetically in the nematode Caenorhabditis elegans which serves as a framework for the more complex apoptotic pathways that exist in mammals.In this review,we will discuss the apoptotic pathways that are emerging in mammals as elucidated by studies of gene-targeted mutant mice.  相似文献   

14.
Autophagy is a lysosomal bulk degradation process for intracellular protein and organelles. FIP200 (200 kDa FAK-family interacting protein) is an essential component of mammalian autophagy that is implicated in breast cancer in recent studies. Here we show that inactivation of FIP200 resulted in deficient repair of DNA damage induced by ionizing radiation and anticancer agents in mouse embryonic fibroblasts (MEF). The persistent DNA damage correlated to increased apoptosis and reduced survival of FIP200 knockout (KO) MEFs after treatments with camptothecin (CPT), a topoisomerase I inhibitor and chemotherapeutic agent. Reexpression of FIP200 in FIP200 KO MEFs restored both efficient DNA damage repair and cell survival. Furthermore, knockdown of the increased p62 expression in FIP200 KO MEFs rescued the impaired DNA damage repair and CPT-induced cell death. In contrast, treatment of cells with N-acetyl cysteine did not affect these defects in FIP200 KO MEFs. Finally, FIP200 KO MEFs also showed deficient DNA damage repair and increased cell death compared with control MEFs, when treated with etoposide, a topoisomerase II inhibitor and another anticancer agent. Together, these results identify a new function for FIP200 in the regulation of DNA damage response and cell survival through its activity in autophagy and suggest the possibility of FIP200 or other autophagy proteins as a potential target for treatment to enhance the efficiency of cancer therapy using DNA damage-inducing agents.  相似文献   

15.
The LKB1 tumor suppressor kinase in human disease   总被引:1,自引:0,他引:1  
Inactivating germline mutations in the LKB1 gene underlie Peutz-Jeghers syndrome characterized by hamartomatous polyps and an elevated risk for cancer. Recent studies suggest the involvement of LKB1 also in more common human disorders including diabetes and in a significant fraction of lung adenocarcinomas. These observations have increased the interest towards signaling pathways of this tumor suppressor kinase. The recent breakthroughs in understanding the molecular functions of the LKB1 indicate its contribution as a regulator of cell polarity, energy metabolism and cell proliferation. Here we review how the substrates and cellular functions of LKB1 may be linked to Peutz-Jeghers syndrome and other diseases, and discuss how some of the molecular changes associated with altered LKB1 signaling might be used in therapeutic approaches.  相似文献   

16.
Modulating tissue responses to stress is an important therapeutic objective. Oxidative and genotoxic stresses caused by ionizing radiation are detrimental to healthy tissues but beneficial for treatment of cancer. CD47 is a signaling receptor for thrombospondin-1 and an attractive therapeutic target because blocking CD47 signaling protects normal tissues while sensitizing tumors to ionizing radiation. Here we utilized a metabolomic approach to define molecular mechanisms underlying this radioprotective activity. CD47-deficient cells and cd47-null mice exhibited global advantages in preserving metabolite levels after irradiation. Metabolic pathways required for controlling oxidative stress and mediating DNA repair were enhanced. Some cellular energetics pathways differed basally in CD47-deficient cells, and the global declines in the glycolytic and tricarboxylic acid cycle metabolites characteristic of normal cell and tissue responses to irradiation were prevented in the absence of CD47. Thus, CD47 mediates signaling from the extracellular matrix that coordinately regulates basal metabolism and cytoprotective responses to radiation injury.  相似文献   

17.
MicroRNAs have gained significant interest due to their widespread occurrence and diverse functions as regulatory molecules, which are essential for cell division, growth, development and apoptosis in eukaryotes. The epidermal growth factor receptor (EGFR) signaling pathway is one of the best investigated cellular signaling pathways regulating important cellular processes and its deregulation is associated with severe diseases, such as cancer. In this study, we introduce a systems biological model of the EGFR signaling pathway integrating validated miRNA-target information according to diverse studies, in order to demonstrate essential roles of miRNA within this pathway. The model consists of 1241 reactions and contains 241 miRNAs. We analyze the impact of 100 specific miRNA inhibitors (anit-miRNAs) on this pathway and propose that the embedded miRNA-network can help to identify new drug targets of the EGFR signaling pathway and thereby support the development of new therapeutic strategies against cancer.  相似文献   

18.
In recent decades we have been given insight into the process that transforms a normal cell into a malignant cancer cell. It has been recognised that malignant transformation occurs through successive mutations in specific cellular genes, leading to the activation of oncogenes and inactivation of tumor suppressor genes. The further study of these genes has generated much of its excitement from the convergence of experiments addressing the genetic basis of cancer, together with cellular pathways that normally control important cellular regulatory programmes. In the present review the context in which oncogenes such as proliferation, cell death/apoptosis, differentiation and senescence will be described, as well as how these cellular programmes become deregulated in cancer due to mutations.  相似文献   

19.
Sphingolipids and cell death   总被引:3,自引:0,他引:3  
Sphingolipids (SLs) have been considered for many years as predominant building blocks of biological membranes with key structural functions and little relevance in cellular signaling. However, this view has changed dramatically in recent years with the recognition that certain SLs such as ceramide, sphingosine 1-phosphate and gangliosides, participate actively in signal transduction pathways, regulating many different cell functions such as proliferation, differentiation, adhesion and cell death. In particular, ceramide has attracted considerable attention in cell biology and biophysics due to its key role in the modulation of membrane physical properties, signaling and cell death regulation. This latter function is largely exerted by the ability of ceramide to activate the major pathways governing cell death such as the endoplasmic reticulum and mitochondria. Overall, the evidence so far indicates a key function of SLs in disease pathogenesis and hence their regulation may be of potential therapeutic relevance in different pathologies including liver diseases, neurodegeneration and cancer biology and therapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号